JPS6347344A - Production of low oxygen alloy molding - Google Patents

Production of low oxygen alloy molding

Info

Publication number
JPS6347344A
JPS6347344A JP19043286A JP19043286A JPS6347344A JP S6347344 A JPS6347344 A JP S6347344A JP 19043286 A JP19043286 A JP 19043286A JP 19043286 A JP19043286 A JP 19043286A JP S6347344 A JPS6347344 A JP S6347344A
Authority
JP
Japan
Prior art keywords
powder
sample
oxygen content
low oxygen
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19043286A
Other languages
Japanese (ja)
Other versions
JPH0742530B2 (en
Inventor
Yuko Hochido
寳地戸 雄幸
Minoru Kojima
穣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Original Assignee
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUJIYUNDO KAGAKU KENKYUSHO KK, Kojundo Kagaku Kenkyusho KK filed Critical KOUJIYUNDO KAGAKU KENKYUSHO KK
Priority to JP61190432A priority Critical patent/JPH0742530B2/en
Publication of JPS6347344A publication Critical patent/JPS6347344A/en
Publication of JPH0742530B2 publication Critical patent/JPH0742530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PURPOSE:To produce a sintered molding having a high purity and low oxygen content by melting a metal compd. contg. a metal which can form hydride in a reducing or other atmosphere, cooling and solidifying the separate part contg. oxygen at the lower ratio, hydrogenating the same and sintering the resulted powder. CONSTITUTION:An ingot of Fe and ingot of Tb which are industrially available are used at the time of producing; for example, an iron-terbium alloy sheet as a target for forming a magneto-optical memory medium layer by a sputtering method. The oxide of Fe is reduced by Tb and the oxide of Tb floats on the surface of the melt when these ingots are melted and alloyed in an inert atmosphere of Ar, etc. The floating part is removed and the lower part is cast to a flat sheet shape, then cracks are generated in the casting. The cracked part is cut off to shape the casting. Such sample is put into a hermetic vessel and is brought into contact with high-purity H2 at about 400 deg.C to obtain hydrogenated powder. The powder has the low oxygen content. The sintered body is obtd. by heating the powder in a vacuum sintering furnace after preforming.

Description

【発明の詳細な説明】 〔発明の目的〕 童栗上皇且度光旦 本発明は電子部品用材料などの不純物含量の少いことが
要求される材料、特に低酸素含量の合金材料の製造法に
関する。
[Detailed Description of the Invention] [Object of the Invention] Retired Emperor Dokuri and Dokotan The present invention relates to a method for producing materials that require a low content of impurities such as materials for electronic parts, particularly alloy materials with a low oxygen content. Regarding.

監來尖バ五 電子デバイスなどを製作するための材料、いわゆる電子
材料として、不純物含量の少い合金などが必要とされる
。また、かかる材料を用いてICなどの電子デバイスや
各種記憶媒体などを製作しようとするときは、スパッタ
リング用クーゲットの形態で使用されることが多い。
BACKGROUND ART Alloys with low impurity content are required as materials for manufacturing electronic devices, so-called electronic materials. Furthermore, when such materials are used to manufacture electronic devices such as ICs, various storage media, etc., they are often used in the form of sputtering coupons.

スパッタリング用クーゲットは、例えば径がIQcmと
いうような大型の平板として用いられることが多く、材
料がたとえば合金などであるときは、ば熔融体から鋳造
などの方法で成形されることもある。しかし成分が偏析
し易い場合などでは徐冷すると均一な品質が得られずま
た急冷すると内部応力のためにクランク等が生じて大型
の成形品は得られない。
A cougette for sputtering is often used as a large flat plate with a diameter of IQ cm, for example, and when the material is an alloy, for example, it is sometimes formed from a melt by a method such as casting. However, in cases where components are likely to segregate, uniform quality cannot be obtained if the product is cooled slowly, and if it is rapidly cooled, internal stress causes cracks and the like, making it impossible to obtain large molded products.

そこで、均質で大型の成形品を得るために、金属粉末を
焼結する方法が採用されるが、金属を粉化するに際して
不純物が混入し易く、また表面積が大きいため酸化を受
は易くて、高純度低酸素含量の焼結成形品が得難いとい
う欠点がある。特に酸化しやすい金属を成分として含有
する合金の場合には、還元性雰囲気で焼結を行っても酸
素含量を低下させることは困難であった。しかもなお、
機械的に粉砕した合金では粒度分布が広く概して粗いた
め、焼結成形品の空隙率が高く成形後でも空気酸化を受
は易いとう欠点を有している。
Therefore, in order to obtain homogeneous and large molded products, a method of sintering metal powder is adopted, but when the metal is pulverized, impurities are easily mixed in, and the surface area is large, so it is easily susceptible to oxidation. The drawback is that it is difficult to obtain sintered molded products with high purity and low oxygen content. Particularly in the case of alloys containing easily oxidizable metals as components, it has been difficult to reduce the oxygen content even when sintering is performed in a reducing atmosphere. Moreover,
Mechanically crushed alloys have a wide particle size distribution and are generally coarse, so they have the disadvantage that the sintered molded product has a high porosity and is susceptible to air oxidation even after molding.

解ンしようとする問題点 上述の如く、酸化され易い金属成分を含む電子材料用合
金で均質かつ大型の成形品を得ようとすると、どうして
も酸化され易く酸素含量が高いものしか得られないとい
う問題点があり、全ての取扱い作業を無酸素の環境下で
行なう以外に方法がなかった。
Problems to be Solved As mentioned above, when trying to obtain homogeneous and large-sized molded products from alloys for electronic materials that contain metal components that are easily oxidized, the problem is that only products that are easily oxidized and have a high oxygen content can be obtained. There was no other option than to carry out all handling operations in an oxygen-free environment.

そこで、本発明は、かかる合金の大型成形品の酸素含量
を大幅に低下させることができる新規な方法を提供しよ
うとするものである。これを換言すれば、酸化し易い金
属を成分として含有する合金の低酸素含量の成形品であ
って大気中で取扱っても酸化され難いものを製造する方
法を提供することが、本発明の目的である。
Therefore, the present invention seeks to provide a new method that can significantly reduce the oxygen content of large molded articles of such alloys. In other words, it is an object of the present invention to provide a method for producing a low oxygen content molded article of an alloy containing an easily oxidized metal as a component, which is resistant to oxidation even when handled in the atmosphere. It is.

〔発明の構成〕 間 屯を解°するための 前記の如き本発明の目的は、少くとも水素化物を形成し
得る金属成分を含む金属配合物を還元性または不活性雰
囲気中で溶融することによって酸素含量の多い部分と酸
素含量の少ない部分とに分離し、該酸素の少い部分を冷
却固化させたのち水素化することにより粉体に転換し、
得られた粉体を真空下または不活性雰囲気中で焼結する
ことを特徴とする低酸素合金成形体の製造法によって達
成される。
[Structure of the Invention] The object of the present invention as described above is to solve the problem by melting a metal composition containing a metal component capable of forming at least a hydride in a reducing or inert atmosphere. Separating into a portion with high oxygen content and a portion with low oxygen content, cooling and solidifying the low oxygen portion and converting it into powder by hydrogenation,
This is achieved by a method for producing a low-oxygen alloy compact, which is characterized by sintering the obtained powder under vacuum or in an inert atmosphere.

本発明における合金は、本質的にどのようなものであっ
てもよいが、合金中に含まれる成分の少くとも1種また
は2種あるいはそれ以上が酸化し易い金属であるもので
あるとき、特にすぐれた効果があられれる。更にそれほ
ど酸化し易くはない金属のみからなる合金の場合は、酸
化され易い金属を含む合金に比較して改善効果はそれほ
ど顕著でないが、それでも酸素の含量を低下させるに有
効である。
The alloy in the present invention may be essentially of any type, but especially when at least one, two or more of the components contained in the alloy are metals that are easily oxidized. You can get excellent results. Further, in the case of an alloy consisting only of metals that are not so easily oxidized, the improvement effect is not so remarkable compared to alloys containing metals that are easily oxidized, but it is still effective in reducing the oxygen content.

かかる合金には、その成分のうちの少くとも1種として
水素化物を形成しうる金属が配合されなければならない
。水素化物を形成しうる金属としては、周期律表の2A
、3A、4A、5A、6Aなどに属する金属、とくに希
土類金属やチタン、ジルコニウムなどが好ましく用いら
れるが、このような金属は、合金の本質的な必須成分と
して含有されるものであってもよく、また任意成分であ
っても、あるいは必要成分でないが添加しても無害であ
る成分として含有されてもよい。
Such an alloy must contain at least one of its components a metal capable of forming a hydride. Metals that can form hydrides include 2A of the periodic table.
, 3A, 4A, 5A, 6A, etc., particularly rare earth metals, titanium, zirconium, etc., are preferably used, but such metals may be contained as essential components of the alloy. , or may be contained as an optional component, or as a component that is not a necessary component but is harmless even if added.

このような、水素化物を形成しうる金属を含む金属配合
物は、粉状、粒状あるいはインゴット等であってもよい
が、配合されたのちは還元性または不活性雰囲気、たと
えば水素雰囲気あるいはアルゴン雰囲気またはこのよう
な雰囲気の減圧下もし、くは真空下で一旦溶融され、そ
して金属酸化物を多く含有する部分を浮上させて下層の
酸化物含有量の少い部分を分離し、これを冷却固化する
Such a metal compound containing a metal capable of forming a hydride may be in the form of powder, granules, or ingot, but after being mixed, it is placed in a reducing or inert atmosphere, such as a hydrogen atmosphere or an argon atmosphere. Alternatively, it is once melted under reduced pressure or vacuum in such an atmosphere, and the part containing a large amount of metal oxide is floated to separate the lower layer containing less oxide, which is then cooled and solidified. do.

この冷却同化の際にも溶融時と同様な還元性または不活
性雰囲気中で固化することが必要である。
During this cooling assimilation, it is necessary to solidify in a reducing or inert atmosphere similar to that during melting.

固化合金は、固化に引き続いて、または固化後適宜の時
に水素と接触させて水素化する。かがる水素化は合金の
種類によってそれぞれ適した条件の下に行なうことがで
きる。合金は高純度の水素を吸収して水素化することに
より膨張し、内部応力によって破砕する。そして水素化
物を形成しうる金属の配合量が少な過ぎない限り水素化
と共に破砕も進行し、すべて粉末となる。このように粉
体化した水素化合金は、通常の室内環境下では酸化され
ることなく安全に取扱うことができる。
The solidified alloy is hydrogenated by contacting with hydrogen subsequent to solidification, or at a suitable time after solidification. The hydrogenation process can be carried out under conditions suitable for each type of alloy. The alloy expands by absorbing high-purity hydrogen and hydrogenating, and fractures due to internal stress. As long as the amount of metal that can form hydrides is not too small, crushing will proceed along with hydrogenation, and all will become powder. The hydrogenated alloy thus powdered can be safely handled without being oxidized under normal indoor environments.

以上のようにして得られた水素化合金粉体は、プレスに
よって所望形状にあらかじめ成形するかまたは粉体のま
ま成形用金属性容器等に収容し、真空下または不活性雰
囲気下で加熱し、水素を離脱させながら焼結する。加熱
焼結に当っては、同時に加圧を行なうことにより、更に
空隙率が小さく精密な形状を有する成形−品が得られる
The hydrogenated alloy powder obtained as described above is either pre-formed into a desired shape by pressing or placed in a metal molding container as it is, heated under vacuum or in an inert atmosphere, Sintering is performed while hydrogen is released. By simultaneously applying pressure during heating and sintering, a molded product with a smaller porosity and a more precise shape can be obtained.

作−■ 本発明の方法のよれば、得られた成形品は高純度で形状
が精密であり、また内部歪が少ないから、容易に大形の
成形品を得ることができる。そして空隙率が小さいこと
もあって空気中で取扱っても酸化の進行が遅く、極めて
酸素含有率が低く高純度の成形品が得られる。
Production-■ According to the method of the present invention, the obtained molded product has high purity and precise shape, and has little internal distortion, so it is possible to easily obtain a large-sized molded product. Since the porosity is small, oxidation progresses slowly even when handled in air, and a molded product with extremely low oxygen content and high purity can be obtained.

実施例=し 光磁気記憶媒体層をスパッタ法によって形成するための
ターゲットとして、鉄−テルビウム合金板を製造する例
を以下に説明する。
EXAMPLE An example of manufacturing an iron-terbium alloy plate as a target for forming a magneto-optical storage medium layer by sputtering will be described below.

工業的に入手可能な高純度の鉄のインゴット(試料A)
およびテルビウムのインゴット(試料B)中に含有され
る酸素量は、それぞれ重量で20〜30ppmおよび6
00〜700ppm程度のものであり、これらを用いて
アルゴン等の不活性雰囲気中で溶融して合金化(モル比
で、試料A/試料B=8/2)すると、鉄の酸化物はテ
ルビウムにより還元されてテルビウムの酸化物が溶融物
の表面に浮上する。そこで浮上部分を除去して下層部分
を平板状(150mmX L50鶴X20111)とな
るよう鋳造したところ亀裂が発生した。そして、亀裂部
分を削り落して整形したところ、3cmX3cmX2C
I11程度の板状体10個が得られた。このときの鋳造
品(試料C)の酸素含有量は重量で400〜480pp
mであった。
Industrially available high-purity iron ingot (sample A)
and terbium ingot (sample B) are 20-30 ppm and 6 ppm by weight, respectively.
00 to 700 ppm, and when these are melted and alloyed in an inert atmosphere such as argon (molar ratio, sample A/sample B = 8/2), iron oxide is converted to terbium by terbium. Upon reduction, terbium oxide floats to the surface of the melt. Therefore, when the floating part was removed and the lower layer part was cast into a flat plate (150 mm X L50 Tsuru X20111), cracks occurred. Then, when I shaved off the crack and shaped it, it was 3cm x 3cm x 2cm.
Ten plate-like bodies of about I11 were obtained. The oxygen content of the cast product (sample C) at this time was 400 to 480 pp by weight.
It was m.

一方、工業的に入手可能な高純度の鉄の粉末く試料D)
およびテルビウムの粉末(試料E)中に含有される酸素
量は、それぞれ重量で0.1%および0.6%〜2%で
あり、粒径はそれぞれ10〜100μmおよび40〜1
20IJmである。これらを配合(モル比で、試料D/
試料E=8/2)して得た粉末配合物(試料F)の酸素
含有率は、重量で0.5〜1%であった。
On the other hand, industrially available high-purity iron powder sample D)
and terbium powder (sample E) are 0.1% and 0.6%-2% by weight, respectively, and the particle sizes are 10-100 μm and 40-1 μm, respectively.
It is 20 IJm. Blend these (in molar ratio, sample D/
The oxygen content of the powder formulation (sample F) obtained by sample E=8/2) was 0.5-1% by weight.

また、試料Cをアルゴン雰囲気中で機械的に粉砕したと
ころ、5〜70μmの粉体(試料G)が得られたが、空
気中の酸素と接触すると直ちに酸化が進行し、酸素含有
量が重量で0.4〜0,6%に達した。この値は、前述
の試料りと試料Eを配合して得た試料Fと比較して僅か
に低目である。
In addition, when sample C was mechanically pulverized in an argon atmosphere, a powder of 5 to 70 μm (sample G) was obtained, but when it came into contact with oxygen in the air, oxidation proceeded immediately, and the oxygen content decreased by weight. reached 0.4-0.6%. This value is slightly lower than that of Sample F, which was obtained by blending Sample E with the aforementioned Sample Sample.

これと別に、試料C(前述の鋳造品およびその砕片など
を含む)を密閉容器に入れ、露点が一85℃の高純度水
素と約400℃で接触させたところ、粒径20〜40μ
m程度の水素化粉体(試料H)を得た。試料Hの酸素含
有量は重量で650〜900ppmであり、空気と接触
しても安定であった。
Separately, when Sample C (including the aforementioned cast product and its fragments) was placed in a sealed container and brought into contact with high-purity hydrogen with a dew point of 185°C at approximately 400°C, the particle size was 20 to 40 μm.
A hydrogenated powder (sample H) of about m was obtained. Sample H had an oxygen content of 650 to 900 ppm by weight and was stable even in contact with air.

次に前記のようにして得られたそれぞれの粉末の試料F
(粉末混合品)、試料G(機械粉砕品)、および試料H
(水素化粉体)を予備プレスしてそれぞれ径125mm
X厚さ8■■の円板状に成形し、ついで真空焼結炉中に
入れて真空度io−”トールに保ち、1250°Cまで
加熱して焼結体(それぞれ試料■、試料Jおよび試料K
)を得た。
Next, sample F of each powder obtained as described above
(powder mixture product), sample G (mechanically crushed product), and sample H
(Hydrogenated powder) is pre-pressed and each has a diameter of 125 mm.
It was formed into a disk shape with a thickness of Sample K
) was obtained.

また、別に焼結に際して1500 kg/crAの熱間
ブレスを併用して、それぞれに対応する焼結体(試料り
、試料Mおよび試料N)を得た。
Separately, a hot press at 1500 kg/crA was also used during sintering to obtain corresponding sintered bodies (sample sample, sample M, and sample N).

これらの焼結体の酸素含有量および空隙率を測定して得
た結果を、原料として用いた粉体の酸素含有量と共に第
1表に示す。
The results obtained by measuring the oxygen content and porosity of these sintered bodies are shown in Table 1 together with the oxygen content of the powder used as the raw material.

この結果をみると、本発明の方法によれば、酸素含量が
少いうえ、特に緻密で酸化を受けにくい合金成形体が得
られ、光磁気記憶媒体層用ターゲットとしての許容酸素
含有量0.2%以下という条件を満足する成形体が得ら
れることがわかる。
The results show that according to the method of the present invention, an alloy compact with a low oxygen content, which is particularly dense and resistant to oxidation, can be obtained, and the permissible oxygen content as a target for a magneto-optical storage medium layer is 0. It can be seen that a molded article satisfying the condition of 2% or less can be obtained.

第1表 試 料  酸素含有量%  空隙率%   注F   
  0.05〜1         粉末配合品G  
  O04〜0.6         機械粉砕品HO
,06〜0,09         水素化粉体I  
   1 〜2         試料F使用J   
 O15〜1   25   試料G使用K     
O,06〜0.18   13    試料H使用L 
    1〜2         試料F使用M   
  O,5〜1         試料G使用N   
  O,15〜0.20    2    試料H使用
実施例−2 超LSIの電極部をスパッタ法によって形成するに用い
るターゲットとして、チタン・シリコン2合金板を製造
する例について説明する。
Table 1 Sample Oxygen content% Porosity% Note F
0.05-1 Powder compound G
004~0.6 Mechanically crushed product HO
,06-0,09 Hydrogenated powder I
1 to 2 Sample F used J
O15~1 25 Sample G used K
O,06~0.18 13 Sample H used L
1-2 Sample F used M
O, 5~1 Sample G used N
O, 15 to 0.20 2 Sample H Usage Example-2 An example of manufacturing a titanium-silicon 2 alloy plate as a target used to form an electrode part of a VLSI by sputtering will be described.

工業的に入手可能な高純度のスポンジ状チタン(試料○
)およびシリコンインゴット(試料P)をアルゴン等の
不活性雰囲気中で溶融して、モル比1:2の合金(試料
Q)を得たが、このものは脆く、大型の板体を製造する
ことができなかった。
Industrially available high-purity spongy titanium (sample ○
) and a silicon ingot (sample P) were melted in an inert atmosphere such as argon to obtain an alloy (sample Q) with a molar ratio of 1:2, but this was brittle and difficult to manufacture into a large plate. I couldn't do it.

酸素含有量は重量で300〜400ppmであった。The oxygen content was 300-400 ppm by weight.

試料Qを機械的に粉砕して径60μm以下の粉体く試料
R)したところ、空気と接触して酸化が進み、酸素含有
量が重量で600ppmから0.25%にまで増加した
When sample Q was mechanically pulverized into powder with a diameter of 60 μm or less (sample R), oxidation progressed on contact with air, and the oxygen content increased from 600 ppm to 0.25% by weight.

また、試料Qを密閉容器に入れ、露点が一85℃の高純
度水素と約800℃で接触させることにより、径40μ
m以下の水素化粉体(試料S)を得た。試料Sの酸素含
有量は重量で約700ppmであり、空気と接触しても
安定であった。
In addition, by placing sample Q in an airtight container and contacting it with high-purity hydrogen with a dew point of 185°C at approximately 800°C, a diameter of 40μ
A hydrogenated powder (sample S) having a particle size of 1.0 m or less was obtained. Sample S had an oxygen content of about 700 ppm by weight and was stable even in contact with air.

次に、前記のようにした得た粉末の試料R(m械粉砕品
)および試料S(水素化粉体)を予備プレスして径12
5龍×厚さ8nの円板状に成形し、ついで真空焼結炉中
に入れ、真空度10−6トールに保って1300℃まで
加熱して焼結体(それぞれ試料Tおよび試料U)を得た
Next, sample R (mechanically pulverized product) and sample S (hydrogenated powder) of the powder obtained as described above were pre-pressed to give a diameter of 12 mm.
The sintered bodies (sample T and sample U, respectively) were formed into a disk shape of 5 mm x 8 nm thick, then placed in a vacuum sintering furnace, maintained at a vacuum level of 10-6 Torr, and heated to 1300°C. Obtained.

これらの焼結体の酸素含有量および空隙率を、原料とし
て用いた粉末の酸素含有量と共に第2表に示す。
The oxygen content and porosity of these sintered bodies are shown in Table 2 together with the oxygen content of the powder used as the raw material.

この結果をみると、本発明の方法によって酸素含有量が
少くて緻密な合金成形体が得られ、超LSIの電極部形
成用ターゲットとしての許容酸素含有量0.1%以下と
いう条件を充分に満足するものが容易に製造できること
がわかる。
These results show that the method of the present invention yields a dense alloy compact with a low oxygen content, which satisfactorily satisfies the requirement of an allowable oxygen content of 0.1% or less as a target for forming the electrode part of a VLSI. It can be seen that a satisfactory product can be manufactured easily.

第2表 試 料  酸素含有量%  空隙率%   注RO,0
7〜0.2         機械粉砕品S     
O,05〜0.06         水素化粉体T 
    O,15〜0.2         試料R使
用U     O,07〜0.08   7     
試料S使用〔発明の効果〕 本発明の低酸素合金成形体の製造法によれば、酸化し易
い金属成分を含有する合金の大型成形品を製造するに当
って、酸化を受けにくい水素化粉体の形態で原料を使用
するので、取扱いに格別の配慮をしなくとも酸素含有量
の低い製品を容易に得ることができる。こうして得られ
た成形体は高密度であるため、大気中で取扱っても酸化
され難いものである。更に、水素化粉体の脱水素と同時
に焼結が進むので焼結温度が低いばかりでなく、内部歪
が少く、より大型の成形品をより容易に製造できる利点
がある。
Table 2 Sample Oxygen content % Porosity % Note RO, 0
7~0.2 Mechanically crushed product S
O,05~0.06 Hydrogenated powder T
O, 15~0.2 Sample R used U O, 07~0.08 7
Use of Sample S [Effects of the Invention] According to the method for producing a low-oxygen alloy molded article of the present invention, when producing a large molded article of an alloy containing easily oxidized metal components, hydrogenated powder that is resistant to oxidation is Since the raw material is used in the form of a body, a product with a low oxygen content can be easily obtained without special care in handling. Since the molded product thus obtained has a high density, it is resistant to oxidation even when handled in the atmosphere. Furthermore, since sintering proceeds simultaneously with dehydrogenation of the hydrogenated powder, the sintering temperature is not only low, but also has the advantage that internal distortion is small and larger molded products can be manufactured more easily.

また、本発明の方法は、例示した用途などのほか、水素
化物を形成しうる金属を成分として含む合金、たとえば
希土類金属を含む超電導材料や磁性材料などの成形体を
製造するのに好適に利用できるという特長を有する。
Furthermore, in addition to the above-mentioned applications, the method of the present invention can also be suitably used to produce compacts of alloys containing metals capable of forming hydrides, such as superconducting materials and magnetic materials containing rare earth metals. It has the advantage of being able to

Claims (1)

【特許請求の範囲】[Claims] 少くとも水素化物を形成し得る金属成分を含む金属配合
物を還元性または不活性雰囲気中で溶融することによっ
て酸素含量の多い部分と酸素含量の少い部分とに分離し
、該酸素含量の少い部分を冷却固化させたのち水素化す
ることにより粉体に転換し、得られた粉体を真空下また
は不活性雰囲気中で焼結することを特徴とする、低酸素
合金成形体の製造法。
A metal compound containing at least a metal component capable of forming a hydride is separated into an oxygen-rich portion and an oxygen-poor portion by melting it in a reducing or inert atmosphere, and A method for producing a low-oxygen alloy molded body, which is characterized by cooling and solidifying the remaining part, converting it into powder by hydrogenation, and sintering the obtained powder under vacuum or in an inert atmosphere. .
JP61190432A 1986-08-15 1986-08-15 Manufacturing method of low oxygen alloy compact Expired - Fee Related JPH0742530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61190432A JPH0742530B2 (en) 1986-08-15 1986-08-15 Manufacturing method of low oxygen alloy compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61190432A JPH0742530B2 (en) 1986-08-15 1986-08-15 Manufacturing method of low oxygen alloy compact

Publications (2)

Publication Number Publication Date
JPS6347344A true JPS6347344A (en) 1988-02-29
JPH0742530B2 JPH0742530B2 (en) 1995-05-10

Family

ID=16258033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61190432A Expired - Fee Related JPH0742530B2 (en) 1986-08-15 1986-08-15 Manufacturing method of low oxygen alloy compact

Country Status (1)

Country Link
JP (1) JPH0742530B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207051U (en) * 1985-06-18 1986-12-27
JP2000038662A (en) * 1998-07-24 2000-02-08 Tosoh Corp Sputtering target
JP2007119925A (en) * 2000-11-09 2007-05-17 Nikko Kinzoku Kk Method for producing powder of high purity hafnium
JP2007169782A (en) * 2000-11-09 2007-07-05 Nikko Kinzoku Kk Method for producing high-purity zirconium powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438079A (en) * 1977-08-31 1979-03-22 Sekisui Jushi Kk Method of transporting article to be treated
JPS59100201A (en) * 1982-11-16 1984-06-09 キヤボツト・コ−ポレ−シヨン Tantalum powder composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438079A (en) * 1977-08-31 1979-03-22 Sekisui Jushi Kk Method of transporting article to be treated
JPS59100201A (en) * 1982-11-16 1984-06-09 キヤボツト・コ−ポレ−シヨン Tantalum powder composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207051U (en) * 1985-06-18 1986-12-27
JPH0412697Y2 (en) * 1985-06-18 1992-03-26
JP2000038662A (en) * 1998-07-24 2000-02-08 Tosoh Corp Sputtering target
JP2007119925A (en) * 2000-11-09 2007-05-17 Nikko Kinzoku Kk Method for producing powder of high purity hafnium
JP2007169782A (en) * 2000-11-09 2007-07-05 Nikko Kinzoku Kk Method for producing high-purity zirconium powder

Also Published As

Publication number Publication date
JPH0742530B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
US20020106297A1 (en) Co-base target and method of producing the same
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
US4824481A (en) Sputtering targets for magneto-optic films and a method for making
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
JPS6347344A (en) Production of low oxygen alloy molding
JPH0248623B2 (en)
JPS63227771A (en) High purity titanium silicide target for sputtering and production thereof
JPH08501828A (en) Beta 21S titanium-based master alloy for alloys and method for producing the master alloy
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
JPS6199640A (en) Manufacture of composite target material
JPS62130235A (en) Production of target material
JPH01136969A (en) Manufacture of target for titanium silicide sputtering
JPS6350469A (en) Manufacture of alloy target for sputtering
US5193605A (en) Techniques for preparation of ingot metallurgical discontinuous composites
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
CN114686717B (en) Preparation method of high-entropy alloy
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JPS6256543A (en) Manufacture of sintered compact of rare-earth alloy
JP2725331B2 (en) Target material manufacturing method
HU199904B (en) Process for production of alloy-dust based on rare earth metall-cobalt of improved quality
US4765851A (en) Aluminum alloy for the preparation of powders having increased high-temperature strength
JPS62214602A (en) Manufacture of green compact permanent magnet
JPS62263939A (en) Manufacture of alloy target material
JPH0119449B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees