JP2654982B2 - Fe-Al-Si alloy and method for producing the same - Google Patents

Fe-Al-Si alloy and method for producing the same

Info

Publication number
JP2654982B2
JP2654982B2 JP63282288A JP28228888A JP2654982B2 JP 2654982 B2 JP2654982 B2 JP 2654982B2 JP 63282288 A JP63282288 A JP 63282288A JP 28228888 A JP28228888 A JP 28228888A JP 2654982 B2 JP2654982 B2 JP 2654982B2
Authority
JP
Japan
Prior art keywords
alloy
weight
powder
cutting
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63282288A
Other languages
Japanese (ja)
Other versions
JPH02129345A (en
Inventor
勝 柳本
義和 田中
雅英 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Tokushu Seiko KK
Original Assignee
Sanyo Tokushu Seiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Tokushu Seiko KK filed Critical Sanyo Tokushu Seiko KK
Priority to JP63282288A priority Critical patent/JP2654982B2/en
Publication of JPH02129345A publication Critical patent/JPH02129345A/en
Application granted granted Critical
Publication of JP2654982B2 publication Critical patent/JP2654982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、磁気ヘッドのコア材や、薄膜磁気ヘッド
製造用のスパッタリングターゲット材などに使用するFe
−Al−Si系合金材料に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to Fe used for a core material of a magnetic head, a sputtering target material for manufacturing a thin film magnetic head, and the like.
-Al-Si alloy materials.

<従来の技術> Fe−Al−Si系合金は、その磁気特性が極めて優れてい
るところから、磁気ヘッドのコア材として、或はフエラ
イト基盤上に薄く生成させて磁気特性、特に飽和磁束密
度を向上させた複合薄膜ヘッドの製造用のスパッタリン
グターゲット材として、広く使用されている。
<Conventional technology> Fe-Al-Si alloys have extremely excellent magnetic properties. Therefore, they are formed thinly on a magnetic head core material or on a ferrite substrate to reduce the magnetic properties, especially the saturation magnetic flux density. It is widely used as a sputtering target material for manufacturing an improved composite thin film head.

これらのコア材やターゲット材の素材となる合金塊を
得る方法としては、所望の成分に配合し溶解、鋳造した
後、成分偏析を少なくするために高温で均質化の熱処理
をするのが、一般的である。
As a method of obtaining alloy lumps as a material of these core materials and target materials, it is common to mix with desired components, melt and cast, and then perform a heat treatment for homogenization at a high temperature to reduce component segregation. It is a target.

<発明が解決しようとする課題> 鋳造法によって製造したFe−Al−Si系合金塊は、極め
て脆く、欠けたり割れたりし易い。そのために、切削加
工をしようとすると、材料に工具が接触した瞬間に材料
が割れてしまい、満足に切削加工を行なうことができな
い。そして、均質化のために熱処理を行なうと、この欠
点は改善されずに逆に助長される。
<Problems to be Solved by the Invention> An Fe-Al-Si-based alloy lump manufactured by a casting method is extremely brittle and is easily chipped or cracked. Therefore, when cutting is attempted, the material is broken at the moment when the tool comes into contact with the material, and the cutting cannot be performed satisfactorily. When a heat treatment is performed for homogenization, this disadvantage is not improved but is promoted.

従って、Fe−Al−Si系合金の鋳造塊から磁気ヘッドの
コア材やスパッタリングターゲット材を得るための加工
方法としては、穏やかな研削加工を行なうしかなく、研
削加工は切削加工に較べて格段と加工能率が悪いため
に、生産コストが嵩んでいた。そのために、切削加工が
可能なFe−Al−Si系合金の開発が望まれていた。
Therefore, the only way to obtain a core material and a sputtering target material for a magnetic head from a cast lump of an Fe-Al-Si alloy is to perform gentle grinding, which is much more remarkable than cutting. Due to poor processing efficiency, the production cost was high. Therefore, development of a Fe-Al-Si alloy which can be cut has been desired.

また、鋳造法によれば、鋳造塊内にミクロ的偏析とマ
クロ的偏析とが現われ、このうちミクロ的偏析は均質化
熱処理によって改善されるが、マクロ的偏析は改善する
ことができない。そのために、合金の組成を高度に精密
に規定できないばかりでなく、全体が高度に均質な材料
を得ることができなかった。従って、マクロ的偏析のな
いFe−Al−Si系合金材料の開発が望まれていた。
In addition, according to the casting method, micro-segregation and macro-segregation appear in the cast ingot. Among them, the micro-segregation is improved by the homogenizing heat treatment, but the macro-segregation cannot be improved. As a result, not only the composition of the alloy cannot be defined with high precision, but also a material with high homogeneity as a whole cannot be obtained. Therefore, development of an Fe-Al-Si alloy material free of macroscopic segregation has been desired.

<課題を解決するための手段> 本発明者らは、鋳造法によって製造したFe−Al−Si系
合金材料を詳細に調査した結果、鋳造のままの状態で
は、平均結晶粒径が500μ以上と非常に大きく、無数の
ミクロクラックやミクロポアが存在してることが判っ
た。そして、均質化熱処理を行なうと、結晶粒は更に巨
大に成長するが、ミクロクラック及びミクロポアの状況
に改善が認められなかった。
<Means for Solving the Problems> The present inventors have investigated the Fe-Al-Si-based alloy material manufactured by the casting method in detail, and as a result, in the as-cast state, the average crystal grain size is 500μ or more. It was found that very large and numerous microcracks and micropores were present. Then, when the homogenization heat treatment was performed, the crystal grains grew even larger, but no improvement was observed in the state of microcracks and micropores.

これらの結果により、Fe−Al−Si系合金鋳造材が脆く
て切削加工できない原因は、凝固時に発生したミクロク
ラックやミクロポアが起点になって粗大結晶粒内に破壊
が起こるためと判断されるに至った。そして、この判断
に基いて研究を進めた結果、平均結晶粒径が100μ以
下、最大結晶粒径が300μ以下で、ミクロクラックやミ
クロポアが存在していない100%密度の材料塊であれ
ば、割れたり欠けたりせずに切削加工を施しうることが
判明した。
Based on these results, the reason why the Fe-Al-Si alloy cast material was brittle and could not be cut was determined to be that microcracks and micropores generated during solidification started from fractures in coarse crystal grains. Reached. As a result of conducting research based on this judgment, if the average crystal grain size is 100μ or less, the maximum crystal grain size is 300μ or less, and if there is 100% density material mass without microcracks or micropores, cracking will occur. It has been found that cutting can be performed without chipping or chipping.

そして、そのような材料塊は、Alを2〜15重量%、Si
を5〜20重量%、残部が主としてFeになるように配合し
た合金を、ガスアトマイズ法によって粉末化し、この粉
末を普通鋼或は不錆鋼のような可鍛性のカプセルに封入
し、このカプセルごと上記粉末を1000〜1250℃に加熱し
た後、これを加圧金型に装填し、2000Kgf/cm2以上のラ
ム圧で圧縮することにより、製造することができる。
And such a mass of material contains 2-15% by weight of Al,
Is powdered by a gas atomizing method, and the powder is encapsulated in a malleable capsule such as ordinary steel or non-rusted steel. After heating the above powder to 1000 to 1250 ° C., the powder is charged into a pressurized mold and compressed at a ram pressure of 2000 kgf / cm 2 or more.

なお、粉末の焼結手段としては、粉末を直に加圧金型
に収容し、金型ごと粉末を加熱した後にプレスするホッ
トプレス法が知られているが、この方法では実用上1000
Kgf/cm2程度の圧縮しかできないために、成形塊にミク
ロポアが発生する。
As a means for sintering the powder, a hot pressing method in which the powder is directly housed in a pressurized mold, and the powder is heated together with the mold and then pressed, is known.
Since only compression of about Kgf / cm 2 can be performed, micropores are generated in the formed mass.

上述のように2000Kgf/cm2以上の圧縮力を得るために
は、熱間押出機の押出口を閉塞した上でこれに予め加熱
されたカプセルを装填し、ラムで押圧するのが有効であ
る。
In order to obtain a compression force of 2000 kgf / cm 2 or more as described above, it is effective to close the extrusion port of the hot extruder, load a pre-heated capsule into this, and press with a ram. .

粉末を充填したカプセルは、必要に応じ、加熱に先立
って内部を脱気したり、冷間等方圧プレスにより予備圧
縮を加えたりしてもよい。
If necessary, the capsule filled with the powder may be degassed before heating, or may be pre-compressed by a cold isostatic press.

<作用> 粉末粒子内の結晶粒の寸法は、ガスアトマイズの際の
急冷によって極めて微細である。この結晶粒は、加熱に
よって成長するが、加圧圧縮を行なうまでの間は、結晶
の寸法は粉末粒子の寸法に制限され、加圧圧縮後は速や
かに冷却されるので、結晶粒の成長は停止する。従っ
て、製造された材料塊中の結晶粒の寸法は、原料粉末の
粒子寸法より小さい値になる。
<Action> The size of the crystal grains in the powder particles is extremely fine due to rapid cooling during gas atomization. Although these crystal grains grow by heating, the size of the crystals is limited to the size of the powder particles until the compression is performed, and the crystal is cooled immediately after the compression, so that the crystal grains grow. Stop. Therefore, the size of the crystal grains in the manufactured material mass is smaller than the particle size of the raw material powder.

加圧圧縮は、例えば熱間押出機を使用することによ
り、極めて短時間内に、2000Kgf/cm2以上の圧力を加え
ることができ、このような高圧力のために、事実上空隙
やクラックが無い100%密度の材料塊を得ることができ
る。
In the pressure compression, for example, by using a hot extruder, a pressure of 2000 kgf / cm 2 or more can be applied in a very short time, and due to such a high pressure, voids and cracks are effectively formed. It is possible to obtain a 100% density mass of material.

このようにして得た材料塊は、通常の金属材料程切削
が容易ではないが、割れたり欠けたりすることなく旋盤
で加工することができた。
The material mass thus obtained was not as easy to cut as a normal metal material, but could be processed on a lathe without cracking or chipping.

また、上述の材料塊は、製造では不可避の偏析が全く
無いために、各部の金属組成は高度に均一である。
In addition, since the above-mentioned mass of material has no unavoidable segregation in production, the metal composition of each part is highly uniform.

<実施例> Feを85重量%、Siを9.6重量%、Alを5.4重量%の割合
で調整し、真空中で溶解し、アルゴンガスアトマイズに
より平均粒径が150μの球状粉末を得た。この粉末を、
外径150mm、長さ400mm、肉厚15mmのSUS304材製のカプセ
ルに充填し、脱気孔を有する同質材料の蓋を施してTIG
溶接を行ない、ロータリーポンプで脱気しながら脱気孔
を封止した。このビレットを1150℃に加熱して、内径15
5mmの熱間押出機のシリンダ内に、その押出口を閉塞し
た上で装填し、10.6t/cm2の圧力で圧縮した。押圧開始
から最高圧力に到達するまでの時間は2秒で、最高圧力
に10秒間保持した後、ビレットを取出して、大気中で放
冷した。ビレットの長さは360mmに圧縮されていた。
<Example> 85% by weight of Fe, 9.6% by weight of Si, and 5.4% by weight of Al were dissolved in a vacuum, and spherical powder having an average particle diameter of 150μ was obtained by argon gas atomization. This powder,
Fill a capsule made of SUS304 material with an outer diameter of 150 mm, a length of 400 mm, and a thickness of 15 mm, and cover with a lid made of a homogeneous material
Welding was performed, and the degassing hole was sealed while degassing with a rotary pump. The billet is heated to 1150 ° C,
It was charged into a cylinder of a 5 mm hot extruder with its extrusion opening closed, and compressed at a pressure of 10.6 t / cm 2 . The time from the start of pressing until reaching the maximum pressure was 2 seconds. After holding at the maximum pressure for 10 seconds, the billet was taken out and allowed to cool in the air. The billet length was compressed to 360mm.

上記製法によって得たビレットを、放電切断加工によ
って、厚さ10mmに切断した。この切断材は、外周部がカ
プセルから移行したSUS304材によって取巻かれた100%
密度のFe−Al−Si系合金で、その平均結晶粒径は45μ、
最大結晶粒径は120μであった。
The billet obtained by the above method was cut to a thickness of 10 mm by electric discharge cutting. This cut material is 100% surrounded by SUS304 material whose outer periphery has shifted from the capsule
High density Fe-Al-Si alloy with an average grain size of 45μ,
The maximum crystal grain size was 120μ.

この切断材の外周面及び切断端面を旋盤を用いて切削
加工によって仕上げ、直径100mm、厚さ5mmの円盤に加工
した。その際の切削状況を下表に示す。ここで、チップ
寿命の○印は、途中でチップを交換することなく、1箇
の面を加工し得たことを示し、△印は、1箇の面を一気
に加工することができずに、途中でチップを交換した状
態を示す。また、切削状況の○印は、材料が割れたり欠
けたりせずに切削できたことを示す。
The outer peripheral surface and the cut end surface of this cut material were finished by cutting using a lathe, and processed into a disk having a diameter of 100 mm and a thickness of 5 mm. The cutting conditions at that time are shown in the table below. Here, the circle mark of the chip life indicates that one surface could be processed without replacing the chip in the middle, and the triangle mark indicates that one surface could not be processed at once. This shows a state in which the chip has been replaced halfway. Further, a circle of the cutting status indicates that the material was cut without cracking or chipping.

また、比較のために上記と同一組成の直径150mm、長
さ300mmのFe−Al−Si系合金材を鋳造によって製造し、
放電切断して厚さ100mmの切断材を作り、上記と同条件
で切削を試みたが、すべて材料が割れたりチップが欠損
したりして、切削加工を行なうことができなかった。
Also, for comparison, a Fe-Al-Si-based alloy material having a diameter of 150 mm and a length of 300 mm having the same composition as the above was manufactured by casting,
A cutting material having a thickness of 100 mm was made by electric discharge cutting, and cutting was attempted under the same conditions as described above. However, all materials were cracked or chips were lost, so that cutting could not be performed.

<発明の効果> 以上の実施例によって明らかなように、この発明によ
るFe−Al−Si系合金材は、旋盤等による切削加工が可能
であるために、従来の穏やかな研削加工に代えて、切削
加工を採用することによって加工能率を高めることがで
きる。
<Effects of the Invention> As is clear from the above embodiments, the Fe-Al-Si alloy material according to the present invention can be cut by a lathe or the like, so that instead of the conventional gentle grinding, By employing the cutting process, the processing efficiency can be improved.

これに加え、各部の合金組成が高度に均一で、磁気抵
抗や磁気飽和の原因になるミクロクラックやミクロポア
が存在しないために、極めて優れた磁気特性を得ること
ができる。
In addition, since the alloy composition of each part is highly uniform and there are no microcracks or micropores that cause magnetic resistance and magnetic saturation, extremely excellent magnetic properties can be obtained.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−89802(JP,A) 特公 昭42−4321(JP,B1) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-62-89802 (JP, A) JP-B-42-4321 (JP, B1)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Alを2〜15重量%、Siを5〜20重量%、残
部が主としてFeからなり、事実上ミクロポア及びミクロ
クラックが存在せず、各結晶粒は高度に均質で、その平
均結晶粒径が100μ以下で、最大結晶粒径が300μ以下で
あり、切削加工が可能であることを特徴とするFe−Al−
Si系合金。
(1) Al is 2 to 15% by weight, Si is 5 to 20% by weight, and the balance is mainly Fe, virtually free of micropores and microcracks, each crystal grain is highly homogeneous, Fe-Al- characterized in that the crystal grain size is 100μ or less, the maximum crystal grain size is 300μ or less, and cutting is possible.
Si-based alloy.
【請求項2】Alを2〜15重量%、Siを5〜20重量%、残
部が主としてFeからなる合金を、ガスアトマイズ法によ
って粉末化し、この粉末を可鍛性カプセルに封入し、こ
のカプセルごと上記粉末を1000〜1250℃に加熱した後、
これを加圧金型に装填し、2000Kgf/cm2以上のラム圧力
で圧縮して塊状に成形することを特徴とするFe−Al−Si
系合金の製造方法。
2. An alloy consisting of 2 to 15% by weight of Al, 5 to 20% by weight of Si and the balance mainly Fe is powdered by a gas atomizing method, and this powder is sealed in a malleable capsule. After heating the above powder to 1000-1250 ° C,
This is loaded into a pressurized mold, and compressed at a ram pressure of 2000 kgf / cm 2 or more to form a mass, Fe-Al-Si.
Production method of base alloy.
JP63282288A 1988-11-08 1988-11-08 Fe-Al-Si alloy and method for producing the same Expired - Fee Related JP2654982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282288A JP2654982B2 (en) 1988-11-08 1988-11-08 Fe-Al-Si alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282288A JP2654982B2 (en) 1988-11-08 1988-11-08 Fe-Al-Si alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02129345A JPH02129345A (en) 1990-05-17
JP2654982B2 true JP2654982B2 (en) 1997-09-17

Family

ID=17650476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282288A Expired - Fee Related JP2654982B2 (en) 1988-11-08 1988-11-08 Fe-Al-Si alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2654982B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517846A (en) * 1991-05-31 1993-01-26 Sanyo Special Steel Co Ltd Manufacture of fe-al-si based alloy
CN110295311B (en) * 2019-07-02 2021-01-08 北京首钢股份有限公司 Aluminum alloy for aluminum blending, preparation method thereof and aluminum blending method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948936A (en) * 1982-09-14 1984-03-21 Kokusai Electric Co Ltd Carrying and holding device for substrate of vertical type semiconductor substrate surface treating device
JPS6289802A (en) * 1985-10-16 1987-04-24 Hitachi Metals Ltd Production of fe-ni alloy green compact magnetic core

Also Published As

Publication number Publication date
JPH02129345A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
TWI431140B (en) Method for manufacturing sputtering standard materials for aluminum - based alloys
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
JP2654982B2 (en) Fe-Al-Si alloy and method for producing the same
JPS6199640A (en) Manufacture of composite target material
JP3721557B2 (en) Thermoelectric material manufacturing method
JPH02259029A (en) Manufacture of aluminide
JPH0254760A (en) Manufacture of target
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPH01136969A (en) Manufacture of target for titanium silicide sputtering
US5193605A (en) Techniques for preparation of ingot metallurgical discontinuous composites
KR100241407B1 (en) Target for magneto-optical recording medium and manufacturing method thereof
JPH0517846A (en) Manufacture of fe-al-si based alloy
JP2528373B2 (en) Method for manufacturing plate material
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JP2597843B2 (en) Rare earth magnet and its manufacturing method
JPH0225565A (en) Production of sputtering target material
JP3328921B2 (en) Target for magneto-optical recording media
JPH028301A (en) Manufacture of metal material by powder canning process
JPS6350469A (en) Manufacture of alloy target for sputtering
JPS6256543A (en) Manufacture of sintered compact of rare-earth alloy
JPH0742530B2 (en) Manufacturing method of low oxygen alloy compact
JPH0196353A (en) Material for electric discharge machining and its manufacture
JPS61130436A (en) Manufacture of rare earth metal magnet
JP3527939B2 (en) Sputtering target assembly

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees