JPH0742530B2 - Manufacturing method of low oxygen alloy compact - Google Patents

Manufacturing method of low oxygen alloy compact

Info

Publication number
JPH0742530B2
JPH0742530B2 JP61190432A JP19043286A JPH0742530B2 JP H0742530 B2 JPH0742530 B2 JP H0742530B2 JP 61190432 A JP61190432 A JP 61190432A JP 19043286 A JP19043286 A JP 19043286A JP H0742530 B2 JPH0742530 B2 JP H0742530B2
Authority
JP
Japan
Prior art keywords
alloy
sample
powder
oxygen content
hydrogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61190432A
Other languages
Japanese (ja)
Other versions
JPS6347344A (en
Inventor
雄幸 寳地戸
穣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP61190432A priority Critical patent/JPH0742530B2/en
Publication of JPS6347344A publication Critical patent/JPS6347344A/en
Publication of JPH0742530B2 publication Critical patent/JPH0742530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Description

【発明の詳細な説明】 〔発明の目的〕 産業上の利用分野 本発明は電子部品用材料などの不純物含量の少いことが
要求される材料、特に低酸素含量の合金材料の製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for producing a material required to have a low content of impurities such as a material for electronic parts, particularly an alloy material having a low oxygen content.

従来の技術 電子デバイスなどを製作するための材料、いわゆる電子
材料として、不純物含量の少い合金などが必要とされ
る。また、かかる材料を用いてICなどの電子デバイスや
各種記憶媒体などを製作しようとするときは、スパッタ
リング用ターゲットの形態で使用されることが多い。
2. Description of the Related Art As materials for manufacturing electronic devices, so-called electronic materials, alloys having a low impurity content are required. When manufacturing electronic devices such as ICs and various storage media using such materials, they are often used in the form of sputtering targets.

スパッタリング用ターゲットは、例えば径が数10cmとい
うような大型の平板として用いられることが多く、材料
がたとえば合金などであるときは、熔融体から鋳造など
の方法で成形されることもある。しかし成分が偏析し易
い場合などでは徐冷すると均一な品質が得られずまた急
冷すると内部応力のためにクラック等が生じて大型の成
形品は得られない。
The sputtering target is often used as a large flat plate having a diameter of, for example, several tens of cm, and when the material is, for example, an alloy, it may be formed from a melt by a method such as casting. However, if the components are easily segregated, uniform quality cannot be obtained by slow cooling, and if rapidly cooled, cracks and the like occur due to internal stress, and large molded products cannot be obtained.

そこで、均質で大型の成形品を得るために、金属粉末を
焼結する方法が採用されるが、金属を粉化するに際して
不純物が混入し易く、また表面積が大きいため酸化を受
け易くて、高純度低酸素含量の焼結成形品が得難いとい
う欠点がある。特に、例えば鉄−テルビウム合金やチタ
ン−シリコン合金などのような酸化しやすい金属を成分
として含有する合金の場合には、還元性雰囲気で焼結を
行っても酸素含量を低下させることは困難であった。し
かもなお、機械的に粉砕した合金では粒度分布が広く概
して粗いため、焼結成形品の空隙率が高く成形後でも空
気酸化を受け易いという欠点を有している。
Therefore, in order to obtain a homogeneous and large-sized molded product, a method of sintering metal powder is adopted, but when powdering metal, impurities are easily mixed in, and since the surface area is large, it is susceptible to oxidation, It has a drawback that it is difficult to obtain a sintered molded product having a low purity and low oxygen content. In particular, in the case of an alloy containing an easily oxidizable metal as a component such as an iron-terbium alloy or a titanium-silicon alloy, it is difficult to reduce the oxygen content even if sintering is performed in a reducing atmosphere. there were. Moreover, the mechanically crushed alloy has a wide particle size distribution and is generally rough, and therefore has a drawback that the sintered molded article has a high porosity and is easily subjected to air oxidation even after molding.

解決しようとする問題点 常住の如く、酸化され易い金属成分を含む電子材料用合
金で均質かつ大型の成形品を得ようとすると、どうして
も酸化され易く酸素含量が高いものしか得られないとい
う問題点があり、全ての取扱い作業を無酸素の環境下で
行なう以外に方法がなかった。
Problems to be solved As in permanent residence, when trying to obtain a homogeneous and large-sized molded product from an alloy for electronic materials that contains a metal component that is easily oxidized, the problem is that only an easily oxidized product with a high oxygen content is obtained. However, there was no other way than to perform all handling work in an oxygen-free environment.

そこで、本発明は、かかる合金の大型成形品の酸素含量
を大幅に低下させることができる新規な方法を提供しよ
うとするものである。これを換言すれば、酸化し易い金
属を成分として含有する合金の低酸素含量の成形品であ
って大気中で取扱っても酸化され難いものを製造する方
法を提供することが、本発明の目的である。
Therefore, the present invention seeks to provide a novel method capable of significantly reducing the oxygen content of a large-sized molded product of such an alloy. In other words, it is an object of the present invention to provide a method for producing a molded product having a low oxygen content of an alloy containing a metal that is easily oxidized as a component and that is difficult to be oxidized even when handled in the atmosphere. Is.

〔発明の構成〕[Structure of Invention]

問題点を解決するための手段 前記の如き本発明の目的は、少くとも水素化物を形成し
得る金属成分を含む合金成形体を製造するに当たり、所
要の金属配合物を還元性または不活性雰囲気中で溶融す
ることによって酸化物含量の多い部分を酸素含量の少い
合金部分から浮上分離し、該酸素含量の少い合金部分を
冷却固化させたのち水素化することにより粉化させて水
素化合金粉体に転換し、得られた水素化合金粉体を真空
下または不活性雰囲気中で加熱脱水素すると同時に焼結
することを特徴とする低酸素合金成形体の製造法によっ
て達成される。
Means for Solving the Problems As described above, the object of the present invention is to produce a metal alloy body containing a metal component capable of forming at least a hydride, by adding a required metal compound in a reducing or inert atmosphere. The alloy containing a large amount of oxide is floated and separated from the alloy containing a small amount of oxygen by melting the alloy, and the alloy containing a small amount of oxygen is cooled and solidified, and then hydrogenated to be pulverized into a hydrogenated alloy. It is achieved by a method for producing a low oxygen alloy compact, which is characterized in that it is converted into a powder, and the obtained hydrogenated alloy powder is heated and dehydrogenated under vacuum or in an inert atmosphere and simultaneously sintered.

本発明における合金は、本質的にどのようなものであっ
てもよいが、合金中に含まれる成分の少くとも1種また
は2種あるいはそれ以上が酸化し易い金属であるもので
あるとき、特にすぐれた効果があらわれる。更にそれほ
ど酸化し易くはない金属のみからなる合金の場合は、酸
化され易い金属を含む合金に比較して改善効果はそれほ
ど顕著でないが、それでも酸素の含量を低下させるに有
効である。
The alloy according to the present invention may be essentially any alloy, especially when at least one or two or more of the components contained in the alloy are oxidizable metals. Excellent effect appears. Further, in the case of an alloy composed of only a metal that is not so easily oxidized, the improvement effect is not so remarkable as compared with an alloy containing a metal that is easily oxidized, but it is still effective in reducing the oxygen content.

かかる合金には、その成分のうちの少くとも1種として
水素化物を形成しうる金属が配合されなければならな
い。水素化物を形成しうる金属としては、周期律表の2
A,3A,4A,5A,6Aなどに属する金属、とくに希土類金属や
チタン、ジルコニウムなどが好ましく用いられるが、こ
のような金属は、合金の本質的な必須成分として含有さ
れるものであってもよく、また任意成分であっても、あ
るいは必要成分でないが添加しても無害である成分とし
て含有されてもよい。
Such alloys must be compounded with a metal capable of forming a hydride as at least one of its constituents. Metals that can form hydrides are listed in Table 2 of the periodic table.
Metals belonging to A, 3A, 4A, 5A, 6A and the like, particularly rare earth metals and titanium, zirconium and the like are preferably used, but such a metal may be contained as an essential essential component of the alloy. Also, it may be an optional component, or may be contained as a component which is not a necessary component but is harmless when added.

このような、水素化物を形成しうる金属を含む金属配合
物は、粉状、粒状あるいはインゴット等であってもよい
が、配合されたのちは還元性または不活性雰囲気、たと
えば水素雰囲気あるいはアルゴン雰囲気またはこのよう
な雰囲気の減圧下もしくは真空下で一旦均一に溶融す
る。そして比重の軽い金属酸化物を多く含有する合金部
分が上層に形成された後に、下層の酸化物含有量の少い
部分を分離し、これを冷却固化する。この冷却固化は偏
析を避けるために急冷することができ、そのときの内部
応力によるクラック発生は後工程の水素化粉砕にとって
却って好都合である。しかし完全に冷却するまでは、酸
化が進むことを防止するために溶融時と同様な還元性ま
たは不活性雰囲気中で取り扱うことが必要である。
Such a metal blend containing a metal capable of forming a hydride may be in the form of powder, granules, ingots, etc., but after being blended, a reducing or inert atmosphere such as a hydrogen atmosphere or an argon atmosphere. Alternatively, it is once uniformly melted under reduced pressure or vacuum in such an atmosphere. Then, after the alloy part containing a large amount of metal oxide having a low specific gravity is formed in the upper layer, the part containing a small amount of oxide in the lower layer is separated and cooled and solidified. This solidification by cooling can be rapidly cooled in order to avoid segregation, and the generation of cracks due to internal stress at that time is rather convenient for the subsequent hydro-milling. However, until completely cooled, it is necessary to handle in a reducing or inert atmosphere similar to that at the time of melting in order to prevent the oxidation from proceeding.

固化合金は、固化に引き続いて、または固化後適宜の時
に水素と接触させて水素化する。かかる水素化は合金の
種類によってそれぞれ適した条件の下に行なうことがで
きる。合金は高純度の水素を吸収して水素化することに
より膨脹し、内部応力によって破砕する。そして水素化
物を形成しうる金属の配合量が少な過ぎない限り水素化
と共に破砕も進行し、すべて粉末となる。このように粉
体化した水素化合金は、通常の室内環境下では酸化され
ることなく安全に取扱うことができる。
The solidified alloy is hydrogenated subsequent to solidification or at a suitable time after solidification by contact with hydrogen. Such hydrogenation can be performed under conditions suitable for each type of alloy. The alloy absorbs high-purity hydrogen and hydrogenates to expand, and crushes due to internal stress. Then, unless the amount of the metal capable of forming a hydride is too small, crushing progresses along with hydrogenation and all powder is obtained. The powdered hydrogenated alloy can be safely handled in a normal indoor environment without being oxidized.

以上のようにして得られた水素化合金粉体は、プレスに
よって所望形状にあらかじめ成形するかまたは粉体のま
ま成形用金属性容器等に収容し、真空下または不活性雰
囲気下で加熱し、水素を離脱させながら焼結する。加熱
焼結に当っては、同時に加圧を行なうことにより、更に
空隙率が小さく精密な形状を有する成形品が得られる。
The hydrogenated alloy powder obtained as described above is preformed into a desired shape by pressing or is stored in a metal container for molding as it is as a powder, and heated under vacuum or in an inert atmosphere, Sintering while releasing hydrogen. In heating and sintering, pressing is performed at the same time to obtain a molded product having a smaller void ratio and a precise shape.

本発明の方法を実施して合金成形体を製造する際の原材
料の配合組成は、予め原材料中の酸素の含有量や製造操
作中に混入増加する酸素の量を勘案して、製品が所望の
組成を有するものとなるように決定する必要がある。し
かし原材料として酸素含有量が少ないものを選択して使
用するならば、金属酸化物含量の多い部分を浮上分離し
た後の合金の組成には殆ど有意の変化はなく、またその
後の操作中の酸素含量の増加も極めて少なく抑制できる
から、低酸素含量で所望組成の合金成形体が容易に得ら
れる。
The blending composition of the raw materials when manufacturing the alloy molded body by carrying out the method of the present invention, in consideration of the content of oxygen in the raw materials and the amount of oxygen to be mixed and increased during the manufacturing operation, the product is desired. It must be determined to have the composition. However, if a raw material with a low oxygen content is selected and used, there is almost no significant change in the composition of the alloy after the portion with a high metal oxide content is floated and separated, and the oxygen during the subsequent operation is not changed. Since the increase in the content can be suppressed to an extremely small amount, an alloy compact having a desired composition can be easily obtained with a low oxygen content.

作 用 本発明の方法のよれば、得られた成形品は高純度で形状
が精密であり、また内部歪が少ないから、容易に大形の
成形品を得ることができる。そして空隙率が小さいこと
もあって空気中で取扱っても酸化の進行が遅く、極めて
酸素含有率が低く高純度の成形品が得られる。
Operation According to the method of the present invention, the obtained molded product has a high purity, a precise shape, and a small internal strain. Therefore, a large molded product can be easily obtained. Further, since the porosity is small, the progress of oxidation is slow even when handled in air, and a molded product of extremely low oxygen content and high purity can be obtained.

実施例−1 光磁気記憶媒体層をスパッタ法によって形成するための
ターゲットとして、鉄−テルビウム合金板を製造する例
を以下に説明する。
Example-1 An example of manufacturing an iron-terbium alloy plate as a target for forming a magneto-optical storage medium layer by a sputtering method will be described below.

工業的に入手可能な高純度の鉄のインゴット(試料A)
およびテルビウムのインゴット(試料B)中に含有され
る酸素量は、それぞれ重量で20〜300ppmおよび600〜700
ppm程度のものであり、これらを用いてアルゴン等の不
活性雰囲気中で溶融して合金化(モル比で、試料A/試料
B=8/2)すると、鉄の酸化物はテルビウムにより還元
されてテルビウムの酸化物が溶融物の表面に浮上する。
そこで浮上部分を除去して下層部分を平板状(150mm×1
50mm×20mm)となるよう鋳造したところ亀裂が発生し
た。そして、亀裂部分を削り落して整形したところ、3c
m×3cm×2cm程度の板状体10個が得られた。このときの
鋳造品(試料C)の酸素含有量は重量で400〜480ppmで
あった。
Industrially available high-purity iron ingot (Sample A)
The amount of oxygen contained in the terbium and terbium ingots (Sample B) is 20 to 300 ppm and 600 to 700 by weight, respectively.
It is about ppm, and when these are melted and alloyed in an inert atmosphere such as argon (molar ratio: sample A / sample B = 8/2), the iron oxide is reduced by terbium. The terbium oxide floats on the surface of the melt.
Therefore, the floating portion is removed and the lower layer is flat (150 mm x 1
When cast to a size of 50 mm x 20 mm), cracks occurred. Then, when the cracked part was scraped off and shaped, 3c
Ten plate-like bodies of about m × 3 cm × 2 cm were obtained. The oxygen content of the cast product (Sample C) at this time was 400 to 480 ppm by weight.

一方、工業的に入手可能な高純度の鉄の粉末(試料D)
およびテルビウムの粉末(試料E)中に含有される酸素
量は、それぞれ重量で0.1%および0.6%〜2%であり、
粒径はそれぞれ10〜100μmおよび40〜120μmである。
これらを配合(モル比で、試料D/試料E=8/2)して得
た粉末配合物(試料F)の試料含有率は、重量で0.5〜
1%であった。
On the other hand, industrially available high-purity iron powder (Sample D)
And the amount of oxygen contained in the powder of terbium (Sample E) are 0.1% and 0.6% to 2% by weight, respectively.
The particle size is 10-100 μm and 40-120 μm, respectively.
The sample content of the powder blend (Sample F) obtained by blending these (molar ratio: Sample D / Sample E = 8/2) is 0.5 to
It was 1%.

また、試料Cをアルゴン雰囲気中で機械的に粉砕したと
ころ、5〜70μmの粉体(試料G)が得られたが、空気
中の酸素と接触すると直ちに酸化が進行し、酸素含有量
が重量で0.4〜0.6%に達した。この値は、前述の試料D
と試料Eを配合して得た試料Fと比較して僅かに低目で
ある。
Further, when the sample C was mechanically pulverized in an argon atmosphere, a powder (sample G) having a particle size of 5 to 70 μm was obtained. Reached 0.4-0.6%. This value is the same as sample D above.
Is slightly lower than that of Sample F obtained by blending Sample E with Sample E.

これと別に、試料C(前述の鋳造品およびその破片など
を含む)を密閉容器に入れ、露点が−85℃の高純度水素
と約400℃で接触させたところ、粒径20〜40μm程度の
水素化粉体(試料H)を得た。試料Hの酸素含有量は重
量で650〜900ppmであり、空気と接触しても安定であっ
た。
Separately, sample C (including the above-mentioned cast product and its fragments) was placed in a closed container and contacted with high-purity hydrogen having a dew point of −85 ° C. at about 400 ° C., and the particle size was about 20-40 μm. A hydrogenated powder (Sample H) was obtained. The oxygen content of Sample H was 650 to 900 ppm by weight, and was stable even when contacted with air.

次に前記のようにして得られたそれぞれの粉末の試料F
(粉末混合品)、試料G(機械粉砕品)、および試料H
(水素化粉体)を予備プレスしてそれぞれ径125mm×厚
さ8mmの円板状に成形し、ついで真空焼結炉中に入れて
真空度10-6トールに保ち、1250℃まで加熱して焼結体
(それぞれ試料I、試料Jおよび試料K)を得た。
Next, sample F of each powder obtained as described above
(Powder mixture), sample G (mechanically crushed product), and sample H
(Hydrogenated powder) is pre-pressed to form a disk with a diameter of 125 mm and a thickness of 8 mm, and then put in a vacuum sintering furnace to maintain a vacuum degree of 10 -6 torr and heat it to 1250 ° C. Sintered bodies (Sample I, Sample J, and Sample K, respectively) were obtained.

また、別に焼結に際して1500kg/cm2の熱間プレスを併用
して、それぞれに対応する焼結体(試料L、試料Mおよ
び試料N)を得た。
Separately, a 1500 kg / cm 2 hot press was also used for sintering to obtain corresponding sintered bodies (Sample L, Sample M and Sample N).

これらの焼結体の酸素含有量および空隙率を測定して得
た結果を、原料として用いた粉体の酸素含有量と共に第
1表に示す。
The results obtained by measuring the oxygen content and porosity of these sintered bodies are shown in Table 1 together with the oxygen content of the powder used as the raw material.

この結果をみると、本発明の方法によれば、酸素含量が
少いうえ、特に緻密で酸化を受けにくい合金成形体が得
られ、光磁気記憶媒体層用ターゲットとしての許容酸素
含有量0.2%以下という条件を満足する成形体が得られ
ることがわかる。
From these results, according to the method of the present invention, an oxygen compact having a small oxygen content, particularly dense and less susceptible to oxidation, can be obtained, and the allowable oxygen content as the target for the magneto-optical storage medium layer is 0.2%. It can be seen that a molded product satisfying the following conditions can be obtained.

実施例−2 超LSIの電極部をスパッタ法によって形成するに用い
るターゲットとして、チタン・シリコン2合金板を製造
する例について説明する。
Example-2 An example of manufacturing a titanium-silicon 2 alloy plate as a target used for forming the electrode portion of the VLSI by the sputtering method will be described.

工業的に入手可能な高純度のスポンジ状チタン(試料
O)およびシリコンインゴット(試料P)をアルゴン等
の不活性雰囲気中で溶融して、モル比1:2の合金(試料
Q)を得たが、このものは脆く、大型の板体を製造する
ことができなかった。酸素含有量は重量で300〜400ppm
であった。
Industrially available high-purity sponge-like titanium (Sample O) and a silicon ingot (Sample P) were melted in an inert atmosphere such as argon to obtain an alloy (Sample Q) with a molar ratio of 1: 2. However, this was fragile, and it was not possible to manufacture a large plate. Oxygen content is 300-400ppm by weight
Met.

試料Qを機械的に粉砕して径60μm以下の粉体(試料
R)したところ、空気と接触して酸化が進み、酸素含有
量が重量で600ppmから0.25%にまで増加した。
When the sample Q was mechanically pulverized into a powder (sample R) having a diameter of 60 μm or less, it was contacted with air and oxidation proceeded, and the oxygen content increased from 600 ppm by weight to 0.25%.

また、試料Qを密閉容器に入れ、露点が−85℃の高純度
水素と約800℃で接触させることにより、径40μm以下
の水素化粉体(試料S)を得た。試料Sの酸素含有量は
重量で約700ppmであり、空気と接触しても安定であっ
た。
Further, the sample Q was placed in a closed container and contacted with high-purity hydrogen having a dew point of -85 ° C at about 800 ° C to obtain a hydrogenated powder (sample S) having a diameter of 40 µm or less. The oxygen content of Sample S was about 700 ppm by weight, and it was stable even when contacted with air.

次に、前記のようにした得た粉末の試料R(機械粉砕
品)および試料S(水素化粉体)を予備プレスして径25
mm×厚さ8mmの円板状に成形し、ついで真空焼結炉中に
入れ,真空度10-6トールに保って1300℃まで加熱して焼
結体(それぞれ試料Tおよび試料U)を得た。
Next, a sample R (mechanically ground product) and a sample S (hydrogenated powder) of the powder obtained as described above are pre-pressed to have a diameter of 25.
mm into a disk shape with a thickness of 8 mm, then put in a vacuum sintering furnace and heated to 1300 ° C while maintaining a vacuum degree of 10 -6 torr to obtain a sintered body (sample T and sample U, respectively). It was

これらの焼結体の酸素含有量および空隙率を、原料とし
て用いた粉末の酸素含有量と共に第2表に示す。
Table 2 shows the oxygen content and porosity of these sintered bodies together with the oxygen content of the powder used as the raw material.

この結果をみると、本発明の方法によって酸素含有量が
少くて緻密な合金成形体が得られ、超LSIの電極部形成
用ターゲットとしての許容酸素含有量0.1%以下という
条件を充分に満足するものが容易に製造できることがわ
かる。
From these results, it is possible to obtain a dense alloy compact having a low oxygen content by the method of the present invention, and sufficiently satisfy the condition that the allowable oxygen content is 0.1% or less as a target for forming the electrode portion of VLSI. It can be seen that the product can be easily manufactured.

〔発明の効果〕 本発明の低酸素合金成形体の製造法によれば、酸化し易
い金属成分をが有する合金の大型成形品を製造するに当
って、酸化を受けにくい水素化粉体の形態で原料を使用
するので、取扱いに格別の配慮をしなくとも酸素含有量
の低い製品を容易に得ることができる。こうして得られ
た成形体は高密度であるため、大気中に取扱っても酸化
され難いものである。更に、水素化粉体の脱水素と同時
に焼結が進むので焼結温度が低いばかりでなく、内部歪
が少く、より大型の成形品をより容易に製造できる利点
がある。
[Advantages of the Invention] According to the method for producing a low oxygen alloy compact of the present invention, in producing a large-sized molded product of an alloy having a metal component that is easily oxidized, a form of hydrogenated powder that is not easily oxidized Since the raw material is used in, the product with low oxygen content can be easily obtained without special consideration in handling. Since the molded body thus obtained has a high density, it is hard to be oxidized even if it is handled in the atmosphere. Further, since the sintering progresses at the same time as the dehydrogenation of the hydrogenated powder, not only the sintering temperature is low, but also the internal strain is small, and there is an advantage that a larger molded product can be manufactured more easily.

また、本発明の方法は、例示した用途などのほか、水素
化物を形成しうる金属を成分として含む合金、たとえば
希土類金属を含む超導電材料や磁性材料などの成形体を
製造するのに好適に利用できるという特長を有する。
Further, the method of the present invention is suitable for producing molded bodies such as superconducting materials and magnetic materials containing rare earth metals, for example, alloys containing a metal capable of forming a hydride as a component, in addition to the exemplified uses. It has the feature that it can be used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少くとも水素化物を形成し得る金属成分を
含む合金成形体を製造するに当たり、所要の金属配合物
を還元性または不活性雰囲気中で溶融することによって
酸化物含量の多い部分を酸素含量の少い合金部分から浮
上分離し、該酸素含量の少い合金部分を冷却固化させた
のち水素化することにより粉化させて水素化合金粉体に
転換し、得られた水素化合金粉体を真空下または不活性
雰囲気中で加熱脱水素すると同時に焼結することを特徴
とする、低酸素合金成形体の製造法。
1. In producing an alloy compact containing a metal component capable of forming at least a hydride, the required metal compound is melted in a reducing or inert atmosphere to remove a portion having a high oxide content. The hydrogenated alloy obtained by float-separating from the alloy portion having a small oxygen content, and cooling and solidifying the alloy portion having a small oxygen content, and then pulverizing by hydrogenation to convert into a hydrogenated alloy powder, A method for producing a low-oxygen alloy compact, characterized in that the powder is heated and dehydrogenated in a vacuum or in an inert atmosphere and simultaneously sintered.
JP61190432A 1986-08-15 1986-08-15 Manufacturing method of low oxygen alloy compact Expired - Fee Related JPH0742530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61190432A JPH0742530B2 (en) 1986-08-15 1986-08-15 Manufacturing method of low oxygen alloy compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61190432A JPH0742530B2 (en) 1986-08-15 1986-08-15 Manufacturing method of low oxygen alloy compact

Publications (2)

Publication Number Publication Date
JPS6347344A JPS6347344A (en) 1988-02-29
JPH0742530B2 true JPH0742530B2 (en) 1995-05-10

Family

ID=16258033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61190432A Expired - Fee Related JPH0742530B2 (en) 1986-08-15 1986-08-15 Manufacturing method of low oxygen alloy compact

Country Status (1)

Country Link
JP (1) JPH0742530B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412697Y2 (en) * 1985-06-18 1992-03-26
JP4491844B2 (en) * 1998-07-24 2010-06-30 東ソー株式会社 Sputtering target
JP5019285B2 (en) * 2000-11-09 2012-09-05 Jx日鉱日石金属株式会社 Method for producing high purity zirconium powder
JP5019286B2 (en) * 2000-11-09 2012-09-05 Jx日鉱日石金属株式会社 Method for producing high-purity hafnium powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438079A (en) * 1977-08-31 1979-03-22 Sekisui Jushi Kk Method of transporting article to be treated
US4441927A (en) * 1982-11-16 1984-04-10 Cabot Corporation Tantalum powder composition

Also Published As

Publication number Publication date
JPS6347344A (en) 1988-02-29

Similar Documents

Publication Publication Date Title
KR100689597B1 (en) Iron silicide sputtering target and method for production thereof
US6010661A (en) Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
US4824481A (en) Sputtering targets for magneto-optic films and a method for making
Li et al. Effect of rare earth and silicon additions on structure and properties of melt spun Mg–9Al–1Zn alloy
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
JPS61139637A (en) Target for sputter and its manufacture
US4655825A (en) Metal powder and sponge and processes for the production thereof
JPH0742530B2 (en) Manufacturing method of low oxygen alloy compact
JPS61502546A (en) Zinc soluble metal powder and its manufacturing method
JPH08501828A (en) Beta 21S titanium-based master alloy for alloys and method for producing the master alloy
JPH0119447B2 (en)
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPH01136969A (en) Manufacture of target for titanium silicide sputtering
JPH0119448B2 (en)
JP2749165B2 (en) TiA-based composite material and method for producing the same
US5193605A (en) Techniques for preparation of ingot metallurgical discontinuous composites
JP2725331B2 (en) Target material manufacturing method
JPH0791637B2 (en) Sputtering alloy target and manufacturing method thereof
US4765851A (en) Aluminum alloy for the preparation of powders having increased high-temperature strength
JP2654982B2 (en) Fe-Al-Si alloy and method for producing the same
JPH04371536A (en) Production of tial intermetallic compound powder
JP2534028B2 (en) Alloy crushing method
JPH05214477A (en) Composite material and its manufacture
RU2040509C1 (en) Method of manufacture of product from ceramic composite material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees