JPH0688153A - Production of sintered titanium alloy - Google Patents
Production of sintered titanium alloyInfo
- Publication number
- JPH0688153A JPH0688153A JP4238699A JP23869992A JPH0688153A JP H0688153 A JPH0688153 A JP H0688153A JP 4238699 A JP4238699 A JP 4238699A JP 23869992 A JP23869992 A JP 23869992A JP H0688153 A JPH0688153 A JP H0688153A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- titanium
- weight
- sintered
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000000843 powder Substances 0.000 claims abstract description 152
- 238000000034 method Methods 0.000 claims abstract description 35
- 229910000048 titanium hydride Inorganic materials 0.000 claims abstract description 27
- 238000005245 sintering Methods 0.000 claims abstract description 25
- 238000002156 mixing Methods 0.000 claims abstract description 19
- 238000000465 moulding Methods 0.000 claims abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 34
- -1 titanium hydride Chemical compound 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 20
- 238000009694 cold isostatic pressing Methods 0.000 claims description 12
- 238000005275 alloying Methods 0.000 claims description 5
- 239000010936 titanium Substances 0.000 abstract description 32
- 229910045601 alloy Inorganic materials 0.000 abstract description 22
- 239000000956 alloy Substances 0.000 abstract description 22
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000013329 compounding Methods 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 description 31
- 239000000463 material Substances 0.000 description 19
- 229910052760 oxygen Inorganic materials 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 18
- 239000001301 oxygen Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 239000002994 raw material Substances 0.000 description 15
- 229910052719 titanium Inorganic materials 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 238000006356 dehydrogenation reaction Methods 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000001513 hot isostatic pressing Methods 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000000280 densification Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は焼結チタン合金の製造方
法に関するものであり、特に素粉末混合法による焼結チ
タン合金の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered titanium alloy, and more particularly to a method for producing a sintered titanium alloy by an elementary powder mixing method.
【0002】[0002]
【従来の技術】粉末冶金法は、材料を最終形状に近い形
状にまで造形できるため、加工性や成形性或いは被削性
に乏しいチタン合金等の製品を得るための製造方法とし
て適している。2. Description of the Related Art The powder metallurgy method is suitable as a manufacturing method for obtaining a product such as a titanium alloy having poor workability, formability, or machinability, since the material can be formed into a shape close to the final shape.
【0003】とりわけ、純チタン粉末と合金化用粉末を
機械的に混合して、プレスもしくはCIP(冷間静水圧
成形法)にて所定形状に成形し、真空もしくは不活性ガ
ス雰囲気中で焼結および合金化熱処理を同時に行い、そ
の後必要に応じてHIP(熱間静水圧成形法)や鍛造等
の高密度化処理を行う素粉末混合法は、焼結以前には
軟質なチタン粉末が原料の大部分を占めるので良好な成
形性を有し、室温に於いて精密な形状の圧粉体を製造し
得る。素材粉末の混合比を変えて、組成の異なる各種
合金の製造が可能である。等の利点を有する。In particular, pure titanium powder and alloying powder are mechanically mixed, pressed into a predetermined shape by pressing or CIP (cold isostatic pressing), and sintered in a vacuum or an inert gas atmosphere. And the alloying heat treatment are performed at the same time, and then the densification treatment such as HIP (hot isostatic pressing) and forging, etc. is performed as needed. Since it occupies the most part, it has good moldability and can manufacture a green compact with a precise shape at room temperature. It is possible to manufacture various alloys with different compositions by changing the mixing ratio of the raw material powders. And so on.
【0004】原料であるチタン粉末としては、廉価なも
のとして、ハンター法によるスポンジチタン製造時に発
生する粉末、いわゆるスポンジファインの使用が考えら
れる。しかし、スポンジファインは多量に塩素を含有し
ており、真空熱処理工程では十分な塩素の除去ができな
いため、製品中に残留する塩素に起因する多量の空孔が
発生し、その結果、焼結チタン合金の機械的特性を劣化
させる。したがって、素粉末混合法においてスポンジフ
ァイン粉末を原料として使用することは、チタン合金の
優れた特性を活かしているとはいえない。このように、
原料であるチタン粉末に必要な特性の1つに塩素含有量
が低いことが挙げられ、現状では原料粉末は純チタンイ
ンゴットの粉砕より得られている。As the titanium powder as a raw material, it is possible to use, as an inexpensive material, so-called sponge fine, which is a powder generated during the production of titanium sponge by the Hunter method. However, since sponge fine contains a large amount of chlorine and chlorine cannot be removed sufficiently in the vacuum heat treatment process, a large amount of pores are generated due to chlorine remaining in the product, and as a result, sintered titanium Degrades the mechanical properties of the alloy. Therefore, the use of sponge fine powder as a raw material in the elementary powder mixing method cannot be said to utilize the excellent properties of titanium alloy. in this way,
One of the properties required for the raw material titanium powder is that the chlorine content is low, and at present, the raw material powder is obtained by crushing a pure titanium ingot.
【0005】しかしながら、純チタンは延性が良好で、
通常の機械的な方法では粉砕が困難である。このため、
チタン粉末の製造は、水素化処理を行うことでチタンを
脆化し、これを所定粒径に粉砕後、さらに脱水素処理を
行ういわゆるHDH処理により行われている。このHD
H処理により製造されたHDH粉末は、脱水素工程にお
いてチタン粉末の水素量を通常のチタン合金の水素含有
量である0.02重量%以下にするのに600〜800
℃で6〜20時間にわたる長時間の真空熱処理が必要と
なる。このため、粉砕時には10μm程度であった微細
な水素化チタン粉末は、粗い粉末のまわりへの付着や微
細粉末同士の凝集が起こり易く、脱水素熱処理中に拡散
・結合し、脱水素後には粗大な粉末と成る。このため微
細な粉末は非常に得にくく、分級を行ったとしても非常
に少量しか得ることができない。However, pure titanium has good ductility,
Grinding is difficult with normal mechanical methods. For this reason,
The production of titanium powder is performed by so-called HDH treatment in which titanium is embrittled by performing hydrogenation treatment, crushed to a predetermined particle size, and then dehydrogenation treatment is further performed. This HD
The HDH powder produced by the H treatment has a hydrogen content of 600 to 800 in order to reduce the hydrogen content of the titanium powder to 0.02 wt% or less, which is the hydrogen content of a normal titanium alloy, in the dehydrogenation process.
Long-term vacuum heat treatment at 6 ° C. for 6 to 20 hours is required. For this reason, the fine titanium hydride powder, which was about 10 μm at the time of pulverization, is apt to adhere to the coarse powder and to agglomerate the fine powders, diffuse and bond during the dehydrogenation heat treatment, and become coarse after dehydrogenation. It becomes a fine powder. For this reason, it is very difficult to obtain a fine powder, and even if classification is performed, only a very small amount can be obtained.
【0006】また、チタンの酸素固溶能が非常に高いた
め、粉末表面に吸着した酸素が、熱処理時にチタン粉末
中に拡散・固溶し酸素量が増加するので、重量当たりの
表面積が多い微細な水素化チタン粉末から製造された微
細チタン粉末は酸素量が高く、従ってこの粉末により製
造されたチタン合金製品の含有酸素量は高くなる。チタ
ン合金において酸素含有量の増加は、機械的特性、特に
延性が低下し、疲労特性の劣化を招くので望ましくな
い。Further, since titanium has a very high oxygen solid-solubility, oxygen adsorbed on the surface of the powder diffuses and forms a solid solution in the titanium powder during the heat treatment to increase the amount of oxygen. The fine titanium powder produced from such a titanium hydride powder has a high oxygen content, and therefore the titanium alloy product produced by this powder has a high oxygen content. Increasing the oxygen content in a titanium alloy is not desirable because it lowers mechanical properties, especially ductility and leads to deterioration of fatigue properties.
【0007】このような微細粉末の得にくさ、粉末の微
細化による酸素量の増加の2つの理由により、工業的に
製造・利用されるHDHチタン粉末の平均粒径は通常1
00μm程度のものが多く使用される。このような粗い
粉末を使用するため、通常の焼結条件では、低密度の製
品しか得られず、疲労特性を必要とするような部材に適
用するには、高温・長時間での焼結に加えて、HIPや
鍛造等の高密度化処理が必要となる。このような工程条
件は炉の保全上望ましくなく、また工程の増加は処理コ
ストの増大を招き、コストの低減が要請される現状と必
ずしも一致しない。The HDH titanium powder that is industrially produced and used usually has an average particle size of 1 because of the difficulty of obtaining such a fine powder and the increase in the amount of oxygen due to the refinement of the powder.
The one having a diameter of about 00 μm is often used. Since such a coarse powder is used, only low density products can be obtained under normal sintering conditions, and in order to apply it to members that require fatigue characteristics, it is necessary to sinter at high temperature for a long time. In addition, densification treatment such as HIP and forging is required. Such process conditions are not desirable for the maintenance of the furnace, and an increase in the number of processes leads to an increase in processing cost, which does not always match the current situation where cost reduction is required.
【0008】高密度の焼結体を得る方法としては、低融
点の材料を添加し、焼結時に材料の一部を融解する液相
焼結法も考えられる。この手法は密度の上昇には有効で
あるが、結晶粒の粗大化や粒界への低融点成分の偏析が
起こり、機械的特性の劣化を招く。As a method for obtaining a high density sintered body, a liquid phase sintering method in which a low melting point material is added and a part of the material is melted during sintering is also considered. Although this method is effective for increasing the density, coarsening of crystal grains and segregation of low-melting-point components at grain boundaries occur, leading to deterioration of mechanical properties.
【0009】また、特開昭61−246333号公報記
載のようにチタン粉末と合金化用粉末を混合後、凝集剤
を添加後、機械的手法により粉砕し、成形・焼結を行う
手法がある。この方法では確かに焼結性の改善が可能で
あるが、しかしこの方法で得られた粉末を詳細に観察す
ると、チタン粉末は粉砕に伴い、平板状につぶれ、酸素
量の増加が懸念される。Further, as described in JP-A-61-246333, there is a method of mixing titanium powder and alloying powder, adding a coagulant, and then pulverizing by a mechanical method to perform molding and sintering. . This method can certainly improve the sinterability, but when observing the powder obtained by this method in detail, the titanium powder is crushed into a flat plate due to pulverization, and there is a concern that the amount of oxygen increases. .
【0010】一方、「Powder Metallurgy Internationa
l 誌」(1974年発行)No.2、第66頁に記載され
ているように、焼結純チタン材においては原料粉末に水
素化チタン粉末や水素化チタン粉末とチタン粉末の混合
粉末を使用し、脱水素工程と焼結工程を同時に行う方法
がある。この方法では、脱水素工程を行わない安価な水
素化チタン粉末を使用でき、なお熱処理工程が1工程省
略できるのでチタン合金の特性に悪影響を及ぼす酸素に
よる汚染が軽減される利点がある。さらに、水素化チタ
ン粉末に含まれる多量の転位によりチタンの拡散が活性
化され、チタン粉末のみを使用した場合より低温短時間
で焼結が進行する利点がある。On the other hand, "Powder Metallurgy Internationa
Magazine ”(issued in 1974) No. 2, as described on page 66, in the case of sintered pure titanium material, titanium hydride powder or a mixed powder of titanium hydride powder and titanium powder is used as the raw material powder, and the dehydrogenation step and the sintering step are performed. There is a way to do it at the same time. In this method, an inexpensive titanium hydride powder that does not undergo a dehydrogenation step can be used, and since one heat treatment step can be omitted, there is an advantage that contamination by oxygen that adversely affects the characteristics of the titanium alloy can be reduced. Further, there is an advantage that the diffusion of titanium is activated by a large amount of dislocations contained in the titanium hydride powder, and the sintering proceeds at a low temperature in a short time as compared with the case where only the titanium powder is used.
【0011】しかしながら、この方法は、素粉末混合法
による焼結チタン合金の製造方法には直接適用はできな
い。その理由は以下に述べる通りである。まず、チタン
合金はAl,V,Fe,Mo等のTi以外の元素を多量
に含み、これら合金元素は水素と強く相互作用する。こ
のため、水素を含む原料粉末を使用した焼結チタン合金
の製造は、焼結純チタンの製造と比べ、脱水素熱処理に
非常に長い時間が必要となる。このとき一部の水素は焼
結の進行に従って、素材内部に残存する空孔にガスとし
て閉じ込められる。素材中に閉じ込められた水素ガス
は、昇温および脱水素によるガス圧力の上昇に伴い再び
素材に溶け込み、材料表面から抜け出るという過程を経
なくては素材の外部に排出されないため、脱水素にさら
に時間がかかることになる。同時に水素ガスの圧力のた
め素材内部の空孔の消滅が遅れ、焼結の進行が阻害され
る。さらに焼結時に抜けきれず素材中に残留した水素
は、チタン合金を脆化させる等特性に悪影響を及ぼす。However, this method cannot be directly applied to the method for producing a sintered titanium alloy by the elementary powder mixing method. The reason is as described below. First, the titanium alloy contains a large amount of elements other than Ti such as Al, V, Fe and Mo, and these alloy elements interact strongly with hydrogen. Therefore, in the production of a sintered titanium alloy using a raw material powder containing hydrogen, the dehydrogenation heat treatment requires a very long time as compared with the production of sintered pure titanium. At this time, a part of hydrogen is confined as a gas in the pores remaining inside the material as the sintering progresses. The hydrogen gas trapped in the material dissolves into the material again as the temperature rises and the gas pressure increases due to dehydrogenation, and is not discharged to the outside of the material without going through the process of exiting from the material surface. It will take time. At the same time, the pressure of hydrogen gas delays the disappearance of pores inside the material, which hinders the progress of sintering. Further, hydrogen that cannot be completely removed during sintering and remains in the material adversely affects characteristics such as embrittlement of the titanium alloy.
【0012】[0012]
【発明が解決しようとする課題】本発明は、素粉末混合
法により焼結チタン合金を製造するに当り、粉末の焼結
性を向上させ、HIP等の高密度化処理の工程を行わず
に、焼結チタン合金が本来有する特性を損なうことな
く、なおかつ安価な製造コストで製造するための方法を
提供することを目的とする。DISCLOSURE OF THE INVENTION According to the present invention, when a sintered titanium alloy is produced by the elementary powder mixing method, the sinterability of the powder is improved and the densification treatment step such as HIP is not performed. It is an object of the present invention to provide a method for producing a sintered titanium alloy at a low production cost without impairing the inherent properties of the sintered titanium alloy.
【0013】[0013]
【課題を解決するための手段】上記目的を達成するため
の本発明は、(1)素粉末混合法により焼結チタン合金
を製造する方法において、25μm以下の粒径の粉末を
95重量%以上含む微細な水素化チタン粉末と、45μ
m以上、150μm以下の粒径の粉末を90重量%以上
含む純チタン粉末を、水素化チタン粉末の量を10〜7
5重量%となるように配合した粉末に対して、合金化用
粉末を機械的に混合し、圧粉体成形を行い、真空焼結を
行うことを特徴とし、(2)素粉末混合法により焼結チ
タン合金を製造する方法において、上記(1)項記載の
圧粉体成形をCIP(冷間静水圧成形法)を用て行うこ
とを特徴とする。Means for Solving the Problems The present invention for achieving the above object comprises (1) a method for producing a sintered titanium alloy by an elemental powder mixing method, wherein 95% by weight or more of powder having a particle diameter of 25 μm or less is used. Fine titanium hydride powder containing, 45μ
Pure titanium powder containing 90% by weight or more of powder having a particle diameter of m or more and 150 μm or less, and the amount of titanium hydride powder is 10 to 7
The alloying powder is mechanically mixed with 5% by weight of the compounded powder, green compacting is performed, and vacuum sintering is performed. (2) Elemental powder mixing method The method for producing a sintered titanium alloy is characterized in that the green compact molding described in the item (1) is performed by using CIP (cold isostatic pressing).
【0014】本発明において、水素化チタン粉末とは、
チタン中に3.0重量%以上の水素を含有する粉末をい
い、この粉末の大部分はTiH2 が占める。焼結チタン
合金とはTiと、Al,V,Feやこれら以外の合金成
分および不純物からなるチタン合金であり、例えば、T
i−6Al−4V合金、Ti−3Al−2.5V合金、
Ti−5Al−2.5V合金等の合金であり、製品中に
0.7重量%未満のFe,O,C,N,Hの不純物を不
可避的に含む合金をいう。In the present invention, the titanium hydride powder means
This is a powder containing 3.0% by weight or more of hydrogen in titanium, and TiH 2 occupies most of this powder. The sintered titanium alloy is a titanium alloy composed of Ti, Al, V, Fe, alloy components other than these, and impurities.
i-6Al-4V alloy, Ti-3Al-2.5V alloy,
It is an alloy such as Ti-5Al-2.5V alloy, and refers to an alloy inevitably containing less than 0.7% by weight of Fe, O, C, N, and H impurities in the product.
【0015】このような焼結チタン合金を素粉末混合法
により製造するに際して、Al,V,Feおよびその他
の合金成分は、例えばAl−V母合金やAl−V母合金
のような合金粉末を混合することで添加してもよいし、
Al粉末、V粉末、Fe粉末等の金属元素粉末をそれぞ
れ所定成分に添加してもよい。またTi中にAl,V,
Fe等の添加合金成分を1種類もしくは2種類以上を含
む合金を混合することも可能である。In producing such a sintered titanium alloy by the elementary powder mixing method, Al, V, Fe and other alloy components are alloy powders such as Al-V master alloy and Al-V master alloy. May be added by mixing,
Metal element powders such as Al powder, V powder, and Fe powder may be added to the respective predetermined components. In Ti, Al, V,
It is also possible to mix an alloy containing one kind or two or more kinds of additive alloy components such as Fe.
【0016】[0016]
【作用】以下、本発明を詳細に説明する。本発明者等
は、チタン粉末の製造・利用に関して研究を重ねた結
果、素粉末混合法により焼結チタン合金を製造するに当
り、原料であるチタン粉末中に微細な水素化チタン粉末
を特定量混合することにより、水素の発生による焼結の
遅延を補うに余り有るほどに焼結性が向上し、焼結体の
密度が上昇することを見出した。また、この効果に加え
て水素化チタン粉末を使用することで製品の酸素レベル
を大幅に減少させる効果をも見出した。本発明はこれら
の新規知見に基づいてなされたものである。The present invention will be described in detail below. As a result of repeated research on the production and use of titanium powder, the present inventors have found that when producing a sintered titanium alloy by the elementary powder mixing method, a specific amount of fine titanium hydride powder is contained in the titanium powder as a raw material. It has been found that the mixing improves the sinterability to an extent sufficient to compensate for the delay in sintering due to the generation of hydrogen, and increases the density of the sintered body. In addition to this effect, they have also found that the use of titanium hydride powder significantly reduces the oxygen level of the product. The present invention has been made based on these new findings.
【0017】微細な水素化チタン粉末を添加すること
で、焼結体の密度が上昇するのは、以下の理由による。
第1に、チタンHDH粉末は粗大な粉末であるため、圧
粉成形時に粉体と粉体の間に粗大な空間が生成される。
この空間を微細な水素化チタン粉末が埋めることによ
り、粉末の充填密度が上昇し、成形体密度が大幅に向上
する。第2に微細粉末は比表面積を大幅に増加するの
で、焼結時の表面拡散を助長する。この2つの効果によ
り焼結体密度は大きく増加し、また、脱水素の熱処理工
程を省略することで、粉末の表面に吸着した酸素が粉末
の内部に拡散することを妨げ、チタンの微細粉末を使用
する場合よりも、低レベルな酸素量の製品を製造するこ
とが可能である。The reason why the density of the sintered body is increased by adding the fine titanium hydride powder is as follows.
First, since the titanium HDH powder is a coarse powder, a coarse space is generated between the powders during powder compaction.
By filling this space with fine titanium hydride powder, the packing density of the powder is increased and the compact density is significantly improved. Secondly, the fine powder greatly increases the specific surface area, which promotes surface diffusion during sintering. Due to these two effects, the density of the sintered body is greatly increased, and by omitting the heat treatment step of dehydrogenation, oxygen adsorbed on the surface of the powder is prevented from diffusing into the inside of the powder, and the fine titanium powder is removed. It is possible to produce products with lower levels of oxygen than when used.
【0018】これら効果を十分に活用するには、水素化
チタン粉末の粒度分布が25μm以下の粒径の粉末を9
5重量%以上含むことが必要である。これ以下の含有量
であると、粉末間の空間に埋めるには大きすぎる粉末が
多量に含まれることになり、成形体の密度が低下し、焼
結体の密度の低下を招く。In order to make full use of these effects, titanium hydride powder having a particle size distribution of 25 μm or less should be used.
It is necessary to contain 5% by weight or more. If the content is less than this, a large amount of powder that is too large to fill the space between the powders will be included, and the density of the compact will decrease, leading to a decrease in the density of the sintered body.
【0019】また、水素化チタン粉末の配合量は10重
量%以上、75重量%以下とする必要がある。すなわ
ち、水素化チタン粉末の配合量を10重量%以上と限定
したのは、これに満たない量の場合、粉末間の空間に対
して絶対量として十分でなく、一方、微粉末添加に伴う
比表面積の増加による焼結性の向上の効果が十分でな
い。このため、水素の含有による焼結の遅延を補うほど
の効果が現れず、焼結体の密度の上昇が阻害される。ま
た、大部分の原料が既に脱水素工程を経たチタン粉末を
使用することになり、省工程による低コスト化の利点が
少ない。水素化チタン粉末の配合量の上限値を75重量
%以下としたのは、これ以上の量を配合した場合、粉末
粒度の微細化により急激に成形性が悪化し、成形体密度
が十分でなく、水素含有量の増加により、表面拡散の活
性化よりも素材中の空孔内の水素ガス圧の増加による焼
結の遅延効果が勝り、本発明の効果が十分でなくなるた
めである。The content of titanium hydride powder must be 10% by weight or more and 75% by weight or less. That is, the amount of titanium hydride powder was limited to 10% by weight or more because the amount less than this was not sufficient as an absolute amount for the space between the powders, while the ratio due to the addition of fine powder was The effect of improving the sinterability by increasing the surface area is not sufficient. Therefore, the effect of compensating for the delay of sintering due to the inclusion of hydrogen does not appear, and the increase in the density of the sintered body is hindered. In addition, most of the raw materials use titanium powder that has already undergone the dehydrogenation process, and there is little advantage of cost reduction due to process saving. The upper limit of the compounding amount of titanium hydride powder is set to 75% by weight or less. When the compounding amount is more than this, the moldability is rapidly deteriorated due to the refinement of the powder particle size, and the compact density is insufficient. The reason for this is that the increase of the hydrogen content is more effective than the activation of the surface diffusion in the effect of delaying the sintering due to the increase of the hydrogen gas pressure in the holes in the material, and the effect of the present invention is not sufficient.
【0020】純チタンHDH粉末が45μm〜150μ
mの粒度の範囲に90重量%以上含むことが必要であ
る。この理由は以下の通りである。まず、45μm以下
の粉末が10重量%以上含む純チタン粉末を使用した場
合は、酸素量の大幅な増大を招くため、製品の特性を大
幅に低下させる。150μmを超える粉末が10重量%
以上含む純チタン粉末を使用した場合、成形体密度の低
下により焼結体密度が低下する。また、一般的に粉末の
粒度が粗くなるに従い、製品の表面が粗くなると言わ
れ、粗い粉末を原料とした製品を使用するには2次加工
や表面処理が必要となるため、コストアップが避けられ
ない。また、45μm未満の粉末と150μm超の粉末
の重量の総和が10重量%以上含まれた場合は、上記の
酸素量の増加や焼結体密度の低下の欠点が複合された結
果となる。Pure titanium HDH powder is 45 μm to 150 μm
It is necessary to include 90% by weight or more in the range of the particle size of m. The reason for this is as follows. First, when a pure titanium powder containing a powder of 45 μm or less in an amount of 10% by weight or more is used, a large increase in the oxygen content is caused, so that the characteristics of the product are significantly reduced. 10% by weight of powder exceeding 150 μm
When the pure titanium powder containing the above is used, the density of the sintered body decreases due to the decrease of the density of the compact. In addition, it is generally said that the surface of the product becomes rougher as the particle size of the powder becomes coarser. Secondary processing and surface treatment are required to use the product made from the coarse powder, so avoiding cost increase. I can't. Further, when the total weight of the powder of less than 45 μm and the powder of more than 150 μm is contained in an amount of 10% by weight or more, the above-mentioned drawbacks of increased oxygen amount and decreased sintered body density are combined.
【0021】また、本発明の請求項2で粉体の成形を行
うこととしたCIPは、ダイプレス等の1軸方向で圧縮
成形する方法と異なり、素材に均一な圧力を付与でき疎
密の無い均質な成形体が得られるため、脱水素がスムー
ズになり、有利な成形方法である。Further, unlike the method of compression molding in a uniaxial direction such as a die press, the CIP in which the powder is molded according to claim 2 of the present invention can apply a uniform pressure to the material and can be uniform without being dense and dense. Since such a molded body can be obtained, dehydrogenation becomes smooth, which is an advantageous molding method.
【0022】[0022]
【実施例】各種チタン合金に対して本発明を適用した場
合に基づいて、さらに詳しく説明する。まず、Ti−6
Al−4V(Al:6重量%、V:4重量%、残部:実
質的にTi、少量の不純物を含む)に対して適用した場
合を実施例に示す。表1は、TiH2 粉末の粒度分布を
示し、粉末Dは25μm以下の粉末を96重量%、粉末
Eは25μm以下の粉末をほぼ100重量%含み、粉末
D、粉末E共に本発明の請求範囲にある。また、粉末F
は、25μm超を10重量%含み、比較材に使用したT
iH2 粉末である。EXAMPLES The present invention will be described in more detail based on the case where the present invention is applied to various titanium alloys. First, Ti-6
An example is shown when applied to Al-4V (Al: 6% by weight, V: 4% by weight, balance: substantially Ti, containing a small amount of impurities). Table 1 shows the particle size distribution of the TiH 2 powder. Powder D contains 96% by weight of powder of 25 μm or less, powder E contains almost 100% by weight of powder of 25 μm or less, and both powder D and powder E are claimed in the present invention. It is in. Also, powder F
Contains 10% by weight of more than 25 μm and is used as a comparative material.
iH 2 powder.
【0023】[0023]
【表1】 [Table 1]
【0024】表2は、本実施例で使用したTi粉末の粒
度分布を示す。粉末Aは45μm〜150μmの範囲に
95重量%含まれるチタン粉末で本発明の請求範囲の粒
度分布を持つ粉末である。粉末Bは45μm未満の粒度
の粉末を20重量%含み、粉末Cは150μm超の粉末
を15重量%含む原料粉末であり、それぞれ本発明の比
較材に使用した。添加合金成分であるAlおよびVは、
平均粒径30μm、最大粒径45μmのAlV母合金粉
末(Al60重量%、V40重量%)を使用し、Ti対
母合金の重量比を9:1となるように混合した。Table 2 shows the particle size distribution of the Ti powder used in this example. The powder A is a titanium powder containing 95% by weight in the range of 45 μm to 150 μm, and has a particle size distribution within the scope of the present invention. Powder B was a raw material powder containing 20% by weight of a powder having a particle size of less than 45 μm, and powder C was a raw material powder containing 15% by weight of a powder having a particle size of more than 150 μm, and each was used as a comparative material of the present invention. The additive alloy components Al and V are
AlV master alloy powders (60% by weight of Al and 40% by weight of V) having an average particle size of 30 μm and a maximum particle size of 45 μm were used and mixed so that the weight ratio of Ti to the master alloy was 9: 1.
【0025】[0025]
【表2】 [Table 2]
【0026】表3には種々のチタン粉末混合体の圧粉体
を成形し、さらに毎分20℃で昇温し、保持温度および
保持時間を1150℃・2時間として真空焼結した場合
の焼結体の相対密度を測定した結果を示した。ここでい
う相対密度とは、同じ組成の合金を溶解法により製造し
た場合に得られる試料の密度を100%とした場合の比
である。表3には焼結ままの試験片を引張試験および疲
労試験を施した結果と酸素含有量の測定結果を合わせて
示している。In Table 3, green compacts of various titanium powder mixtures are molded, further heated at 20 ° C./min, and sintered at a holding temperature and a holding time of 1150 ° C. for 2 hours for vacuum sintering. The results of measuring the relative density of the ties are shown. The relative density here is a ratio when the density of a sample obtained when an alloy having the same composition is manufactured by a melting method is 100%. Table 3 also shows the result of the tensile test and the fatigue test of the as-sintered test piece and the measurement result of the oxygen content.
【0027】表3において試験番号1は、HDH−Ti
粉末と60Al40V母合金粉末を9:1の割合で混合
した粉末を原料とした場合で、従来法に相当する。この
混合粉末をCIPにより490MPa で成形し、1150
℃×2時間の真空焼結を行った場合、得られた焼結体の
相対密度は85%である。引張強度は650MPa 、伸び
は8%であり、疲労限は200MPa を示し、酸素含有量
は0.15%である。In Table 3, test number 1 is HDH-Ti.
This is a case where a powder obtained by mixing powder and 60Al40V mother alloy powder at a ratio of 9: 1 is used as a raw material and corresponds to the conventional method. This mixed powder was molded by CIP at 490 MPa, and 1150
When vacuum sintering is performed at ℃ × 2 hours, the relative density of the obtained sintered body is 85%. The tensile strength is 650 MPa, the elongation is 8%, the fatigue limit is 200 MPa, and the oxygen content is 0.15%.
【0028】試験番号4は原料粉末を試験番号1で使用
したHDH−Ti粉末Aの代わりにHDH−Ti粉末A
とTiH2 粉末Dを5:5の比率で配合し、本発明の請
求範囲内の水素化チタン粉末を含む混合粉末を用いた試
験である。試験番号1と同様に成形をCIPにて490
MPa で行い、1150℃×2時間の真空焼結を行った場
合である。得られた焼結体の相対密度は98%であり、
微細な水素化チタン粉末の配合による粉体充填密度の上
昇に伴う成形体密度の向上と、比表面積の増加による表
面拡散の助長の効果が、水素ガスの発生による焼結を阻
害する効果より勝るため、従来法よりも焼結体密度が大
幅に向上する。引張強度および伸びも900MPa 、16
%と従来法より大幅に向上し、酸素量も0.12重量%
と減少し、疲労強度も450MPa と上昇する。Test No. 4 is HDH-Ti powder A instead of HDH-Ti powder A used in test No. 1 as the raw material powder.
And TiH 2 powder D were mixed at a ratio of 5: 5, and a test was conducted using a mixed powder containing titanium hydride powder within the scope of the claims of the present invention. Molded by CIP in the same way as Test No. 490
This is a case where vacuum sintering was performed at 1150 ° C. for 2 hours under MPa. The relative density of the obtained sintered body was 98%,
The improvement of the compact density due to the increase of the powder packing density by the incorporation of fine titanium hydride powder and the effect of promoting the surface diffusion by the increase of the specific surface area are more effective than the effect of inhibiting the sintering due to the generation of hydrogen gas. Therefore, the density of the sintered body is significantly improved as compared with the conventional method. Tensile strength and elongation are also 900MPa, 16
%, Which is significantly higher than the conventional method, and the oxygen content is 0.12% by weight.
And the fatigue strength rises to 450 MPa.
【0029】試験番号3および5の原料粉末の水素化チ
タン粉末の配合量をそれぞれ本発明請求範囲内の下限値
および上限値近くに設定した配合粉末を使用している。
これらの場合は試験番号4と比較して若干の密度や諸特
性は低目であるが、従来法よりも格段の上昇が見られ、
微細な水素化チタン粉末の配合による粉体充填密度の上
昇に伴う成形体密度の向上と、比表面積の増加による表
面拡散の助長の効果である。The blended powders were used in which the blending amounts of the titanium hydride powders of the raw material powders of Test Nos. 3 and 5 were set close to the lower limit value and the upper limit value, respectively, within the claims of the present invention.
In these cases, the density and various characteristics are slightly lower than those of Test No. 4, but a marked increase is seen compared to the conventional method,
This is an effect of improving the density of the compact with the increase of the powder packing density by blending the fine titanium hydride powder, and promoting the surface diffusion by increasing the specific surface area.
【0030】一方、本発明の比較例である、試験番号2
では、表3に示すように1150℃×2時間の焼結条件
では、到達密度は82%であり、諸特性と共に従来法よ
り劣化している。この理由は、水素化チタン粉末の配合
量が5重量%と本発明の請求範囲の下限値より少ないた
め、微細な水素化チタン粉末の配合による、焼結体密度
は向上の効果が現れず、ガス閉じ込めによる焼結の遅延
が顕著になったためである。また、試験番号6は本発明
の請求範囲の水素化チタン粉末の配合量の上限値の75
重量%以上であるため、粉末粒度の微細化により急激に
成形性が悪化し、成形体密度が十分でなく、素材中の空
孔内の水素ガス圧の増加による焼結の遅延効果が勝り、
本発明の効果が十分でなくなるためである。On the other hand, test number 2 which is a comparative example of the present invention
Then, as shown in Table 3, the ultimate density was 82% under the sintering condition of 1150 ° C. × 2 hours, which was deteriorated together with various characteristics as compared with the conventional method. The reason for this is that since the amount of titanium hydride powder blended is 5% by weight, which is less than the lower limit of the claims of the present invention, the effect of improving the sintered body density due to the incorporation of fine titanium hydride powder does not appear. This is because the sintering delay due to the gas confinement became remarkable. Test No. 6 is 75 which is the upper limit of the compounding amount of the titanium hydride powder in the claims of the present invention.
Since it is more than wt%, the formability is rapidly deteriorated due to the refinement of the powder particle size, the compact density is not sufficient, and the delay effect of sintering due to the increase of hydrogen gas pressure in the holes in the material is superior,
This is because the effect of the present invention becomes insufficient.
【0031】試験番号7は、実施例である試験番号4の
うち、TiH2 粉末Dのみをより微細なTiH2 粉末E
に変更し、同一の条件で種々の試験を行った本発明の請
求範囲での結果である。この場合、試験番号4よりも微
細なTiH2 粉末を配合しているので、より拡散が促進
され、到達密度は99%と高めであり、機械的特性・疲
労強度共に向上している。但し表面の増加により若干の
増加が見られるが十分に実用の範囲である。Test No. 7 is the same as Test No. 4 of Example, except that only TiH 2 powder D is finer than TiH 2 powder E.
It is a result within the scope of the claims of the present invention in which various tests were performed under the same conditions. In this case, since TiH 2 powder finer than that of Test No. 4 was blended, diffusion was further promoted, the ultimate density was as high as 99%, and both mechanical properties and fatigue strength were improved. However, although a slight increase can be seen due to the increase in the surface, it is within the practical range.
【0032】一方、試験番号8は、TiH2 粉末DをT
iH2 粉末Eに変更した試験番号4,7に対する比較例
の結果である。到達密度が80%と大幅に減少し、機械
的特性、疲労限ともに大幅に劣化している。これは、T
iH2 粉末Eが本発明の請求範囲よりも25μm以上の
粉末を多く含むため、成形体密度が低下し、焼結体密度
の低下が招かれた結果である。On the other hand, Test No. 8 was conducted by adding TiH 2 powder D to T
is the result of a comparative example for Test No. 4 and 7 was replaced by iH 2 powder E. The ultimate density was significantly reduced to 80%, and both mechanical properties and fatigue limit were significantly degraded. This is T
This is because the iH 2 powder E contains a large amount of powder having a size of 25 μm or more as compared with the claimed range of the present invention, so that the density of the molded body is lowered and the density of the sintered body is lowered.
【0033】試験番号9はTi粉末の粒度を表1の45
μm以下の粉末を10重量%以上含む粉末Bに変更し、
TiH2 粉末Dを試験番号4と同様の比率に配合したも
のを使用した比較例である。焼結体の到達密度は98%
と十分に上昇しているが、Tiの微細な粉末が増加した
ため、酸素含有量は0.35重量%と非常に高くなり、
試験番号4の結果に比べて強度は高いものの、延性およ
び疲労強度も非常に劣化している。Test No. 9 shows the particle size of Ti powder as 45 in Table 1.
Changed to powder B containing 10 μ% or more of powder having a particle size of μm or less,
This is a comparative example using a mixture of TiH 2 powder D in the same ratio as in Test No. 4. The ultimate density of the sintered body is 98%
However, since the amount of fine Ti powder increased, the oxygen content was 0.35% by weight, which was extremely high.
Although the strength is higher than the result of Test No. 4, the ductility and fatigue strength are also extremely deteriorated.
【0034】試験番号10はTi粉末の粒度を表1の1
50μm以上の粉末を10重量%以上含む粉末Cに変更
し、TiH2 粉末Dを試験番号4と同様の比率に配合し
たものを使用した比較例である。この場合、焼結体の到
達密度は80%と低く、機械的特性、疲労特性共に非常
に劣化する。これは、Ti粉末に150μm以上の粗大
な粉末が増加したため、粉末間の空隙が大きくなり、そ
のため成形体密度が低下し、焼結体密度が低下した結果
である。Test No. 10 shows the grain size of Ti powder as 1 in Table 1.
This is a comparative example in which a powder C containing 10% by weight or more of powder of 50 μm or more was mixed and TiH 2 powder D was blended in the same ratio as in Test No. 4. In this case, the ultimate density of the sintered body is as low as 80%, and the mechanical properties and fatigue properties are greatly deteriorated. This is a result of an increase in the Ti powder containing coarse powder of 150 μm or more, resulting in an increase in voids between the powders, resulting in a decrease in compact density and a decrease in sintered density.
【0035】試験番号11は、原料粉末を試験番号4と
同様の配合比率にしたものを使用し、成形をCIPの代
わりにダイプレスにて行った試料に対して真空焼結を施
した結果である。この場合では、97%の相対密度に到
達しており、本発明の効果は十分である。しかし、CI
P成形を行った試験番号4よりも低い到達密度である。
この理由は、ダイプレスが1軸方向での圧縮成形である
ため、成形された試料の位置により密度に疎密ができる
のと比べ、CIPは素材に均一な圧力を付与し均質な成
形体が得られるので、CIPで成形した試料の方が焼結
時に発生した水素ガスを素材外へよりスムーズに排出す
るためである。このようにダイプレス法で成形を行って
も、本発明の効果は期待できるが、CIP法で成形を行
うことにより効果は更なるものとなる。Test No. 11 is the result of vacuum sintering of a sample obtained by using a raw material powder having the same mixing ratio as in Test No. 4 and performing molding by a die press instead of CIP. . In this case, the relative density of 97% is reached, and the effect of the present invention is sufficient. But CI
The reached density is lower than that of test number 4 in which P molding was performed.
The reason for this is that since the die press is compression molding in the uniaxial direction, the density can be varied depending on the position of the molded sample, whereas CIP applies uniform pressure to the material to obtain a homogeneous molded body. Therefore, the CIP-molded sample discharges the hydrogen gas generated during sintering more smoothly to the outside of the material. Although the effects of the present invention can be expected even if the molding is carried out by the die press method as described above, the effects are further enhanced by carrying out the molding by the CIP method.
【0036】[0036]
【表3】 [Table 3]
【0037】表4においては、各種成分のチタン合金の
従来法での製造試験と本発明の請求範囲で実施した試験
の結果を示す。試験番号12および13は、Ti−3A
l−2.5V(Al:3重量%、V:2.5重量%、残
部:実質的にTi、少量の不純物を含む)を、それぞれ
従来の方法での試験の結果とHDH−Ti粉末AとTi
H2 粉末Dを5:5の比率で配合した、本発明の請求範
囲内の試験を実施した結果であり、試験番号14および
15は、Ti−10V−2Fe−3Al(V:10重量
%、Fi:2重量%、Al:3重量%、残部:実質的に
Ti、少量の不純物を含む)についての従来法と実施例
の結果であり、また試験番号16および17は、Ti−
15V−3Cr−3Sn−3Al(V:15重量%、C
r:3重量%、Sn:3重量%、Al:3重量%、残
部:実質的にTi、少量の不純物を含む)についての、
従来法と実施例の結果である。いずれのチタン合金にお
いても本発明を適用した場合は、添加合金の成分や添加
量に関わらず、大幅に密度が上昇し、機械的特性、疲労
特性も向上し、本発明の効果が十分に作用する。Table 4 shows the results of the conventional production test of titanium alloys of various components and the test conducted within the scope of the claims of the present invention. Test numbers 12 and 13 are Ti-3A
1-2.5V (Al: 3% by weight, V: 2.5% by weight, balance: substantially Ti, containing a small amount of impurities), respectively, as a result of the conventional test and HDH-Ti powder A And Ti
Of H 2 powder D 5: was blended at a ratio of 5, the result of the test was carried out in the claims of the present invention, the test numbers 14 and 15, Ti-10V-2Fe-3Al (V: 10 wt%, Fi: 2% by weight, Al: 3% by weight, balance: substantially Ti, containing a small amount of impurities) and the results of the conventional method and Example, and test numbers 16 and 17 are Ti-
15V-3Cr-3Sn-3Al (V: 15% by weight, C
r: 3% by weight, Sn: 3% by weight, Al: 3% by weight, balance: substantially Ti, containing a small amount of impurities).
It is a result of a conventional method and an example. When the present invention is applied to any of the titanium alloys, the density is significantly increased, the mechanical properties and the fatigue properties are improved regardless of the components and the addition amount of the additive alloy, and the effect of the present invention is sufficiently exerted. To do.
【0038】[0038]
【表4】 [Table 4]
【0039】[0039]
【発明の効果】以上説明したように、本発明を適用する
ことにより、素粉末混合法により焼結チタン合金を製造
するに当り、粉末の焼結性を向上し、HIP等の高密度
化処理の工程を行わずに、焼結チタン合金が本来有する
特性を損なうことなく、なおかつ安価な製造コストで製
造することが可能である。As described above, by applying the present invention, in producing a sintered titanium alloy by the elementary powder mixing method, the sinterability of the powder is improved and the densification treatment such as HIP is performed. It is possible to perform the manufacturing process at a low manufacturing cost without deteriorating the inherent properties of the sintered titanium alloy without performing the above process.
Claims (2)
造する方法において、25μm以下の粒径の粉末を95
重量%以上含む微細な水素化チタン粉末と、45μm以
上、150μm以下の粒径の粉末を90重量%以上含む
純チタン粉末を、水素化チタン粉末の量を10〜75重
量%となるように配合した粉末に対して合金化用粉末を
機械的に混合し、圧粉体成形を行い、真空焼結を行うこ
とを特徴とする焼結チタン合金の製造方法。1. A method for producing a sintered titanium alloy by an elementary powder mixing method, wherein 95 powders having a particle size of 25 μm or less are used.
Fine titanium hydride powder containing at least 50% by weight and pure titanium powder containing 90% by weight or more of powder having a particle size of 45 μm or more and 150 μm or less are blended so that the amount of titanium hydride powder is from 10 to 75% by weight. A method for producing a sintered titanium alloy, characterized in that alloying powder is mechanically mixed with the powder thus obtained, green compacting is performed, and vacuum sintering is performed.
(冷間静水圧成形法)を用いて行うことを特徴とする焼
結チタン合金の製造方法。2. The green compact molding according to claim 1, CIP
A method for producing a sintered titanium alloy, which is performed by (cold isostatic pressing).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4238699A JPH0688153A (en) | 1992-09-07 | 1992-09-07 | Production of sintered titanium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4238699A JPH0688153A (en) | 1992-09-07 | 1992-09-07 | Production of sintered titanium alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0688153A true JPH0688153A (en) | 1994-03-29 |
Family
ID=17033983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4238699A Withdrawn JPH0688153A (en) | 1992-09-07 | 1992-09-07 | Production of sintered titanium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0688153A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7993577B2 (en) | 2007-06-11 | 2011-08-09 | Advance Materials Products, Inc. | Cost-effective titanium alloy powder compositions and method for manufacturing flat or shaped articles from these powders |
US8920712B2 (en) | 2007-06-11 | 2014-12-30 | Advanced Materials Products, Inc. | Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen |
JP2020029598A (en) * | 2018-08-23 | 2020-02-27 | 東邦チタニウム株式会社 | Method for manufacturing green compact |
JP2020063509A (en) * | 2018-10-16 | 2020-04-23 | 武生特殊鋼材株式会社 | Method for manufacturing titanium sintered base material |
CN114672682A (en) * | 2022-02-23 | 2022-06-28 | 北京科技大学 | High-performance powder metallurgy titanium alloy part and preparation method thereof |
-
1992
- 1992-09-07 JP JP4238699A patent/JPH0688153A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7993577B2 (en) | 2007-06-11 | 2011-08-09 | Advance Materials Products, Inc. | Cost-effective titanium alloy powder compositions and method for manufacturing flat or shaped articles from these powders |
US8920712B2 (en) | 2007-06-11 | 2014-12-30 | Advanced Materials Products, Inc. | Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen |
JP2020029598A (en) * | 2018-08-23 | 2020-02-27 | 東邦チタニウム株式会社 | Method for manufacturing green compact |
JP2020063509A (en) * | 2018-10-16 | 2020-04-23 | 武生特殊鋼材株式会社 | Method for manufacturing titanium sintered base material |
JP2022025138A (en) * | 2018-10-16 | 2022-02-09 | 武生特殊鋼材株式会社 | Method for manufacturing titanium sintering material |
CN114672682A (en) * | 2022-02-23 | 2022-06-28 | 北京科技大学 | High-performance powder metallurgy titanium alloy part and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5855565B2 (en) | Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same | |
RU2572928C2 (en) | Powder mix for production of titanium alloy, titanium alloy made thereof and methods of their fabrication | |
JP4989636B2 (en) | High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method | |
JP5881188B2 (en) | Method for producing powder alloy of aluminum powder metal | |
US20190118255A1 (en) | Aluminum Alloy Powder Metal With Transition Elements | |
KR20190095414A (en) | Tungsten Silicide Target and Manufacturing Method Thereof | |
EP2022582A1 (en) | Process for producing spherical titanium alloy powder | |
US4432795A (en) | Sintered powdered titanium alloy and method of producing same | |
JPH0688153A (en) | Production of sintered titanium alloy | |
KR101830697B1 (en) | A method for producing a component of powder injection molding | |
JPH0730418B2 (en) | Forming method of Ti-Al intermetallic compound member | |
JPH02259029A (en) | Manufacture of aluminide | |
JPS62224602A (en) | Production of sintered aluminum alloy forging | |
JPH0578708A (en) | Production of aluminum-based grain composite alloy | |
GB2107738A (en) | Forming aluminium and titanium alloys by powder metallurgy | |
JPH0633165A (en) | Manufacture of sintered titanium alloy | |
JPH09111363A (en) | Production of sintered alloy containing ta and si | |
JPH06271901A (en) | Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof | |
JPH06100969A (en) | Production of ti-al intermetallic compound sintered body | |
JP3413921B2 (en) | Method for producing Ti-Al based intermetallic compound sintered body | |
CN110016622B (en) | Powder metallurgy material and application thereof | |
JPH03166329A (en) | Oxide dispersion reinforced cu-zr alloy and its manufacture | |
JP2002256302A (en) | Spherical titanium hydride powder for sintered alloy and method for producing the sintered alloy | |
JPH06306513A (en) | Production of high fatigue strength sintered titanium alloy | |
JPH01301801A (en) | Production of ti-al intermetallic compound powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |