JPS63143228A - Manufacture of multicomponent metallic sintered body - Google Patents

Manufacture of multicomponent metallic sintered body

Info

Publication number
JPS63143228A
JPS63143228A JP28951686A JP28951686A JPS63143228A JP S63143228 A JPS63143228 A JP S63143228A JP 28951686 A JP28951686 A JP 28951686A JP 28951686 A JP28951686 A JP 28951686A JP S63143228 A JPS63143228 A JP S63143228A
Authority
JP
Japan
Prior art keywords
eutectic structure
alloy
sintered body
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28951686A
Other languages
Japanese (ja)
Other versions
JPH076010B2 (en
Inventor
Nobuyuki Matsuzoe
松添 信行
Yoshinori Seki
義則 関
Takeshi Kuriwada
健 栗和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61289516A priority Critical patent/JPH076010B2/en
Publication of JPS63143228A publication Critical patent/JPS63143228A/en
Publication of JPH076010B2 publication Critical patent/JPH076010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high density multicomponent metallic sintered body free from cracks by sintering and shaping a mixture of powder of an alloy having a eutectic structure with powder of other metal. CONSTITUTION:An alloy having a eutectic structure such as an alloy of rare earth elements is cooled at >=0.01 deg.C/sec cooling rate and crushed. The cooling may be carried out by direct contact with a cold medium. The same metal as one of the metals forming the eutectic structure or a metal different from the metals is also crushed. The resulting two kinds of powders are mixed, sintered and shaped to obtain a high density multicomponent metallic sintered body free from cracks and contg. metals capable of forming a eutectic structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多元系金属焼結体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a multi-component metal sintered body.

〔従来の技術〕[Conventional technology]

一般に溶解、鋳造で割れの発生する金属材料、溶解中に
ルツボと反応する金属材料等は一旦粉末にして、その後
焼結して所望の形状を得る。
Generally, metal materials that crack during melting or casting, metal materials that react with crucibles during melting, etc. are once powdered and then sintered to obtain the desired shape.

該形成法には、加圧焼結するホット・プレス(Hot 
Press )法、ヒラピング(Ripping )法
や、予めプレスやシツピング(C1puinz ) 法
等で予備成形し、その圧粉体を焼、桔する境結法がある
The formation method includes a hot press (Hot
There is a pressing method, a ripping method, and a bonding method in which the compact is preformed by a pressing or shipping method, and then the green compact is fired and boxed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、粉末を焼結しても、巣 (Porosity )  及び割れの無い完全な高密
度の焼結体を得ることは難しい。そのため現在は温度を
粉末の融点直上まで上げた液相焼結法やバインダー等を
混入する方法がとられている。この液相焼結法はダイス
、ポンチと焼き付いたシ、ダイス、ポンチ間から液が漏
れるため、焼結体を取シ出すことが困難である。焼結体
が取シ出せる場合であっても、温度管理を非常に厳しく
行う必要があシ、工業的シては難しい方法である。
However, even if the powder is sintered, it is difficult to obtain a complete high-density sintered body without porosity or cracks. For this reason, current methods include a liquid phase sintering method in which the temperature is raised to just above the melting point of the powder, and a method in which a binder or the like is mixed. In this liquid phase sintering method, it is difficult to remove the sintered body because liquid leaks from between the dies and the punch and the sintered dies, dies, and punch. Even if the sintered body can be taken out, it is necessary to control the temperature very strictly, which is a difficult method for industrial use.

一方、バインダー等を混入する方法は得られた焼結体へ
の不純物混入の問題があるため、製品の用途、使用条件
に種々の制約が生じ、現実的でない。
On the other hand, the method of mixing a binder or the like has the problem of contamination of the obtained sintered body with impurities, which imposes various restrictions on the application and usage conditions of the product, and is not practical.

本発明者等は、上記従来の問題点に鑑み、多元系金属で
巣、割れ等の無い高密度で不純物の混入のない焼結体が
得られよう鋭意研究を進めた結果、予め共晶組織を有す
る金属粉末を得、ついで所望の目的組成になるよう同一
又は他の金属粉末を混合した後、通常の焼結を行えば、
目的とする焼結体が得られることを知得して、先に提案
した(特願昭1.0−/9り797号)。
In view of the above-mentioned conventional problems, the present inventors conducted intensive research to obtain a sintered body of a multi-component metal with high density and no impurities without voids or cracks. If you obtain a metal powder having the following properties, then mix the same or other metal powders to obtain the desired target composition, and then perform normal sintering,
After learning that the desired sintered body could be obtained, the method was proposed (Japanese Patent Application No. 797, No. 1999-1999).

しかしながら、斯る改良方法は、これを工業的に実施す
る際に共晶組織合金の粉砕が必ずしも容易ではなく、そ
の改善が望まれる。
However, when such an improved method is implemented industrially, it is not always easy to crush the eutectic alloy, and an improvement is desired.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記実情に鑑みなされたものであり、その要
旨は、共晶組織を形成し得る金属成分を含有する多元系
金属焼結体を製造する方法において、予め共晶組織を有
する合金を得、これを低温粉砕により粉末化し、次いで
、該共晶組織を有する金属の粉末と、該共晶組織を構成
する金属成分と同一又は異なる金属の粉末とを混合した
後、焼結成形することを特徴とする多元系金属焼結体の
製造方法に存する。
The present invention has been made in view of the above circumstances, and the gist thereof is to provide a method for manufacturing a multi-component metal sintered body containing a metal component capable of forming a eutectic structure, in which an alloy having a eutectic structure is prepared in advance. obtained, powdered by low-temperature pulverization, and then mixed with a metal powder having the eutectic structure and a metal powder that is the same as or different from the metal component constituting the eutectic structure, and then sintered. A method of manufacturing a multi-component metal sintered body is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明では共晶組織が得られる多元系金属材料を用いる
。例えば単体金属A、B、Oの3種類からなる多元系金
属焼結体を得る場合、3元系平衡状態図で共晶組織が得
られれば、その3元系金属の共晶組織を用いる。しかし
3元系状態図で共晶組織が得られない場合は、A、B間
B、0間、A、0間のコ元系状態図で共晶組織が得られ
るかどうかを調べ、あればそのコ元系金属の共晶組織を
用いる。これはグ元系、又はそれ以上の多元系金属焼結
体を得る場合でも同様である。この場合、共晶組織が多
く存在する共晶組成量付近が好ましいが、必ずしも共晶
組成量である必要はなく、粉砕性等を考慮して亜共晶組
成量、過共晶でも共晶組織が得られればよい。
In the present invention, a multi-component metal material that can obtain a eutectic structure is used. For example, when obtaining a multi-component metal sintered body consisting of three types of single metals A, B, and O, if a eutectic structure is obtained in the ternary equilibrium phase diagram, the eutectic structure of the ternary metal is used. However, if a eutectic structure cannot be obtained in the ternary phase diagram, check whether a eutectic structure can be obtained in the co-element phase diagram between A and B, between B and 0, and between A and 0. The eutectic structure of the core metal is used. This is the same even when obtaining a multi-element metal sintered body of a metal element or more. In this case, it is preferable to have a eutectic composition near the eutectic composition where there is a large amount of eutectic structure, but it does not necessarily have to be a eutectic composition, and in consideration of grindability, etc. It is enough if you can obtain it.

共晶組織を有する合金は、通常の溶解、鋳造法によって
得たものを用いるが、高品位の焼結体を得るためには共
晶組織は微細で均一なものが好ましく、従って鋳造時の
冷却速度は0.0/’C/秒以上が好ましい。
The alloy with a eutectic structure is obtained by ordinary melting and casting methods, but in order to obtain a high-quality sintered body, it is preferable that the eutectic structure be fine and uniform, so cooling during casting is preferable. The speed is preferably 0.0/'C/sec or more.

均一、微細な共晶組織を得るためには、特に窮造速度0
./〜25°C/秒で、銅鋳型を用いたアーク・メルタ
ー法が好ましい。
In order to obtain a uniform and fine eutectic structure, it is especially important to
.. The arc melter method using a copper mold at /~25°C/sec is preferred.

本発明においては、こうして得られた合金の粉砕を低温
粉砕で行う。低温粉砕には、粉砕機器を低温度にする場
合と粉砕材料【直接低温度媒体を接触させる場合がある
が、いずれでもよい。
In the present invention, the alloy thus obtained is pulverized by low-temperature pulverization. Low-temperature pulverization can be carried out either by lowering the temperature of the pulverizing equipment or by bringing the pulverized material into direct contact with a low-temperature medium.

粉砕機器を低温度だするには、ジマケット方式にしても
よく、冷却用パイプを巻き付けてもよい。粉砕材料に直
接低温度媒体を接触させるには、低温度媒体を直接粉末
材料に流し込み、また流し込みながら粉砕する方法があ
る。
In order to lower the temperature of the crushing equipment, it may be possible to use the Zimaquet method, or a cooling pipe may be wrapped around it. To bring the low-temperature medium into direct contact with the pulverized material, there is a method in which the low-temperature medium is directly poured into the powder material, and the material is pulverized while being poured.

低温度媒体としては、氷、ドライアイス、液体窒素、液
体アルゴン、液体ヘリウム等気化しても爆発性、有毒性
のないもので有ればいずれでも使用できる。好ましくは
冷却効率を考慮すると沸点がマイナスioo度以下の液
体窒素、液体アルゴン、液体ヘリウム等の液体化ガスが
低温度媒体として適当である。
As the low-temperature medium, ice, dry ice, liquid nitrogen, liquid argon, liquid helium, etc. can be used as long as it is not explosive or toxic even when vaporized. Preferably, in consideration of cooling efficiency, a liquefied gas such as liquid nitrogen, liquid argon, or liquid helium having a boiling point of minus 100 degrees or lower is suitable as the low-temperature medium.

また粉砕材料と低温度媒体とが反応する危険性がある場
合は、直接触れないよう粉砕機に低温度媒体を流す方法
、熱交換機を用いて、反応しない低温度媒体(C変換し
、粉砕材料だ直接流し込む方法でもよい。特に粉砕材料
が大気中で活性の場合、アルゴンガス等不活性雰囲気中
、例えばドライ・ボックス中で行う必要がある。
In addition, if there is a risk of the pulverized material reacting with the low-temperature medium, the method is to flow the low-temperature medium through the pulverizer to avoid direct contact, or to use a heat exchanger to convert the non-reactive low-temperature medium (C) into the pulverized material. In particular, if the pulverized material is active in the atmosphere, it is necessary to carry out the pulverization in an inert atmosphere such as argon gas, for example in a dry box.

しかも粉砕材料が窒素とも反応する場合、熱交換器をド
ライ・ボックス中如セットし、低温度媒体として安価な
液体窒素を用、いてドライ・ボックス中のアルゴンガス
を液化させ、この液体アルゴンを直接、粉砕材料に流し
込み、あるいは流し込みながら粉砕することも可能であ
る。
Moreover, if the pulverized material also reacts with nitrogen, a heat exchanger is set in a dry box, and inexpensive liquid nitrogen is used as a low-temperature medium to liquefy the argon gas in the dry box, and this liquid argon is directly used. It is also possible to pour it into the pulverized material, or to pulverize it while pouring it.

この場合、熱交換器もジャバラ式のフレキシブルパイプ
でも充分効果があり、不活性雰囲気中の低温粉砕法とし
て、安価で簡便に使用できる。
In this case, a bellows-type flexible pipe as a heat exchanger is sufficiently effective, and can be used inexpensively and easily as a low-temperature grinding method in an inert atmosphere.

更に詳しく述べると、例えばショークラッシャ(てよる
粉砕の場合、粉砕機そのものを低温度にするよシ、粉砕
時に直接粉砕材料と共に低温度媒体を流しこみながら粉
砕することが好ましい。この場合は、粉砕材料と低温度
媒体か直接反応しないような低温度媒体を選び、通常不
活性ガスの液体を用いれば良いO カッターミルの場合は、容器をジャケット弐にして、低
温度媒体を流すことも可能であるが粉砕材料に直接低温
度媒体を流し込みながら粉砕する方が効率的である。こ
の場合は、粉砕材料とメ低温度媒体が直接反応しない不
活性ガスの液体のような低温度媒体を選ぶ。
More specifically, in the case of pulverization using a show crusher, for example, in order to keep the temperature of the pulverizer itself low, it is preferable to pulverize while pouring a low-temperature medium directly along with the pulverized material during pulverization. Choose a low-temperature medium that does not directly react with the material, and usually use an inert gas liquid.In the case of a cutter mill, it is also possible to use the container as jacket 2 and flow the low-temperature medium. However, it is more efficient to grind while pouring a low-temperature medium directly into the pulverized material. In this case, a low-temperature medium such as an inert gas liquid is selected so that the pulverized material and the low-temperature medium do not react directly.

振動ボールミルの場合、容器の中に粉砕材料とともに低
温度媒体をいれると、低温度媒体が気化に伴って膨張す
るので、完全密封は行わないことが望ましい。この場合
も粉砕材料と低温度媒体が直接反応しないような不活性
ガスの液体等の低温度媒体を選ぶ。
In the case of a vibratory ball mill, if a low-temperature medium is placed in the container along with the pulverized material, the low-temperature medium will expand as it evaporates, so it is desirable not to completely seal the container. In this case as well, a low temperature medium such as an inert gas liquid is selected so that the pulverized material and the low temperature medium do not react directly.

以上の様に得られた共晶組織を有する合金の粉末に、金
属の粉末を加えて混合する。混合後の組成が所望する金
属焼結体の組成となるのであれば、加える金属は特に限
定されず、例えば7種類又は複数種類の単体金属、一種
類以上の金属からなる合金、若しくはこれらの組み合せ
であってもよい。
Metal powder is added to and mixed with the alloy powder having the eutectic structure obtained as described above. As long as the composition after mixing becomes the composition of the desired metal sintered body, the metals to be added are not particularly limited, and for example, seven or more types of single metals, an alloy consisting of one or more types of metals, or a combination thereof. It may be.

なお、高品位の焼結体を得るためには、混合後に共晶組
織が3%以上存在することが好ましく、更には/ 0−
J O1以上の範囲がよい。
In addition, in order to obtain a high-quality sintered body, it is preferable that 3% or more of eutectic structure exists after mixing, and furthermore, /0-
A range of JO1 or higher is preferable.

また、共晶組織を有する合金と加える単体金属、あるい
は合金とを合せた後に粉砕、混合してもよいO 次いで該粉末を焼結成形するが、これは一般的方法でよ
い。ホットプレス法の場合の一例を示すと、アルゴンガ
スなどの不活性雰囲気下で内面をボロンナイトライド(
BN)等の離型剤を塗布したダイスの中に該粉末を充填
し、同様アノムコ゛〉 に套#ガスなどの不活性ガスあるいは真空雰囲気中で加
圧屍結する。温度は圧力によって異なるが、共晶組織の
融点を中心に±300 ’C前後が適当である。また好
ましい加圧力は材料、共晶組成量によって変化する゛が
、大きすぎると液相の漏れ、ダイス、ポンチの破損を生
ずるので、300 kg/ ti以下、特には700〜
.200 kg/cnlが好ましい。なおダイス、ポン
チの材質は通常黒鉛であるが、耐熱鋼やセラミックスで
もよい。
Alternatively, the alloy having a eutectic structure and the single metal to be added or the alloy may be combined and then crushed and mixed.Then, the powder is sintered and formed, but this may be done by a general method. As an example of the hot press method, the inner surface is coated with boron nitride (
The powder is filled into a die coated with a mold release agent such as BN), and similarly pressurized in an inert gas such as a canister gas or in a vacuum atmosphere. Although the temperature varies depending on the pressure, a temperature around ±300'C around the melting point of the eutectic structure is appropriate. The preferable pressing force varies depending on the material and the eutectic composition amount, but if it is too large, liquid phase leakage and damage to the die and punch will occur, so it should be 300 kg/ti or less, especially 700 to 700 kg/ti.
.. 200 kg/cnl is preferred. The material of the die and punch is usually graphite, but may also be made of heat-resistant steel or ceramics.

焼結成形法としてヒラピング法を行う場合は、例えば該
粉末をアルゴンガスなどの不活性雰囲気下で、炭素鋼、
ステンレス鋼あるいはガラスの容器に充填後、真空引き
しながら封する。それをヒップ装置にて加圧焼結する。
When performing the hilling method as a sintering forming method, for example, the powder is mixed with carbon steel, carbon steel, etc. in an inert atmosphere such as argon gas.
After filling a stainless steel or glass container, seal it under vacuum. It is sintered under pressure using a hip device.

温度は上記ホットプレスよシ低い温度が適当である。た
だしガラス容器の場合は、その温度がガラスの転位点以
上の温度であることが必要である。加圧力は該温度で容
器の変形が追随できれば、特に制限はないが通常200
0kg/air以下である。
The temperature is suitably lower than the hot press described above. However, in the case of a glass container, the temperature must be higher than the transition point of the glass. The pressure is not particularly limited as long as it can follow the deformation of the container at the temperature, but it is usually 200
It is 0 kg/air or less.

小さすぎると変形が不充分となり、高い密度が得られな
いため1000〜/sookg7(ylが好ましい。
If it is too small, deformation will be insufficient and high density will not be obtained, so 1000 to /sookg7 (yl is preferred).

更に、焼結法の場合は、例えばアルゴンガスなどの不活
性雰囲気下で、油圧プレス等で該粉末を所定の形状に予
備成形し焼結炉心てて焼結する。雰囲気は不活性ガスか
、真空がよい。温度はホットプレスの場合より、高いほ
うが適当である。
Furthermore, in the case of a sintering method, the powder is preformed into a predetermined shape using a hydraulic press or the like under an inert atmosphere such as argon gas, and then sintered in a sintering furnace. The atmosphere should be inert gas or vacuum. It is appropriate for the temperature to be higher than in the case of hot pressing.

さて、共晶組織が得られる多元系金属材料は多々あるが
、鋳造時の割れや鋳型との反応等の問題で粉末を焼結す
る製造法を取らざるを得ない材料に希土金属を含む合金
がある。特に遷移金属との組合せは磁性材料として最近
、脚光をか挙げられている。このような希土金属、遷移
金属等を含む多元系金属焼結体は本発明の方法によれば
、巣、割れのない高密度のものが得られるので好ましい
Now, there are many multi-component metal materials that can obtain a eutectic structure, but some of them include rare earth metals, which have to be manufactured by sintering the powder due to problems such as cracking during casting and reaction with the mold. There is an alloy. In particular, combinations with transition metals have recently been in the spotlight as magnetic materials. According to the method of the present invention, such a multi-element metal sintered body containing rare earth metals, transition metals, etc. can be obtained in a high-density body without cavities or cracks, which is preferable.

〔作 用〕[For production]

本発明方法により、巣、割れのない高密度の多元系金属
焼結体が得られる理由として、共晶組織は均一、微細で
且つ融点も低いこと、さらに低温粉砕により、微粉末が
簡単に得られることが挙げられる。そのだめ焼結時にか
なり低い温度や圧力でも超塑性能が発現しゃすぐなシ、
その結果として共晶組織以外の粉末のまわシを充填し、
かつ焼結体に共晶組織か残存している場合、均一、0.
ia組織が故に靭性も発揮して、巣、割れの無い高密度
の焼結体が得られると考えられる。また共晶組織が溶融
状態時の性状を示し、共晶組織以外の粉末の周夛を充填
している可能性もある。
The reason why a high-density multi-component metal sintered body without cavities or cracks can be obtained by the method of the present invention is that the eutectic structure is uniform, fine, and has a low melting point, and that fine powder can be easily obtained by low-temperature grinding. There are many things that can be done. However, superplastic performance does not develop quickly even at fairly low temperatures and pressures during sintering.
As a result, the powder is filled with powder other than the eutectic structure,
And if a eutectic structure remains in the sintered body, it is uniform, 0.
It is thought that the ia structure also exhibits toughness and that a high-density sintered body without cavities or cracks can be obtained. There is also a possibility that the eutectic structure exhibits properties in a molten state and is filled with powder other than the eutectic structure.

更に二次的効果として、かなシ低い温度や圧力で焼結出
来ることから、ポンチ、ダイスとの反応の抑制、熱収縮
、膨張の低減に基づく割れの低減等の効果もあると推測
される。
Furthermore, as a secondary effect, since sintering can be performed at low temperatures and pressures, it is assumed that there are also effects such as suppressing reaction with punches and dies, and reducing cracking due to reduction in thermal contraction and expansion.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明方法によれば、従来は困難であった
、巣、割れ等が無い高密度で、かつ不純物混入のない多
元系金属焼結体を工業的有利に製造できるので、本発明
は極めて優れたものである。
According to the method of the present invention as described above, it is possible to industrially advantageously produce a multi-component metal sintered body that is free from cavities, cracks, etc. and has no impurities, which has been difficult in the past. It is extremely excellent.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、以下の実施例で溶解、合金化はアーク・メルター
機を用い、真空引@(約o、/ 771 torr )
後アルゴンガスを71) O@torrまで注入して行
なったものであシ、粉砕はいずれもグローブ・ボックス
中のアルゴンガス雰囲気下で行ない、まず、ジョー・ク
ラッシャーを用いて数馴塊まで、その後カッター・ミル
により50μm以下の粉末を得た。
In addition, in the following examples, melting and alloying were performed using an arc melter machine under vacuum @ (approximately o, / 771 torr)
This was done by injecting argon gas to 71) O@torr, and all crushing was done in an argon gas atmosphere in a glove box. A powder of less than 50 μm was obtained using a cutter mill.

また、成形、焼結はホットプレス法により、アルゴンガ
ス雰囲気下、圧力100に9/adで、外径30mm、
内径/&1m、高さsoy、ポンチ径/S關のダイス(
黒鉛)を用い、離型剤としてボロン・ナイトライドを使
用して行なった。
In addition, the molding and sintering was done by hot press method in an argon gas atmosphere at a pressure of 100 to 9/ad, with an outer diameter of 30 mm,
Inner diameter/&1m, height soy, punch diameter/S size die (
(graphite) and boron nitride as a mold release agent.

温度は、発熱体(黒鉛)の脇にPR−A−,30の熱電
対を取りつけることにより測定し、焼結状態は、圧力を
加えるシリンダーに取シ付けられた伸び計の収縮量によ
り把握した。
The temperature was measured by attaching a PR-A-30 thermocouple to the side of the heating element (graphite), and the sintering state was determined by the amount of contraction of an extensometer attached to the cylinder that applied pressure. .

実際の焼結は、まず温度を700℃とし、その温度に達
してから70分間保持し、大きな収縮量が得られない場
合はさらに50℃昇温し、その温度て違してから70分
保持し、収縮量の変化を見た。このようにして大きい収
縮量が観察された温度でホットプレスを終了とした。冷
却後、焼結体を取り出し光学顕微鏡観察により、巣、割
れ等の有無について調べ、この試験を2回線シ返した。
In actual sintering, the temperature is first set to 700°C, and once that temperature is reached, it is held for 70 minutes. If a large amount of shrinkage cannot be obtained, the temperature is further increased by 50°C, and after changing the temperature, it is held for 70 minutes. and observed changes in the amount of contraction. In this manner, hot pressing was terminated at the temperature at which a large amount of shrinkage was observed. After cooling, the sintered body was taken out and observed under an optical microscope to check for the presence of cavities, cracks, etc., and the test was repeated twice.

実施例/  (原子比Tb:Fe=/ :、7の焼結体
の製造)テルビウム(Tb)と鉄(Fe)の平衡状態図
から両者の共晶組成ばTb?コat%−Feコgat係
であったので、ともに純度99.9%のTb及びFeを
この組成で配合、溶解、合金化し共晶組織を有する塊(
約201mmx20t−mm )を得た。
Example/ (Production of sintered body with atomic ratio Tb:Fe=/ :, 7) From the equilibrium diagram of terbium (Tb) and iron (Fe), if the eutectic composition of both is Tb? Coat% - Fecogat ratio, so Tb and Fe, both of which have a purity of 99.9%, were blended, melted, and alloyed with this composition to create a mass with a eutectic structure (
Approximately 201 mm x 20 t-mm) was obtained.

次にショークラッシャーの一対の粉砕面(サイズ2o 
o X / t、 o 、z )に液体アルゴンを低温
度媒体として、上記金属塊と同時に流し込みながら粉砕
したところ、粒径5正以下まで粉砕でさた。更だ、ジャ
バラ式の熱交換器如配管した鋼製パイプに液体窒素を流
し、グローブ・ボックス中のアルゴンガスを液化させて
これを低温度媒体として直接粉砕材料に接触させながら
内径10O7I71+、高さgOmmで鋼製の粉砕容器
を有するカッター・ミル機で粉砕したところ、7100
yyio分の生意量で粒径3olim’J下の粉末が得
られた。
Next, a pair of crushing surfaces of the show crusher (size 2o
When pulverization was performed while pouring liquid argon as a low-temperature medium at the same time as the metal lump, the particles were pulverized to a particle size of 5 or less. Furthermore, liquid nitrogen was flowed through a steel pipe arranged like a bellows-type heat exchanger, and the argon gas in the glove box was liquefied, and the argon gas in the glove box was brought into direct contact with the pulverized material as a low-temperature medium. When crushed using a cutter mill machine with a steel crushing container at gOmm, the result was 7100 gOmm.
A powder with a particle size of 3 olim'J was obtained in an amount of yyio.

粒径的50μmの鉄粉を上記共晶組織粉末と原子比Tb
:Fe = / : 3になるよう混合し、この混合粉
末を用いてホットプレス法で焼結を行った。
Iron powder with a particle size of 50 μm and the above eutectic structure powder with an atomic ratio Tb
: Fe = / : 3, and sintering was performed using the hot press method using this mixed powder.

焼結操作中の約/ 000℃で大きな収縮量が得られ、
冷却後取り出したところ、ポンチ、ダイスとの反応もな
く、且つ巣、割れの無い高品位の焼結体が得られた。
A large amount of shrinkage is obtained at approximately / 000℃ during the sintering operation,
When taken out after cooling, a high-quality sintered body was obtained that did not react with the punch or die and was free of cavities and cracks.

比較として、共晶組織を有する塊の粉砕を液体アルゴン
を低温度媒体として使用しない以外は前述と全く同じ方
法で行なったところ、ショークラッシャーでは粒径10
〜20mmまでしか粉砕できなかった。また粉砕時にテ
ルビウムの酸(ヒと思われるが、火花が発生し、粉砕さ
れた表面が変色したものもあった。続くカッター・ミル
機での粉砕は70分間で10jl粉砕できたが、粉砕熱
で容器が10O′C以上になシ、30分の冷却時間が必
要で、結局/ OF//l、 0分で粒径50μTrL
以下の粉末が得られた。このように生産性が極端だ悪く
実生産は困難である。
For comparison, a lump having a eutectic structure was crushed in exactly the same manner as described above, except that liquid argon was not used as the low-temperature medium.
It could only be crushed to ~20 mm. Also, during the crushing process, sparks were generated from terbium acid (I think it was atomized), and the surface of the crushed product was discolored.The subsequent crushing process using a cutter/mill machine was able to crush 10 liters in 70 minutes, but the heat of the crushing If the container is not above 10O'C, 30 minutes of cooling time is required, resulting in /OF//L, and the particle size is 50μTrL in 0 minutes.
The following powder was obtained. In this way, productivity is extremely poor and actual production is difficult.

他の比較として、単体金属材料であるTb、Fqから直
接、原子比でTb:Fe = / : 、3の組成を配
合、溶解、粉末化した後に焼結を行なったところ、約/
200°Cで大きな収縮量が得られた。
As another comparison, when a composition with an atomic ratio of Tb:Fe = /: 3 was directly blended, melted, and powdered from the single metal materials Tb and Fq, sintering was performed.
A large amount of shrinkage was obtained at 200°C.

冷却抜取シ出したところ試料はポンチ、ダイスの間隙か
ら液状になってもれ、ダイス内の試料は完全だポンチ、
ダイスと反応して、焼結体を取り出すこともできなかっ
た。
When I took it out after cooling, the sample turned into liquid and leaked from the gap between the punch and the die, but the sample inside the die was completely intact.
It also reacted with the die and the sintered body could not be taken out.

実施例2  (原子比Gd:、Pe=/:3の焼結体の
製造)ガドリウム(Ga)と鉄(Pe)の平衡状態図か
ら両者の共晶組成はGdざ7at%−Fe / 、、?
 at%であったので、ともに純度99.9%のGd及
びFeをこの組成で配合、溶解、合金化し共晶組織味(
2096B×20 tmm )を得た。得られだ共晶組
織味をショークラッシャーの一対の粉砕面(サイズ20
0×/AOmm)を液体窒素で予め冷却してから粉砕し
たところ粒径夕rnmJJ下まで粉砕できた。更に、鋼
製で内径100mm、高さgO朋の円筒形であって円筒
部分がジャケット式となっている粉砕容器を有するカッ
ター・ミル機を用い、ジャケットに配管した鋼製パイプ
に液体窒素を流し、粉砕容器を冷却しながら粉砕したと
ころ、qogyio分の生産量で粒径SOμm以下の粉
末が得られた。
Example 2 (Manufacture of sintered body with atomic ratio Gd:, Pe=/:3) From the equilibrium diagram of gadolinium (Ga) and iron (Pe), the eutectic composition of both is Gd: 7at%-Fe/, ?
at%, Gd and Fe, both of which have a purity of 99.9%, were blended, melted, and alloyed with this composition to create a eutectic structure (
2096B×20 tmm) was obtained. Show the resulting eutectic structure using a pair of crushing surfaces (size 20) of the crusher.
0×/AOmm) was cooled in advance with liquid nitrogen and then pulverized, and the particle size could be pulverized to a particle size of less than rnmJJ. Furthermore, using a cutter mill machine having a cylindrical crushing vessel made of steel with an inner diameter of 100 mm and a height of gO, and the cylindrical part being a jacket type, liquid nitrogen was poured into a steel pipe connected to the jacket. When the powder was pulverized while cooling the pulverization container, a powder having a particle size of SOμm or less was obtained at a production amount of qogyio.

粒径的SOμmの鉄粉を上記共晶組織粉末と原子比Gd
:Fe = / : 3になるよう混合し、この混合粉
末を用いてホットプレス法で焼結を行った。
The iron powder with a grain size of SOμm and the eutectic structure powder with an atomic ratio of Gd
: Fe = / : 3, and sintering was performed using the hot press method using this mixed powder.

焼結操作中、約qoo℃で大きな収縮量が得られ、冷却
抜取シ出したところ、ポンチ、ダイスとの反応もなく、
且つ巣、割れのない高品位の焼結体が得られた。
During the sintering operation, a large amount of shrinkage was obtained at about qoo℃, and when it was taken out after cooling, there was no reaction with the punch or die.
Moreover, a high-quality sintered body without voids or cracks was obtained.

比較として、共晶組織味の粉砕を液体窒素を低温度媒体
として使用しない以外は実施例と全く同じ方法で粉砕し
たところ、ショークラッシャーでは粒径10〜−o m
mまでしか粉砕できなかった。また粉砕時にガドリウム
の酸化と思われるが、火花が発生し、粉砕された表面が
変色したものもあった。カッター・ミル機での粉砕は1
0分間で10g粉砕できたが、粉砕熱で容器がioo℃
以上になシ、50分の冷却時間が必要で、結局10g/
l、0分で粒径50μm以下の粉末が得られた。このよ
うに生産性が極端に悪く実生産は困難である。
For comparison, a eutectic structure was crushed in exactly the same manner as in the example except that liquid nitrogen was not used as the low-temperature medium.
It could only be crushed up to m. In addition, sparks were generated during the crushing process, probably due to the oxidation of gadolinium, and some of the crushed surfaces were discolored. Grinding with cutter mill machine is 1
I was able to grind 10g in 0 minutes, but the heat of grinding caused the container to reach ioo℃.
Above all, 50 minutes of cooling time was required, and in the end it was 10g/
Powder with a particle size of 50 μm or less was obtained in 0 minutes. As described above, productivity is extremely poor and actual production is difficult.

他の比較として、単体金属材料であるGd、 Fsから
直接、原子比でGd:Fθ=/:3の組成を配合、溶解
、粉末化した後に焼結を行なったところ、約/100℃
で大きな収縮量が得られた。
As another comparison, when a composition with an atomic ratio of Gd:Fθ=/:3 was directly blended, melted, and powdered from the single metal materials Gd and Fs, sintering was performed at approximately /100°C.
A large amount of shrinkage was obtained.

冷却後取り出したところ試料はポンチ、ダイスの間隙か
ら液状になってもれ、ダイス内の試料は完全にポンチ、
ダイスと反応して、焼結体を取り出すこともできなかっ
た。
When I took it out after cooling, the sample turned into liquid and leaked from the gap between the punch and the die, and the sample inside the die was completely punched and leaked.
It also reacted with the die and the sintered body could not be taken out.

出 願 人  三菱化成工業株式会社 代 理 人  弁理士 長径用  − (ほか7名)Sender: Mitsubishi Chemical Industries, Ltd. Representative patent attorney for long diameter - (7 others)

Claims (5)

【特許請求の範囲】[Claims] (1)共晶組織を形成し得る金属成分を含有する多元系
金属焼結体を製造する方法において、予め共晶組織を有
する合金を得、これを低温粉砕により粉末化し、次いで
、該共晶組織を有する合金の粉末と、該共晶組織を構成
する金属成分と同一又は異なる金属の粉末とを混合した
後、焼結成形することを特徴とする多元系金属焼結体の
製造方法。
(1) In a method for manufacturing a multi-component metal sintered body containing metal components capable of forming a eutectic structure, an alloy having a eutectic structure is obtained in advance, this is powdered by low-temperature grinding, and then the eutectic A method for producing a multi-component metal sintered body, which comprises mixing powder of an alloy having a structure and powder of a metal that is the same as or different from the metal component constituting the eutectic structure, and then sintering the mixture.
(2)低温粉砕が、共晶組織を有する合金に低温度媒体
を直接接触させて粉砕を行なう方法であることを特徴と
する特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the low-temperature pulverization is a method in which pulverization is carried out by bringing a low-temperature medium into direct contact with an alloy having a eutectic structure.
(3)共晶組織を有する合金が0.01℃/秒以上の冷
却速度条件下で得られたものであることを特徴とする特
許請求の範囲第1項又は第2項記載の製造方法。
(3) The manufacturing method according to claim 1 or 2, wherein the alloy having a eutectic structure is obtained under conditions of a cooling rate of 0.01° C./sec or more.
(4)共晶組織を有する合金が希土合金であることを特
徴とする特許請求の範囲第1項、第2項又は第3項記載
の製造方法。
(4) The manufacturing method according to claim 1, 2, or 3, wherein the alloy having a eutectic structure is a rare earth alloy.
(5)希土合金が希土金属と遷移金属からなる合金であ
ることを特徴とする特許請求の範囲第4項記載の製造方
法。
(5) The manufacturing method according to claim 4, wherein the rare earth alloy is an alloy consisting of a rare earth metal and a transition metal.
JP61289516A 1986-12-04 1986-12-04 Method for manufacturing multi-component metal sintered body Expired - Lifetime JPH076010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289516A JPH076010B2 (en) 1986-12-04 1986-12-04 Method for manufacturing multi-component metal sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289516A JPH076010B2 (en) 1986-12-04 1986-12-04 Method for manufacturing multi-component metal sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6153585A Division JP2534028B2 (en) 1994-07-05 1994-07-05 Alloy crushing method

Publications (2)

Publication Number Publication Date
JPS63143228A true JPS63143228A (en) 1988-06-15
JPH076010B2 JPH076010B2 (en) 1995-01-25

Family

ID=17744274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289516A Expired - Lifetime JPH076010B2 (en) 1986-12-04 1986-12-04 Method for manufacturing multi-component metal sintered body

Country Status (1)

Country Link
JP (1) JPH076010B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118909A (en) * 1974-03-01 1975-09-18
JPS5687649A (en) * 1979-12-20 1981-07-16 Fujitsu Ltd Manufacture of sintered iorn-silicon alloy for soft magnetic material
JPS62274033A (en) * 1986-05-22 1987-11-28 Hitachi Metals Ltd Manufacture of rare earth-transition metal alloy target
JPS6365051A (en) * 1986-09-08 1988-03-23 Mazda Motor Corp Manufacture of ferrous sintered alloy member excellent in wear resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118909A (en) * 1974-03-01 1975-09-18
JPS5687649A (en) * 1979-12-20 1981-07-16 Fujitsu Ltd Manufacture of sintered iorn-silicon alloy for soft magnetic material
JPS62274033A (en) * 1986-05-22 1987-11-28 Hitachi Metals Ltd Manufacture of rare earth-transition metal alloy target
JPS6365051A (en) * 1986-09-08 1988-03-23 Mazda Motor Corp Manufacture of ferrous sintered alloy member excellent in wear resistance

Also Published As

Publication number Publication date
JPH076010B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US5330701A (en) Process for making finely divided intermetallic
US4824481A (en) Sputtering targets for magneto-optic films and a method for making
CN104911379A (en) High-performance metal-matrix composite preparation method
CN103045885A (en) Preparation method for high-density fine grain tungsten copper alloy
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
CN101549394B (en) Temperature control method
JP4730338B2 (en) COMPOSITE MATERIAL FOR INJECTION MOLDING COMPRISING CERAMIC DISPERSED MAGNESIUM COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD
JPS63143228A (en) Manufacture of multicomponent metallic sintered body
JP2534028B2 (en) Alloy crushing method
Yodoshi et al. Consolidation of [(Fe0. 5Co0. 5) 0.75 Si0. 05B0. 2] 96Nb4 metallic glassy powder by SPS method
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
US5193605A (en) Techniques for preparation of ingot metallurgical discontinuous composites
JPH0742530B2 (en) Manufacturing method of low oxygen alloy compact
JPH03501246A (en) A new method for producing ceramic bodies
JPH076009B2 (en) Method for manufacturing magnetic metal material for magneto-optical disk
JPH06200338A (en) Magnetic metal material for magneto-optical disk
JP2981541B2 (en) Method for producing iron-based alloy having layered structure
JPH0478713B2 (en)
JPS6350469A (en) Manufacture of alloy target for sputtering
JP3771127B2 (en) Atmospheric pressure combustion synthesis method of high density TiAl intermetallic compound
JPH04371536A (en) Production of tial intermetallic compound powder
JPS62214602A (en) Manufacture of green compact permanent magnet
JPS63143255A (en) Alloy target material
JPH0635637B2 (en) Diamond composite high speed tool steel sintered body and its manufacturing method
JPS6256543A (en) Manufacture of sintered compact of rare-earth alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term