JPS62274033A - Manufacture of rare earth-transition metal alloy target - Google Patents

Manufacture of rare earth-transition metal alloy target

Info

Publication number
JPS62274033A
JPS62274033A JP11818486A JP11818486A JPS62274033A JP S62274033 A JPS62274033 A JP S62274033A JP 11818486 A JP11818486 A JP 11818486A JP 11818486 A JP11818486 A JP 11818486A JP S62274033 A JPS62274033 A JP S62274033A
Authority
JP
Japan
Prior art keywords
rare earth
powder
eutectic point
transition metal
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11818486A
Other languages
Japanese (ja)
Inventor
Yoshitaka Chiba
千葉 芳孝
Noriyoshi Hirao
平尾 則好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11818486A priority Critical patent/JPS62274033A/en
Publication of JPS62274033A publication Critical patent/JPS62274033A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PURPOSE:To obtain an alloy target minimal in O content and having high density, by mixing a rapidly-cooled alloy powder having a rare earth metal-side eutetic point composition and a rapidly-cooled powder, the rest of the desired composition, and by subjecting the resulting powder mixture to compacting and then to pressure liquid-phase sintering at a temp. in the temp. range higher than the above eutectic point CONSTITUTION:An alloy having a rare earth metal-side eutectic point composition such as 88wt% Tb-12wt% Fe, etc., in an Fe-Tb binary diagram is melted and then is subjected to rapid cooling treatment to be formed into powder. Subsequently, a transition metal (e.g., Fe), the rest of the desired composition, is mixed with said powder to undergo compacting, and the resulting green compact is subjected to pressure liquid-phase sintering at a temp. in the range between the eutectic point of rare earth metal and a temp. higher than said eutectic point by 200 deg.C. At this time, it is necessary to carry out all the stages mentioned above in vacuum or in an inert-gas atmosphere. The obtained rare earth-transition metal alloy target is reduced in oxygen content to a minimum of <=1,000ppm hitherto impossible by conventional methods and shows b density as high as >=95%.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は希土類−遷移金属系光磁気記録媒体として用い
られるスパッタリング用合金ターゲットの製造に関する
ものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the production of a sputtering alloy target used as a rare earth-transition metal based magneto-optical recording medium.

〔従来の技術〕[Conventional technology]

最近、ガラスあるいは樹脂の基板にスパッタリング法に
より所望組成の薄膜を形成し、これを記録媒体として用
いた沓き換え可能で高密度記録が可能な光磁気ディスク
の開発が行なわれている。
Recently, a magneto-optical disk has been developed in which a thin film of a desired composition is formed on a glass or resin substrate by a sputtering method and is used as a recording medium, and is replaceable and capable of high-density recording.

このスパッタリングに用いられるターゲットは、従来所
望組成の合金を真空又は不活性ガス雰囲気中で溶解・鋳
造して得られたインゴットを粉砕し、1得られた粉末を
圧粉成形後焼結することにより製造されてきた。
The target used for this sputtering is conventionally made by melting and casting an alloy of a desired composition in a vacuum or an inert gas atmosphere, pulverizing an ingot, and then sintering the resulting powder after compacting. has been manufactured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、希土類−遷移金属合金は酸化されやすく
、本質的に脆い性質を有するため、製造工程上、たとえ
合金を真空又は不活性ガス雰囲気中で溶解・鋳造しても
、クラッシャーなどでAr中で機械的に粉砕すれば酸素
ガス等を多量に含み、焼結時のカケ、割れ、ボンディン
グ時の冷却割れ、およびスパッタリング時にスパッタ成
膜が酸素富化のため希土類金属が減少する、いわゆる組
成ズレなどの問題点があった。この問題点を解決する方
法として、本発明者等は先に特願昭59−260920
号として希土類金属と遷移金属からなる合金を溶解し、
この合金溶湯を急冷して粉末とし、その粉末を圧粉成形
し焼結する方法を提案しているが、得られた合金ターゲ
ットの酸素量は900〜1500ppmとまだ十分に低
いとは言えなかった。また、特開昭60−230903
号公報によれば遷移金属−希土類金属系の合金ターゲッ
トを製造するに際し、希土類金属単独では酸化されやす
いため、あらかじめ目標組成よりも遷移金属を1〜10
重量%少なくした遷移金属−希土類金属の合金粉末と残
りの遷移金属粉末とを混合して成形し、焼結する方法も
提案されているが、この方法においても上述のように溶
解後のインゴットをクラッシャーにより機械的に粉砕し
ているため十分に低い酸素量は得られず、また、その焼
結方法は遷移金属粉末を希土類−遷移金属合金のバイン
ダーとして作用させるため、焼結温度はFeあるいはC
oの液相又は高温拡散を用いる高温焼結となり、その結
果得られる合金ターゲットの酸素量は2000〜400
0ppmと高く、十分に低い酸素量を得ることができな
いことが問題であった。
However, rare earth-transition metal alloys are easily oxidized and inherently brittle, so during the manufacturing process, even if the alloy is melted and cast in a vacuum or inert gas atmosphere, it cannot be machined in Ar using a crusher or the like. If it is pulverized, it will contain a large amount of oxygen gas, etc., which will cause chips and cracks during sintering, cooling cracks during bonding, and so-called composition deviations such as a decrease in rare earth metals because the sputtered film is enriched with oxygen during sputtering. There was a problem. As a method to solve this problem, the present inventors have previously filed a patent application No. 59-260920.
An alloy consisting of rare earth metals and transition metals is melted as a
We have proposed a method in which this molten alloy is rapidly cooled to powder, then the powder is compacted and sintered, but the oxygen content of the resulting alloy target is 900 to 1500 ppm, which is still not sufficiently low. . Also, JP-A-60-230903
According to the publication, when manufacturing a transition metal-rare earth metal alloy target, since rare earth metals alone are easily oxidized, the transition metal is added in advance by 1 to 10% less than the target composition.
A method has also been proposed in which a transition metal-rare earth metal alloy powder with a reduced weight percentage is mixed with the remaining transition metal powder, and then molded and sintered. Because it is mechanically pulverized by a crusher, a sufficiently low amount of oxygen cannot be obtained, and since the sintering method uses transition metal powder to act as a binder for the rare earth-transition metal alloy, the sintering temperature is set to Fe or C.
High temperature sintering using liquid phase or high temperature diffusion of
The problem was that the amount of oxygen was as high as 0 ppm, making it impossible to obtain a sufficiently low amount of oxygen.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の問題点を解決したものである0すなわち
希土類−遷移金属合金ターゲットの製造において、希土
類金属側共晶点組成からなる合金を溶解しこの合金溶湯
を急冷処理した粉末と、目標組成に対し残りの遷移金属
からなる溶湯を急冷処理した粉末とを混合して、圧粉成
形後、希土類金1i411IJ共晶点以上の温度で、か
つ該共晶点よυも200℃高い温度以下の温度範囲で加
圧焼結する工程を有し、かつ前記の全工程を真空中又は
不活性ガス雰囲気中で行なうことを特徴とするものであ
る。また、本発明においては、上記液相焼結した合金タ
ーゲットの酸素量が11000pp以下および粉末の密
度との相対密度が95%以上であることがよシ好ましい
The present invention solves the above-mentioned problems. In the production of a rare earth-transition metal alloy target, an alloy having a eutectic point composition on the rare earth metal side is melted and the molten alloy is rapidly cooled to produce a powder with a target composition. The molten metal made of the remaining transition metal is mixed with the rapidly cooled powder, and after compacting, it is heated to a temperature above the rare earth gold 1i411IJ eutectic point and below a temperature 200°C higher than the eutectic point. It is characterized in that it has a step of pressure sintering in a temperature range, and all of the above steps are performed in vacuum or in an inert gas atmosphere. In the present invention, it is more preferable that the liquid phase sintered alloy target has an oxygen content of 11,000 pp or less and a relative density of 95% or more with respect to the powder density.

また、本発明において、加圧液相焼結は、ホットプレス
法、熱間静水圧プレス法(HIP)および真空常圧焼結
が適用できる。また本発明により得られるターゲット形
状は、通常、円板状であるが、中空リング状、棒状、角
板状等の任意の形状であってもよい。
Further, in the present invention, hot press method, hot isostatic pressing method (HIP), and vacuum normal pressure sintering can be applied to the pressurized liquid phase sintering. Further, the target shape obtained by the present invention is usually a disk shape, but it may be any shape such as a hollow ring shape, a rod shape, or a square plate shape.

希土類金属側共晶点組成点組成とは、例えば、Fe −
Tb二元系状態図における88重量%Tb−12重i%
Feの組成を意味するものであり、またこの場合におけ
る希土類金属側共晶点け847℃を意味する。なお当然
ながら、本発明は、Fe −Tbに限定されるものでは
なく、Fe  Gd # Fe  Sm + Co −
Gd 、 Co −Tb r Co −D7 + Co
−8m eあるいはFe −C。
The rare earth metal side eutectic point composition means, for example, Fe −
88% by weight Tb-12% by weight in the Tb binary system phase diagram
It means the composition of Fe, and also means the eutectic point of 847° C. on the rare earth metal side in this case. Note that, as a matter of course, the present invention is not limited to Fe - Tb, but also Fe Gd # Fe Sm + Co -
Gd, Co-TbrCo-D7+Co
-8m e or Fe-C.

−Tb 、 Fe  Tb  Gd三元合金等において
も同様に適用できることは言うまでもない。
It goes without saying that the present invention can be similarly applied to -Tb, FeTbGd ternary alloys, etc.

〔実施例〕〔Example〕

第1表に実施例に用いた試料の組成および製造方法を示
す。
Table 1 shows the composition and manufacturing method of the samples used in the examples.

第   1   表 試料屋1〜3,6および8の粉末組成は目標組成52.
5wt%Tb  47.5wt%Feに対しTb側共晶
点組成である88wt%Tb −12wt%Fe急冷粉
と残りのFe粉を混合した。A4は目標組成に対しTb
側共晶点組成と残シのFe粉およびCo粉を混合した。
Table 1 The powder compositions of samples 1 to 3, 6 and 8 are the target composition 52.
The 88 wt % Tb - 12 wt % Fe quenched powder, which has a Tb side eutectic point composition for 5 wt % Tb and 47.5 wt % Fe, was mixed with the remaining Fe powder. A4 is Tb for the target composition
The side eutectic point composition and the remaining Fe powder and Co powder were mixed.

屋5は目標組成に対しGd側共晶点組成と残シのFe粉
を混合した。試料扁7および9は目標組成と同じ粉末を
製造したがA7が急冷粉に対し扁9はAr中でクラッシ
ャーにより粉砕して粉末とした。
In case No. 5, the Gd side eutectic point composition and the remaining Fe powder were mixed with respect to the target composition. Sample flats 7 and 9 were made into powders having the same target composition, but while A7 was a quenched powder, flat plate 9 was crushed into powder using a crusher in Ar.

扁10は目標組成に対しTb側共晶点より Fe側にず
らした43.9wt%Tb −56、1wt%Fe合金
をAr中でクラッシャー粉砕して粉末とし、残シのFe
粉を混合した。焼結方法は屋4の試料はHIP法によっ
たが、屋4の試料以外はホットプレス法で焼結し、焼結
温度を800℃〜1100℃の範囲とした。
The flat plate 10 is made by crushing a 43.9 wt% Tb-56, 1 wt% Fe alloy, which is shifted from the Tb side eutectic point to the Fe side with respect to the target composition, using a crusher in Ar, and crushing the remaining Fe.
Mixed the flour. As for the sintering method, the HIP method was used for the sample in House 4, but the hot press method was used for the samples other than House 4, and the sintering temperature was set in the range of 800°C to 1100°C.

さらに液相反応を用いた試料A1〜6およびA10につ
いては1s、2x以下の圧力により焼結したが、同相反
応を用いた試料屋7〜9については137Yiの圧力に
よυ焼結した。ここで急冷粉あるいはクラッシャーで粉
砕する前の母合金はプラズマアーク溶解炉内で溶解した
。混合はボールミルによシ均一な混合粉末とした。次に
混合粉末は6″φの金型内に充てんし、350Vの圧力
で室温で圧粉成形した。圧粉成形体は前述の焼結条件で
焼結しろφX 3 wa tの円板状の合金ターゲット
を得た。第2表に得られたターゲットの酸素量および密
度を示した。
Further, samples A1 to A10 using liquid phase reaction were sintered at a pressure of 2x or less for 1 s, while samples A1 to 9 using in-phase reaction were sintered at a pressure of 137Yi. Here, the rapidly cooled powder or the master alloy before being crushed in a crusher was melted in a plasma arc melting furnace. The mixture was made into a uniform mixed powder using a ball mill. Next, the mixed powder was filled into a 6″φ mold and compacted at room temperature under a pressure of 350V.The compacted powder was sintered under the above-mentioned sintering conditions. An alloy target was obtained. Table 2 shows the oxygen content and density of the obtained target.

第   2   表 密度は焼結前の混合粉末の密度に対する相対密度として
示した。第2表から明らかなように急冷粉を用いずAr
中でクラッシャーで粉砕した扁9および10の粉末を用
いて焼結した、合金ターゲットの酸素量は2100〜3
030と非常に高いことがわかる。また試料A7は従来
法によるものであるが酸素量は1300ppmのレベル
である。本発明による試料ノに1〜5は焼結温度範囲を
共晶点(847℃)より156℃高い範囲で焼結したも
のであるが、いずれも690〜843ppmと酸素量が
低く、かつ相対密度も95%と高密度の合金ターゲット
が得られた。
Table 2 Densities are shown as relative densities to the density of the mixed powder before sintering. As is clear from Table 2, Ar
The oxygen content of the alloy target, which was sintered using the powders of flats 9 and 10 crushed by a crusher, was 2100 to 3.
It can be seen that the value is very high at 030. Sample A7 was prepared using the conventional method, but the oxygen content was at a level of 1300 ppm. Samples 1 to 5 according to the present invention were sintered at a sintering temperature range of 156°C higher than the eutectic point (847°C), but all had a low oxygen content of 690 to 843 ppm and a relative density. An alloy target with a high density of 95% was obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明では希土類−遷移金属合金
ターゲットの製造において、希土類金属側共晶点組成か
らなる急冷合金粉末と目標組成に対し残りの急冷粉末を
混合(7、圧粉成形後希土類金属側共晶点よυも200
℃高い温度範囲で加圧液相焼結することによυ、従来方
法では得られなかった合金ターゲットの酸素量は110
00pp以下が得られたことと同時に95%以上の高密
度の合金ターゲットを製造することができた。さらに得
られたターゲットはターゲット中に含1れる酸素量が少
ないのでスパッタリングにおいて、表面酸化物を除去す
るためのプレスパツタ時間の短縮が可能なこと、またス
パッタ成膜中の酸素富化による希土類金属の減少いわゆ
る組成ズレも少なくなることが期待される。
As described above, in the present invention, in the production of a rare earth-transition metal alloy target, the quenched alloy powder having the eutectic point composition on the rare earth metal side is mixed with the remaining quenched powder for the target composition (7. The eutectic point on the metal side is also 200
By pressurized liquid phase sintering in a high temperature range of ℃, the amount of oxygen in the alloy target, which could not be obtained by conventional methods, has been increased to 110℃.
At the same time, it was possible to produce an alloy target with a high density of 95% or more. Furthermore, since the obtained target contains a small amount of oxygen in the target, it is possible to shorten the pre-sputtering time for removing surface oxides during sputtering. It is expected that the so-called compositional deviation will also be reduced.

Claims (2)

【特許請求の範囲】[Claims] (1)希土類金属側共晶点組成からなる合金の溶湯を急
冷処理した粉末と、目標組成に対し残りの遷移金属の急
冷処理した粉末とを混合して、圧粉成形後希土類金属側
共晶点以上の温度でかつ該共晶点よりも200℃高い温
度以下の温度範囲で加圧液相焼結する工程を有し、かつ
前記の全工程を真空中又は不活性ガス雰囲気中で行なう
ことを特徴とする希土類−遷移金属合金ターゲットの製
造方法。
(1) A powder obtained by rapidly cooling a molten alloy having a eutectic point composition on the rare earth metal side is mixed with a powder obtained by rapidly cooling the remaining transition metal with the target composition, and after compacting, a step of pressurized liquid phase sintering at a temperature above the eutectic point and below a temperature 200°C higher than the eutectic point, and all of the above steps are carried out in vacuum or in an inert gas atmosphere. A method for producing a rare earth-transition metal alloy target, characterized by:
(2)上記液相焼結した合金ターゲットの酸素量が10
00PPm以下であり、かつ粉末の密度との相対密度が
95%以上であることを特徴とする特許請求の範囲第1
項に記載の希土類−遷移金属合金ターゲットの製造方法
(2) The amount of oxygen in the liquid phase sintered alloy target is 10
00PPm or less, and the relative density with respect to the density of the powder is 95% or more.
A method for producing a rare earth-transition metal alloy target as described in 2.
JP11818486A 1986-05-22 1986-05-22 Manufacture of rare earth-transition metal alloy target Pending JPS62274033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11818486A JPS62274033A (en) 1986-05-22 1986-05-22 Manufacture of rare earth-transition metal alloy target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11818486A JPS62274033A (en) 1986-05-22 1986-05-22 Manufacture of rare earth-transition metal alloy target

Publications (1)

Publication Number Publication Date
JPS62274033A true JPS62274033A (en) 1987-11-28

Family

ID=14730223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11818486A Pending JPS62274033A (en) 1986-05-22 1986-05-22 Manufacture of rare earth-transition metal alloy target

Country Status (1)

Country Link
JP (1) JPS62274033A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118028A (en) * 1986-11-06 1988-05-23 Hitachi Metals Ltd Rare earth element-transition metal element target and its production
JPS63143255A (en) * 1986-12-04 1988-06-15 Mitsubishi Kasei Corp Alloy target material
JPS63143228A (en) * 1986-12-04 1988-06-15 Mitsubishi Kasei Corp Manufacture of multicomponent metallic sintered body
EP0288010A2 (en) * 1987-04-20 1988-10-26 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
JPS648243A (en) * 1987-06-30 1989-01-12 Mitsui Shipbuilding Eng Rare earth metal-transition metal alloy and its production
JPH01298155A (en) * 1988-05-27 1989-12-01 Seiko Epson Corp Magneto-optical recording medium, sputtering target, and manufacture of sputtering target
US5607780A (en) * 1993-07-30 1997-03-04 Hitachi Metals, Ltd. Target for magneto-optical recording medium and process for production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230903A (en) * 1984-05-01 1985-11-16 Daido Steel Co Ltd Production of alloy target

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230903A (en) * 1984-05-01 1985-11-16 Daido Steel Co Ltd Production of alloy target

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118028A (en) * 1986-11-06 1988-05-23 Hitachi Metals Ltd Rare earth element-transition metal element target and its production
JPS63143255A (en) * 1986-12-04 1988-06-15 Mitsubishi Kasei Corp Alloy target material
JPS63143228A (en) * 1986-12-04 1988-06-15 Mitsubishi Kasei Corp Manufacture of multicomponent metallic sintered body
EP0288010A2 (en) * 1987-04-20 1988-10-26 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
US4957549A (en) * 1987-04-20 1990-09-18 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
US5062885A (en) * 1987-04-20 1991-11-05 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
US5098649A (en) * 1987-04-20 1992-03-24 Hitachi Metals, Ltd. Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
JPS648243A (en) * 1987-06-30 1989-01-12 Mitsui Shipbuilding Eng Rare earth metal-transition metal alloy and its production
JPH01298155A (en) * 1988-05-27 1989-12-01 Seiko Epson Corp Magneto-optical recording medium, sputtering target, and manufacture of sputtering target
JP2692139B2 (en) * 1988-05-27 1997-12-17 セイコーエプソン株式会社 Manufacturing method of sputtering target
US5607780A (en) * 1993-07-30 1997-03-04 Hitachi Metals, Ltd. Target for magneto-optical recording medium and process for production thereof

Similar Documents

Publication Publication Date Title
US20110044838A1 (en) Iron Silicide Sputtering Target and Method for Production Thereof
JP4860029B2 (en) Method for manufacturing high-density sputter target made of two or more metals
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
JPS61139637A (en) Target for sputter and its manufacture
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPH0248623B2 (en)
JPS60230903A (en) Production of alloy target
JPH0549730B2 (en)
JPH02107762A (en) Alloy target for magneto-optical recording
JPH0119448B2 (en)
JPS6350469A (en) Manufacture of alloy target for sputtering
JPH01136969A (en) Manufacture of target for titanium silicide sputtering
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JPS6256543A (en) Manufacture of sintered compact of rare-earth alloy
JP2597380B2 (en) Method for producing rare earth metal-transition metal target alloy powder and method for producing rare earth metal-transition metal target
JP2725331B2 (en) Target material manufacturing method
JP2001342559A (en) METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL
JPS61229314A (en) Target material and manufacture thereof
JPH0254760A (en) Manufacture of target
US5710384A (en) Magneto-optical recording medium target and manufacture method of same
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JPS6347344A (en) Production of low oxygen alloy molding
JPS63111135A (en) Manufacture of rare earth-transition metal target
JPH02250964A (en) Sendust alloy target and production thereof
JPH0119449B2 (en)