JPH03193623A - Production of conjugated boride powder in as mo2feb2-base - Google Patents

Production of conjugated boride powder in as mo2feb2-base

Info

Publication number
JPH03193623A
JPH03193623A JP33258889A JP33258889A JPH03193623A JP H03193623 A JPH03193623 A JP H03193623A JP 33258889 A JP33258889 A JP 33258889A JP 33258889 A JP33258889 A JP 33258889A JP H03193623 A JPH03193623 A JP H03193623A
Authority
JP
Japan
Prior art keywords
weight
boride
powder
powders
mo2feb2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33258889A
Other languages
Japanese (ja)
Other versions
JPH06102539B2 (en
Inventor
Masao Komai
正雄 駒井
Kenichi Takagi
研一 高木
Tadao Watanabe
忠雄 渡辺
Yoshikazu Kondo
近藤 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP33258889A priority Critical patent/JPH06102539B2/en
Publication of JPH03193623A publication Critical patent/JPH03193623A/en
Publication of JPH06102539B2 publication Critical patent/JPH06102539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides

Abstract

PURPOSE:To improve heat resistance, high temp. strength, oxidation resistance and corrosion resistance of conjugated boride powder by producing Mo2FeB2 type conjugated boride by bringing the powders of Fe, Mo, B and C to a solid phase reaction, then cooling and pulverizing the obtd. boride. CONSTITUTION:Two or more kinds of powders selected from simple powders of Fe, Mo, and B, borides and alloy powders incorporating two or more elements among above-mentioned powders, Fe, Mo, and B simple powders containing C, borides and alloys thereof, and carbon powder are compounded by the compounding ratio of 7.2-8.8wt.% of B, 64-78wt.% of Mo, and the balance of Fe and inevitable impurities. Then the compounded material is mixed and pulverized into 0.1-50mum mean particle size, heated in a nonoxidative atmosphere at 0.5-100 deg.C/min heating rate to 750-1500 deg.C and thermally treated for one minute to 5 hours at this temp. to bring it to a reduction reaction by C and the solid phase reaction to produce Mo2FeB2-based conjugated boride. This boride is then cooled, pulverized and a Mo2FeB2-based conjugated boride powder that has 0.1-50mum mean particle size and contains >=90wt.% Mo2FeB2-based boride, 0.005-1wt.% residual C and 0.001-0.5wt.% residual O is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐熱性、高温強度、高硬度、耐酸化性、耐食
性に優れたM O2F e B 2型複硼化物、(M 
o + F e * Cr ) 3B 2型複硼化物、
および(Mo、Fe、Cr、X)3B2 (以下、Xは
Ti。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a M O2F e B type 2 complex boride, (M
o + Fe * Cr) 3B type 2 complex boride,
and (Mo, Fe, Cr, X)3B2 (hereinafter, X is Ti).

Zr、  Hf、  V、  Nb、  Ta、  W
、  Co、  Re。
Zr, Hf, V, Nb, Ta, W
, Co, Re.

Niからなるグループから選ばれた1種または2種以上
の元素を表わす)型複硼化物(以下、これら3種の複硼
化物を総称してMo2FeB2系複硼化物と呼ぶ)粉末
の製造方法に間する。
A method for producing a powder of complex boride (hereinafter, these three types of complex boride are collectively referred to as Mo2FeB2 complex boride) representing one or more elements selected from the group consisting of Ni. Pause.

[従来の技術] Mo2FeB2系複硼化物は、耐熱性、高温強度、高硬
度、耐酸化性、耐食性などの優れた特性を有し、Mo2
FeB2系複硼化物を利用したサーメットあるいはセラ
ミックスについては、例えば公表特公昭55−5006
21、特公昭60−57499に示される硬質焼結合金
がある。これらは、原料粉末としてフェロボロン粉末、
MoB粉末、Mo粉末、Fe粉末、Cr粉末、Ni粉末
などを使用し、これらを所定の重量比で混合した後、該
混合物を圧縮して成形体とし、液相の存在下で該成形体
を、MoaFeBt系複硼化物を形成する反応と緻密化
に十分な温度と時間焼結した後、冷却することにより製
造される、Mo2FeBt系複硼化物を硬質相とし、こ
れをCr、Niなどの合金元素を含む鉄基結合相で結合
した硼化物系サーメットである。これらの液相焼結を用
いる製造方法によると、緻密化したMo2FeBz系複
硼化物と鉄基結合相の複合体である、硼化物系サーメッ
トのブロック試料は得られるものの、M O2FeB2
系複硼化物の粉末を作成することはできない。また、M
o2FeB2系複硼化物粉末の工業的製造方法が確立さ
れていないために、これらの硼化物系サーメットの原料
粉末として、M O2FeB2系複硼化物の粉末がこれ
まで使用されることはなかった。
[Prior art] Mo2FeB2-based complex borides have excellent properties such as heat resistance, high temperature strength, high hardness, oxidation resistance, and corrosion resistance.
Regarding cermets or ceramics using FeB2 complex boride, for example, published in Japanese Patent Publication No. 55-5006
21, there is a hard sintered alloy shown in Japanese Patent Publication No. 60-57499. These are ferroboron powder as raw material powder,
MoB powder, Mo powder, Fe powder, Cr powder, Ni powder, etc. are used, and after mixing these at a predetermined weight ratio, the mixture is compressed to form a compact, and the compact is compressed in the presence of a liquid phase. , produced by sintering at a temperature and time sufficient for reaction and densification to form a MoaFeBt-based complex boride, and then cooling, the Mo2FeBt-based complex boride is made into a hard phase, and this is used as an alloy of Cr, Ni, etc. A boride-based cermet bonded with an iron-based bonding phase containing elements. According to these manufacturing methods using liquid phase sintering, a block sample of boride-based cermet, which is a composite of a densified Mo2FeBz-based complex boride and an iron-based bonding phase, can be obtained;
It is not possible to create powders of complex borides. Also, M
Since an industrial manufacturing method for O2FeB2-based complex boride powder has not been established, M02FeB2-based complex boride powder has never been used as a raw material powder for these boride-based cermets.

なお、他の硼化物系超硬質材料の中に、M O2FeB
z系複硼化物を原料粉末として用いているものがあり、
特開昭59−45971、特開昭60−103080、
特開昭60−103148、特開昭60−131867
が提案されている。これらはTiB2を硬質相とした硼
化物系超硬質材料であり、Mo2FeB2系複硼化物粉
末を添加することにより、種々の特性が大幅に向上する
ことが明らかになっている。しかし、原料粉末として用
いるMo2FeB2系複硼化物粉末の工業的製造方法が
いまだに確立されておらず、現状はM O2FeB2系
複硼化物組成に配合した混合粉末を、不活性雰囲気中で
MoあるいはW電極を用いたアーク溶製法により200
0℃以上の温度で溶解させ、得られた少量のMo2Fe
B2系複硼化物組成の融液を冷却してMo2FeB2系
複硼化物のブロック試料を作り、これをスタンプミルな
どを用いて機械的に粉砕篩別してMo2FeB2系複硼
化物粉末を得る方法がとられているが、−度に処理でき
る量が極めて少量であり、不純物の混入が多くかつ粉砕
に長時間を要している。
In addition, among other boride-based ultrahard materials, M O2FeB
There are products that use z-based complex boride as a raw material powder.
JP-A-59-45971, JP-A-60-103080,
JP-A-60-103148, JP-A-60-131867
is proposed. These are boride-based ultra-hard materials with TiB2 as a hard phase, and it has been revealed that various properties are significantly improved by adding Mo2FeB2-based complex boride powder. However, an industrial manufacturing method for Mo2FeB2-based complex boride powder used as a raw material powder has not yet been established, and at present, a mixed powder blended with an MO2FeB2-based complex boride composition is used for Mo or W electrodes in an inert atmosphere. 200% by arc melting method using
A small amount of Mo2Fe obtained by melting at a temperature of 0°C or higher
A method is used in which a block sample of Mo2FeB2-based complex boride is prepared by cooling a melt having a B2-based complex boride composition, and this is mechanically crushed and sieved using a stamp mill or the like to obtain a Mo2FeB2-based complex boride powder. However, the amount that can be processed at a time is extremely small, there are many impurities mixed in, and it takes a long time to grind.

[発明が解決しようとする課題] 耐熱性、高温強度、高硬度、耐酸化性、耐食性に優れた
Mo2FeB2系複硼化物が、例えば硼化物系サーメッ
トの原料粉末として広く使用されていないのは、推定2
000℃以上という高融点のMo2FeBz系複硼化物
粉末の、工業的製造方法がいまだに確立されていないこ
とが原因である。
[Problems to be Solved by the Invention] The reason why Mo2FeB2-based complex borides, which have excellent heat resistance, high-temperature strength, high hardness, oxidation resistance, and corrosion resistance, are not widely used as raw material powder for boride-based cermets, for example, is because Estimation 2
This is because an industrial manufacturing method for Mo2FeBz complex boride powder with a high melting point of 000° C. or higher has not yet been established.

例えば、Feを主体としたFeB、Fe2Bなどの鉄硼
化物は融点が低く、工業的にアトマイズ法などにより容
易に作ることができるが、Mo2FeB2系複硼化物の
融点は推定2000℃以上であり、高周波誘導加熱など
の方法によりM O2FeB2系複硼化物組成の融液を
得、これを水またはガスアトマイズ法により粉砕して粉
末とすることは、極めて困難といえる。というのは、一
般的には噴霧作業を円滑に行なわしめ、良好な微細粉末
を得るためには、融液温度はその融点より通常100〜
300℃高いことが好ましく、したがって、アトマイズ
法によりMo2FeB2系複硼化物粉末を得ようとする
と、2100〜2400℃という高温が必要となり、工
業的ではなく、事実Mo2FeB2系複硼化物粉末がア
トマイズ法により製造された例はない。
For example, iron borides such as FeB and Fe2B, which are mainly composed of Fe, have a low melting point and can be easily produced industrially by an atomization method, but the melting point of Mo2FeB2-based complex borides is estimated to be 2000°C or higher. It is extremely difficult to obtain a melt of a MO2FeB2 complex boride composition by a method such as high-frequency induction heating, and then pulverize it into powder by water or gas atomization. This is because, in general, in order to perform the spraying operation smoothly and obtain good fine powder, the temperature of the melt is usually 100 to 100° higher than its melting point.
It is preferable that the Mo2FeB2 complex boride powder is 300°C higher. Therefore, when trying to obtain Mo2FeB2 complex boride powder by the atomization method, a high temperature of 2100 to 2400°C is required, which is not industrially practical. No examples have been manufactured.

また、アーク溶製法によりMo2FeB2系複硼化物の
ブロック試料を作り、これをスタンプミルなどを用いて
機械的に粉砕篩別してMo2FeB2系複硼化物粉末を
得る方法では、−度に処理できる量が極めて少量であり
、不純物の混入カイ多く力)つ粉砕に長時間を要し、経
済性にも劣っている。
In addition, with the method of producing a Mo2FeB2 complex boride block sample using an arc melting method and mechanically crushing and sieving it using a stamp mill or the like to obtain Mo2FeB2 complex boride powder, the amount that can be processed at one time is extremely small. Since the amount is small, it takes a long time to grind due to the contamination of impurities, and it is also less economical.

本発明は、これらの課題を解決すべくなされたもので、
その目的は、推定2000℃以上と0う高融点のMo2
FeB2系複硼化物粉末をより低0処理温度で、しかも
大量に簡単な方法で、工業的、経済的に製造する方法を
提供することにある。
The present invention was made to solve these problems, and
The purpose is to use Mo2, which has a high melting point of over 2000℃.
The object of the present invention is to provide a method for industrially and economically producing FeB2-based complex boride powder at a lower processing temperature, in large quantities, and in a simple manner.

[課題を解決するための手段] 本発明は、M O2F e B 2型複硼化物の場合が
Fe、Mo、Bの単体粉末、前記元素のうち2種以上を
含む硼化物および合金粉末、およびCを含有する前記単
体、硼化物および合金粉末、およびC粉末の2種以上を
、Bが7.2〜8.8重量%、Moが64〜78重量%
、残部がFeおよび不可避的不純物よりなるように配合
し、 (Mo、Fe。
[Means for Solving the Problems] In the case of M O2F e B type 2 complex boride, the present invention includes simple powders of Fe, Mo, and B, boride and alloy powders containing two or more of the above elements, and Two or more of the above-mentioned simple substance containing C, boride and alloy powder, and C powder, B is 7.2 to 8.8% by weight and Mo is 64 to 78% by weight.
, the balance being Fe and unavoidable impurities, (Mo, Fe.

Cr)3B2型複硼化物の場合がFe、  Mo、  
B、Crの単体粉末、前記元素のうち2種以上を含む硼
化物および合金粉末、およびCを含有する前記単体、硼
化物および合金粉末、およびC粉末の2種以上を、Bが
7.2〜10.2重量%、Moが45.5〜78Mtl
k%、Crが0.1〜35重量%、残部がFeおよび不
可避的不純物よりなるように配合し、(Mo、F e、
Cr 、X)3B2型複硼化物の場合がFe、Mo、B
、Cr、Ti、Zr。
In the case of Cr)3B2 type complex boride, Fe, Mo,
B is 7.2. ~10.2% by weight, Mo 45.5~78Mtl
k%, Cr is 0.1 to 35% by weight, and the balance is Fe and unavoidable impurities (Mo, Fe,
Cr, X) In the case of 3B2 type complex boride, Fe, Mo, B
, Cr, Ti, Zr.

Hf、 V、 Nb、 Ta、 W、 Co、 Re、
 Niの単体粉末、前記元素のうち2種以上を含む硼化
物および合金粉末、およびCを含有する前記単体、硼化
物および合金粉末、およびC粉末の2種以上を、Bが7
.2〜10.2i量%、Moが45.5〜78重量%、
Crが0.1〜35重量%、かつTi、jr、  Hf
、  V、  Nb、  Ta、  W、  Co+R
e、Niからなるグループから選ばれた1種またはそれ
以上の元素の合計が0.1〜20重量%、残部がFeお
よび不可避的不純物よりなるように配合し、平均粒径0
.1〜60μmの範囲に粉砕混合後、非酸化性雰囲気中
で昇温速度1〜bb 持時間1分〜5時間で熱処理し、Cによる還元反応を行
わせるとともに固相反応によりMo2FeB2系複硼化
物を形成させた後、冷却および粉砕を行うことにより、
推定2000℃以上という高融点のMo2FeB2系複
硼化物を全体の90重量%以上含み、残留C量が0.0
05〜1重量%、残留O量が0.0,01〜1重量%で
あり、かつ平均粒径が0.1〜5071mである粉末を
、1500℃以下の低い処理温度で、大量に、工業的、
経済的に製造することが可能である。
Hf, V, Nb, Ta, W, Co, Re,
Ni elemental powder, boride and alloy powder containing two or more of the above elements, and two or more of the elemental element, boride and alloy powder containing C, and C powder, when B is 7
.. 2 to 10.2i amount%, Mo 45.5 to 78% by weight,
Cr: 0.1 to 35% by weight, and Ti, jr, Hf
, V, Nb, Ta, W, Co+R
The total content of one or more elements selected from the group consisting of e, Ni is 0.1 to 20% by weight, and the balance is Fe and unavoidable impurities, and the average particle size is 0.
.. After pulverization and mixing to a size in the range of 1 to 60 μm, heat treatment is performed in a non-oxidizing atmosphere at a heating rate of 1 to bb for a duration of 1 minute to 5 hours to perform a reduction reaction with C and solid-phase reaction to form Mo2FeB2 complex boride. After forming, by cooling and crushing,
Contains at least 90% by weight of Mo2FeB2 complex boride with a high melting point estimated at 2000°C or higher, and has a residual C content of 0.0
Powder having a residual O content of 0.05 to 1% by weight, a residual O content of 0.0.01 to 1% by weight, and an average particle size of 0.1 to 5071 m is industrially processed in large quantities at a low processing temperature of 1500°C or less. Target,
It is possible to manufacture economically.

なお、Mo2FeB2はM o 2B−a F e +
+b B 2±。
In addition, Mo2FeB2 is M o 2B-a Fe +
+b B 2±.

(a、b、cは定数)で表わされる、組成範囲に幅を持
つ非化学量論化合物であるとされている。よって、本特
許でいうMo2FeB2型am化物とは、化学量論組成
のMo2FeB2複硼化物のみならず、非化学量論組成
のM O2±、F e+よりB2±。複硼化物を含める
。また、CrやXなる元素をM O2F eB2複硼化
物中に置換固溶した場合、結晶構造に影響をおよぼし、
CrやXなる元素を置換固溶する量に対応して格子定数
に変化が生じる。ここではMo2FeB2複硼化物中に
CrやXなる元素を置換固溶した、化学量論および非化
学量論組成の複硼化物を(Mo、Fe、Cr)3B2お
よび(Mo 、F e 、Cr 、X) 3B2型複硼
化物と呼ぶ。
(where a, b, and c are constants), it is said to be a non-stoichiometric compound with a wide composition range. Therefore, the Mo2FeB2 type amide referred to in this patent refers not only to Mo2FeB2 complex boride having a stoichiometric composition, but also to B2± from M O2± and Fe+ having a non-stoichiometric composition. Contains complex borides. In addition, when elements such as Cr and X are substituted and dissolved in M O2F eB2 complex boride, the crystal structure is affected
The lattice constant changes depending on the amount of the elements Cr and X substituted into solid solution. Here, complex borides with stoichiometric and non-stoichiometric compositions in which elements such as Cr and X) It is called 3B2 type complex boride.

[作用コ Mo2FeB2系複硼化物粉末は、原料粉末を所定組成
に配合する工程、配合した粉末を混合粉砕する工程、混
合粉砕した粉末を非酸化性雰囲気中において所定の温度
と時間で液相を生成させないで固相状態のままで熱処理
する工程、熱処理した粉末を冷却後必要によっては粉砕
する工程により製造される。以下に各工程の製造条件の
限定理由について述べる。
[Operations] Mo2FeB2-based complex boride powder is produced by blending raw material powder into a predetermined composition, mixing and pulverizing the blended powder, and converting the mixed and pulverized powder into a liquid phase at a predetermined temperature and time in a non-oxidizing atmosphere. It is produced by a step of heat-treating the powder while it is in a solid state without forming it, and a step of cooling the heat-treated powder and then pulverizing it if necessary. The reasons for limiting the manufacturing conditions for each process will be described below.

Mo2FeB2系複硼化物粉末の製造に使用される原料
粉は、M 02 F e B 2型複硼化物の場合がF
e、Mo、Bの単体粉末、前記元素のうち2種以上を含
む硼化物および合金粉末、およびCを含有する前記単体
、硼化物および合金粉末、およびC粉末であり、 (M
o 、F e 、Cr ) 3B2型複硼化物の場合が
F e、M o、Bs  Crの単体粉末、前記元素の
うち2種以上を含む硼化物および合金粉末、およびCを
含有する前記単体、硼化物および合金粉末、およびC粉
末であり、(Mo、Fe。
The raw material powder used in the production of Mo2FeB2 complex boride powder is M 02 F e B 2 type complex boride powder.
elemental powders of e, Mo, and B, boride and alloy powders containing two or more of the above elements, and elemental, boride and alloy powders containing C, and C powder, (M
o, Fe, Cr) In the case of 3B2 type complex boride, Fe, Mo, Bs Cr simple powder, boride and alloy powder containing two or more of the above elements, and the simple substance containing C, boride and alloy powders, and C powders (Mo, Fe.

CrIX)3B2型複硼化物の場合がp’e、Mo。In the case of CrIX) 3B2 type complex boride, p'e and Mo.

B、  Cr、  Ti、  Zr+  Hf、  V
、  Nb、  Ta。
B, Cr, Ti, Zr+ Hf, V
, Nb, Ta.

W、Co、Re、Niの単体粉末、前記元素のうち2種
以上を含む硼化物および合金粉末、およびCを含有する
前記単体、硼化物および合金粉末、およびC粉末である
。これらの2種以上の粉末を所定の割合に混合し、熱処
理中の反応により、原料粉末中に存在しないMo2Fe
B2系複硼化物を固相反応により形成する。この熱処理
中の反応として液相反応でなく固相反応を用いることに
より、反応生成したMo2FeB2系複硼化物粉末の粒
成長を抑制し、細かい粉末を製造することが可能となる
These are elemental powders of W, Co, Re, and Ni, boride and alloy powders containing two or more of the above elements, and elemental, boride and alloy powders containing C, and C powder. These two or more types of powder are mixed in a predetermined ratio, and through the reaction during heat treatment, Mo2Fe that does not exist in the raw material powder is removed.
A B2-based complex boride is formed by solid phase reaction. By using a solid phase reaction instead of a liquid phase reaction as the reaction during this heat treatment, grain growth of the Mo2FeB2 complex boride powder produced by the reaction can be suppressed and fine powder can be produced.

M o 2F e B g系am化物粉末中に含まれる
、M O2F e B 2型複硼化物、(Mo +F 
e 、Cr) 3B2型複硼化物および(Mo 、F 
e 、Cr 、X) 3B2型複硼化物の含有量を90
重量%以上に限定したのは、本発明により製造された複
硼化物粉末を、耐摩耗性、耐熱性、高温強度、高硬度、
耐酸化性、耐食性などが要求される部品の素材、M02
FeB2系複硼化物を利用したサーメットあるいはセラ
ミックス等の原料粉末、あるいは溶射用粉末等に混合し
て用いる場合、Mo2FeB2系複硼化物粉末の純度は
できるだけ高いことが望ましいが、最低限90重量%以
上の純度があれば、M O2FeB2系複硼化物粉末を
利用した材料に要求される特性を満足するためである。
M O2F e B 2-type complex boride, (Mo + F
e, Cr) 3B2 type complex boride and (Mo, F
e, Cr, X) 3B2 type complex boride content to 90
The reason why the compound boride powder produced according to the present invention is limited to more than % by weight is that it has excellent wear resistance, heat resistance, high temperature strength, high hardness,
M02, material for parts that require oxidation resistance, corrosion resistance, etc.
When mixed with raw material powder for cermets or ceramics using FeB2-based complex boride, or powder for thermal spraying, etc., it is desirable that the purity of the Mo2FeB2-based complex boride powder is as high as possible, but at least 90% by weight or more. This is because the purity required for a material using MO2FeB2 complex boride powder is satisfied.

よって・M O2FeB2系複硼化物粉末中に含まれる
、Mo2FeB2型複硼化物、(M o + F e 
t Cr ) 3 B 2型複硼化物および(No、F
e、CrIX)3B2型複硼化物の含有量は90重量%
以上、好ましくは95重量%以上とする。
Therefore, the Mo2FeB2 complex boride contained in the M O2FeB2 complex boride powder, (M o + Fe
t Cr ) 3 B type 2 complex boride and (No, F
e, CrIX) 3B2 type complex boride content is 90% by weight
The content is preferably 95% by weight or more.

次に配合組成(重量%)の限定理由について述べる。Next, the reasons for limiting the blending composition (wt%) will be described.

化学量論組成のMo2FeB2を形成するためには、B
含有量は8.0重量%、Mo含有量は71重量%、Fe
含有量は21重量%必要である。ゆえに、B含有量が7
.2重量%未満、Mo含有量が644重量%未満残部が
Feおよび不可避的不純物からなる組成の場合には、B
およびMoが不足するために粉末中に占めるMo2Fe
B2型複硼化物の割合が90重量%をきり、残部がFe
および不可避的不純物からなる粉末ができる。一方、B
含有量が8.8重量%をこえ、Mo含有量が78重量%
をこえ、残部がFeおよび不可避的不純物からなる組成
の場合には、Feが不足するため、粉末中に占めるMo
2FeB2型複硼化物の割合が90重量%をきり、残部
がB−、Moおよび不可避的不純物からなる粉末ができ
る。よって、Bが7.2〜8.8重量%、Moが64〜
78重量%、残部がFeおよび不可避的不純物よりなる
ように配合することにより、Mo2FeB、+型複硼化
物を90重量%以上含む粉末を製造することができる。
In order to form Mo2FeB2 with stoichiometric composition, B
Content is 8.0% by weight, Mo content is 71% by weight, Fe
The content is required to be 21% by weight. Therefore, the B content is 7
.. In the case of a composition in which the Mo content is less than 2% by weight and the remainder is Fe and unavoidable impurities, the Mo content is less than 644% by weight.
and Mo2Fe, which occupies the powder due to lack of Mo.
The proportion of B2 type complex boride is less than 90% by weight, and the balance is Fe.
and unavoidable impurities. On the other hand, B
The content exceeds 8.8% by weight, and the Mo content is 78% by weight.
In the case of a composition in which the remainder consists of Fe and unavoidable impurities, the amount of Mo in the powder decreases due to the lack of Fe.
A powder is produced in which the proportion of 2FeB2-type complex boride is less than 90% by weight, with the remainder consisting of B-, Mo, and inevitable impurities. Therefore, B is 7.2 to 8.8% by weight and Mo is 64 to 8.8% by weight.
By blending 78% by weight, the balance being Fe and unavoidable impurities, it is possible to produce a powder containing 90% by weight or more of Mo2FeB, a + type complex boride.

好ましくは、BおよびMoの含有量を各々7.6〜8.
4重量%、66.5〜75.5重量%とすることにより
、Mo2FeB2型複硼化物を95重量%以上含む純度
の良い粉末を製造することができる。
Preferably, the contents of B and Mo are each 7.6 to 8.
By setting the content to 4% by weight and 66.5 to 75.5% by weight, it is possible to produce powder with good purity containing 95% by weight or more of Mo2FeB2 type complex boride.

(Mo、Fe、Cr)3B2型複硼化物は、M O2F
eB2にCrを置換固溶させるとにより、さらに耐食性
を向上せしめた硼化物である。C、r添加量が0.1重
量%未満では耐食性の向上が認められず、35重量%を
越えて添加しても添加量はどの耐食性の向上が認められ
ないばかりでなく、(Mo 、F e +Cr ) 3
B2型複硼化物の形成が困難になる。よって、 (Mo
 、F e 、Cr ) 3B2型複硼化物粉末中にC
rを含有する場合の含有量は、0.1〜35重量%とす
る。
(Mo, Fe, Cr)3B2 type complex boride is M O2F
This is a boride whose corrosion resistance is further improved by substituting Cr into eB2 as a solid solution. If the amount of C and r added is less than 0.1% by weight, no improvement in corrosion resistance is observed, and even if the amount added exceeds 35% by weight, no improvement in corrosion resistance is observed. e+Cr) 3
Formation of B2 type complex boride becomes difficult. Therefore, (Mo
, Fe, Cr) 3B2 type complex boride powder contains C
When containing r, the content is 0.1 to 35% by weight.

Cr含有量が最低の0.1重量%の場合、原料粉末の配
合組成におけるBおよびMo含有量が、Crを含まない
Mo2FeB2複硼化物粉末の場合と同じ、各々7.2
〜8.8重量%、64〜78重量%であれば、 (Mo
 、F e 、Cr ) 3B2型複硼化物を90重量
%以上含む粉末を製造することができる。
When the Cr content is the lowest 0.1% by weight, the B and Mo contents in the blended composition of the raw material powder are each 7.2%, the same as in the case of Mo2FeB2 complex boride powder that does not contain Cr.
~8.8% by weight, 64-78% by weight, (Mo
, Fe, Cr) A powder containing 90% by weight or more of 3B2 type complex boride can be produced.

添加されたCrはMo2FeB2型複硼化物中のMoお
よびFeと置換固溶するが、種々実験した結果、その置
換の仕方は、式(M O2−YIF e I−YICr
2v) B2  (0<Y< 1 )に従うと推察され
る。
The added Cr forms a solid solution by substitution with Mo and Fe in the Mo2FeB2 type complex boride, but as a result of various experiments, the method of substitution is determined by the formula (MO2-YIF e I-YICr
2v) It is inferred that B2 (0<Y<1) is followed.

この式に従うと、Crを35重量%置換固溶した(Mo
 、F e 、Cr ) 3B2型複硼化物を100重
量%含んだ粉末中の各合金元素の含有量は、Bが9.3
重量%、Moが50重量%、Crが35重量%となる。
According to this formula, 35% by weight of Cr was substituted as a solid solution (Mo
, Fe, Cr) The content of each alloying element in the powder containing 100% by weight of 3B2 type complex boride is as follows: B is 9.3%;
% by weight, Mo is 50% by weight, and Cr is 35% by weight.

したがって、Cr含有量が最高の35重回%の場合、B
含有量が8.4重量%未満、Mo含有量が45.5重量
%未満、残部がFeおよび不可避的不純物からなる組成
の場合には、BおよびMoが不足するために、粉末中に
占める(Mo 、F e +Cr ) 3B2型複硼化
物の割合が90重量%をきる粉末ができる。一方、B含
有量が10.2重量%をこえ、Mo含有量が54.5重
量%をこえ、残部がFeおよび不可避的不純物からなる
組成の場合には、FeおよびCrが不足するために、粉
末中に占める(Mo 、F e 、Cr ) 3B2型
複距化物の割合が90重回%をきる粉末ができる。ゆえ
に、Cr含有量が最高の35重量%の場合、原料粉末の
配合組成におけるBおよびMo含有量は、各々8.4〜
10.2重量%、45.5〜54.5重量%であれば、
(Mo、Fe、Cr) 3B2型複硼化物を90重量%
以上含む粉末を製造することができる。
Therefore, when the Cr content is the highest, 35%, B
In the case of a composition in which the content is less than 8.4% by weight, the Mo content is less than 45.5% by weight, and the balance is Fe and unavoidable impurities, B and Mo are insufficient, and the ( A powder containing less than 90% by weight of 3B2 type complex boride (Mo , Fe +Cr ) is produced. On the other hand, in the case of a composition in which the B content exceeds 10.2% by weight, the Mo content exceeds 54.5% by weight, and the balance consists of Fe and unavoidable impurities, Fe and Cr are insufficient. A powder is produced in which the proportion of (Mo 2 , Fe , Cr ) 3B2-type complex complexes in the powder is less than 90%. Therefore, when the Cr content is the highest, 35% by weight, the B and Mo contents in the blended composition of the raw material powder are each 8.4 to 8.4%.
If it is 10.2% by weight, 45.5 to 54.5% by weight,
(Mo, Fe, Cr) 90% by weight of 3B2 type complex boride
Powder containing the above can be manufactured.

したがって、Bが7.2〜10.2重量%、M。Therefore, B is 7.2 to 10.2% by weight, M.

が45.5〜78重量%、Crが0.1〜35重量%、
残部がFeおよび不可避的不純物よりなるように配合す
ることにより、(Mo +F e 、Cr) 3B2型
複硼化物を90重量%以上含む粉末を製造することがで
きる。好ましくは、Bが7.6〜9.8重量%、Moが
47.5〜76M量%、Crが1〜30重量%、残部が
Feおよび不可避的不純物よりなるように配合すること
により、 (M。
is 45.5 to 78% by weight, Cr is 0.1 to 35% by weight,
By blending so that the balance consists of Fe and unavoidable impurities, it is possible to produce a powder containing 90% by weight or more of (Mo + Fe, Cr) 3B2 type complex boride. Preferably, by blending so that B is 7.6 to 9.8% by weight, Mo is 47.5 to 76% by weight, Cr is 1 to 30% by weight, and the balance is Fe and unavoidable impurities, ( M.

、Fe、Cr)3B2型複硼化物を95重量%以上含む
純度の良い粉末を製造することができる。
, Fe, Cr) 3B2 type complex boride in an amount of 95% by weight or more, it is possible to produce a powder with good purity.

(Mo、Fe、Cr、X)3B2型複硼化物を含む粉末
は、該粉末をサーメットあるいはセラミックス等の原料
粉末として使用した場合、Ti、Zr。
(Mo, Fe, Cr,

Hf、 V、 Nb、 Ta、 W、 Co、 Re、
 Ni等の元素を含むことにより、サーメットあるいは
セラミックスの硬度上昇をもたらすばかりでなく、結晶
粒の粗大化を抑制することが可能となる。これらの元素
は(Mo、F e、Cr)3B2硼化物中に固溶し、少
量の添加で効果を示すが、0.1重量%未満では効果が
表われない。一方、20重量%を越えて添加しても添加
量はどの特性の向上は認められないだけでなく、全般に
これらの元素は高価であるため、コストの上昇を招く。
Hf, V, Nb, Ta, W, Co, Re,
Including elements such as Ni not only increases the hardness of the cermet or ceramic, but also makes it possible to suppress coarsening of crystal grains. These elements are dissolved in solid solution in (Mo, Fe, Cr)3B2 boride, and exhibit an effect when added in small amounts, but no effect appears when added in amounts less than 0.1% by weight. On the other hand, even when added in an amount exceeding 20% by weight, not only is no improvement in any of the properties observed, but these elements are generally expensive, leading to an increase in cost.

これらの元素は各々単独で添加できるだけでなく、2種
以上の元素の複合添加をすることも可能である。よって
、Bが7.2〜10.2重量%、Moが45.5〜78
重量%、Crが0.1〜35重量%、残部がFeおよび
不可避的不純物よりなる(Mo9Fe、Cr)3B2型
複硼化物にXなる元素を固溶した(Mo、Fe、Cr、
X)3B2型複硼化物中のXなる元素の添加量は、Ti
、  Zr、  Hf、  V。
These elements can not only be added individually, but also two or more elements can be added in combination. Therefore, B is 7.2 to 10.2% by weight, Mo is 45.5 to 78% by weight.
The element X was solid-dissolved in a 3B2 type complex boride (Mo9Fe, Cr) consisting of 0.1 to 35 wt% Cr and the balance Fe and unavoidable impurities (Mo, Fe, Cr,
X) The amount of element X added in the 3B2 type complex boride is Ti
, Zr, Hf, V.

Nb、Ta、W、Co、Re、Niからなるグループか
ら選ばれた1種またはそれ以上の元素の合計が0.1〜
20重量%とし、 (Mo、Fe、Cr。
The total of one or more elements selected from the group consisting of Nb, Ta, W, Co, Re, and Ni is 0.1 to
20% by weight, (Mo, Fe, Cr.

X)3B2型複硼化物を90重量%以上含む粉末を製造
する。好ましくは、Bが7.6〜9.8重量%、Moが
47.5〜76重量%、Crが1〜30重量%、Ti、
  Zr2.Hf、  V、  Nb、  Ta、  
W。
X) Produce a powder containing 90% by weight or more of 3B2 type complex boride. Preferably, B is 7.6 to 9.8% by weight, Mo is 47.5 to 76% by weight, Cr is 1 to 30% by weight, Ti,
Zr2. Hf, V, Nb, Ta,
W.

Co、Re、Niからなるグループから選ばれた1種ま
たはそれ以上の元素の合計で0.2〜15重量%、残部
がFeおよび不可避的不純物よりなるように配合するこ
とにより、 (Mo、Fe、Cr、X)3B2型複硼化
物を95重量%以上含む純度の良い粉末を製造すること
ができる。
(Mo, Fe , Cr,

Mo2FeBz系硬質合金粉系中質含まれるその他の元
素のうち、CおよびOは特性への影響が大きい。なぜな
らば、粉砕混合した熱処理前の粉末は少なからず酸化し
ており、粉末表面の酸化皮膜はM O2F e B 2
系複硼化物を形成する固相反応を阻害するため、熱処理
時の固相反応を十分に行わせるために、該複硼化物形成
反応に先立ち、粉末表面の酸素をCによるブードワ反応
(C+1/202→C○)により除去しておくことが好
ましい。
Among the other elements contained in the Mo2FeBz-based hard alloy powder system, C and O have a large influence on the properties. This is because the pulverized and mixed powder before heat treatment is quite oxidized, and the oxide film on the powder surface is M O2F e B2.
In order to inhibit the solid phase reaction that forms complex borides, and to ensure that the solid phase reaction occurs sufficiently during heat treatment, oxygen on the powder surface is removed by a Boudoir reaction (C+1/ 202→C○) is preferable.

ただし、添加したCが1tJ1%をこえてM O2Fe
Bz系複硼化物粉末中に残留すると炭化物が多く認めら
れるようになり、特性への悪影響が大きくなるので、残
留Cff1が0.005〜1重量%とする。好ましくは
、0.005〜1重量%とする。0は1重量%をこえて
残留すると酸化物が多く認められるようになり、特性へ
の悪影響が大きくなるので、残留0量が0.001〜1
重量%とする。好ましくは、0.001〜0.3重量%
とする。
However, if the added C exceeds 1tJ1%, M O2Fe
If Cff1 remains in the Bz-based complex boride powder, a large amount of carbides will be observed, and the adverse effect on the properties will be significant, so the residual Cff1 is set to 0.005 to 1% by weight. Preferably, it is 0.005 to 1% by weight. If more than 1% by weight of 0 remains, a large amount of oxides will be observed, and the adverse effect on the properties will be greater.
Weight%. Preferably 0.001 to 0.3% by weight
shall be.

MozFeBz系硬質合金粉末中に含まれる不可避的不
純物元素の主なものは、Si、  AI、  Mn。
The main unavoidable impurity elements contained in the MozFeBz-based hard alloy powder are Si, AI, and Mn.

Mg、  P、  S、  Nであり、これらの不純物
元素の含有量は極力少ないにこしたことはないが、これ
ら不純物元素の合計が2重量%以下であれば、該粉末を
サーメットあるいはセラミックス等の原料粉末として使
用した場合の特性への影響は比較的少ない。よって、こ
れらの不純物元素の含有量は2重量%以下、好ましくは
1重量%以下とする。
Mg, P, S, and N, and the content of these impurity elements is to be kept as low as possible, but if the total of these impurity elements is 2% by weight or less, the powder is treated with cermet or ceramics, etc. When used as a raw material powder, the effect on properties is relatively small. Therefore, the content of these impurity elements is 2% by weight or less, preferably 1% by weight or less.

Mo2FeB2系複硼化物粉末は、原料粉末を所定組成
に配合後、平均粒径0.1〜50μmの範囲に粉砕混合
される。この粉砕混合する方法には種々色々なものがあ
るが、乾式あるいは有機溶媒を用いた湿式中において、
ボールミル法、ロッドミル法、アトライター法、スタン
プミル法、カッタミル法、エラデイミル法およびマイク
ロティザ法等を用いて、機械的合金法あるいは機械的粉
砕混合法により、粉砕混合後、乾燥、整粒を行い、平均
粒径0.1〜50μmの範囲に調整しておくと、Mo2
FeB2系複硼化物を形成させる熱処理時に反応が速や
かに行われ、Mo2FeB2系複硼化物が短時間で形成
されるので好ましい。なお、平均粒径0.1μm未溝に
細かく粉砕しても、Mo2FeB2系複硼化物形成反応
が著しく速くなるという効果が認められないばかりでな
く、細かく粉砕するのに多くの時間とエネルギーを費や
すことになる。また、粉砕混合した粉末中に501Lm
を越える粗い粉末が残ると、Mo2FeB2系複硼化物
を形成する固相反応が行われずに未反応物が残る。した
がフて、粉砕混合後の平均粒径は0.1〜50μm、好
ましくは0.1〜25μmとする。
The Mo2FeB2-based complex boride powder is prepared by blending raw material powders into a predetermined composition and then pulverizing and mixing the powder to have an average particle size in the range of 0.1 to 50 μm. There are various methods of pulverizing and mixing, but in a dry method or in a wet method using an organic solvent,
After pulverization and mixing, drying and granulation are carried out using the ball mill method, rod mill method, attritor method, stamp mill method, cutter mill method, eraday mill method, microteaser method, etc., by mechanical alloying method or mechanical pulverization mixing method. If the average particle size is adjusted to a range of 0.1 to 50 μm, Mo2
This is preferable because the reaction occurs quickly during the heat treatment to form the FeB2-based complex boride, and the Mo2FeB2-based complex boride is formed in a short time. In addition, even if finely pulverized into non-grooved particles with an average particle size of 0.1 μm, not only is the effect of significantly speeding up the Mo2FeB2 complex boride formation reaction not only, but also a lot of time and energy is spent to finely pulverize. It turns out. In addition, 501Lm was added to the pulverized and mixed powder.
If coarse powder exceeding 10% remains, the solid phase reaction to form the Mo2FeB2 complex boride will not take place and unreacted materials will remain. Therefore, the average particle size after pulverization and mixing is 0.1 to 50 μm, preferably 0.1 to 25 μm.

粉砕混合後の粉末は、アルミナ磁性器、あるいはBNを
塗布したグラファイトケース等の中に粉末状態のまま入
れ、該粉末を非酸化性雰囲気の真空、H2ガス、Arガ
ス、HeガスまたはN2ガス中で、昇温速度1〜100
℃/分、750〜1500℃の加熱温度で保持時間1分
〜5時間熱処理し、Cによる還元反応を行わせるととも
に固相反応によりMo2FeB2系複硼化物を形成させ
る。
The powder after pulverization and mixing is placed in an alumina magnetic container or a graphite case coated with BN as a powder, and the powder is placed in a non-oxidizing atmosphere of vacuum, H2 gas, Ar gas, He gas, or N2 gas. So, the heating rate is 1 to 100
C./min at a heating temperature of 750 to 1500.degree. C. for a holding time of 1 minute to 5 hours to carry out a reduction reaction with C and form a Mo2FeB2 complex boride by solid phase reaction.

その後、冷却および必要に応じて粉砕を行うことにより
、平均粒径が0.1〜50μmのM 02FeB2系複
硼化物粉末が製造される。
Thereafter, M02FeB2-based complex boride powder having an average particle size of 0.1 to 50 μm is produced by cooling and optionally pulverizing.

熱処理条件のうち、昇温速度、加熱温度、保持時間の間
には関係があり、昇温速度を遅くすると加熱温度での保
持時間を短くしても同相反応によりMo2FeB2系複
硼化物を形成させることが可能である。逆に、昇温速度
を速くすると加熱温度での保持時間を長くする必要があ
る。また、加熱温度を高くすると保持時間を短くず−る
ことか可能であり、加熱温度を低くすると保持時間を長
くする必要がある。
Among the heat treatment conditions, there is a relationship between the heating rate, heating temperature, and holding time; if the heating rate is slowed, Mo2FeB2 complex boride is formed by an in-phase reaction even if the holding time at the heating temperature is shortened. Is possible. Conversely, if the heating rate is increased, it is necessary to increase the holding time at the heating temperature. Furthermore, it is possible to shorten the holding time by increasing the heating temperature, and it is necessary to lengthen the holding time by decreasing the heating temperature.

昇温速度は1℃/分より遅いと所定の加熱温度に到達す
るまでに長時間を要し、熱処理に時間がかかり過ぎる。
If the heating rate is slower than 1° C./min, it will take a long time to reach the predetermined heating temperature, and the heat treatment will take too much time.

また、100℃/分より速ずぎると熱処理炉の温度コン
トロールができない。
Moreover, if the speed is too high than 100° C./min, the temperature of the heat treatment furnace cannot be controlled.

したがって、昇温速度は1〜100℃/分、好ましくは
1〜b 750℃未満だと、Mo2FeB2型複硼化物が固相反
応により形成しない。一方、1500℃を越えると、M
o2FeB2系複硼化物は十分に形成するものの、液相
を生じるために粉末状態のままでMo2FeB2系複硼
化物が得られなくなる。また、必要以上に加熱に要する
エネルギーを消費するためにコストが高くなる。したが
って、加熱温度は750〜1500℃、好ましくは90
0〜1350℃とする。保持時間は1分より短いと分に
終了しない。また、5時間をこえて長くしても、Mo2
FeB2系複硼化物を形成する固相反応は十分に終了し
ており、時間を長くしたほどの効果が認められない。し
たがって、保持時間は1分〜5時間、好ましくは5分〜
3時間とする。
Therefore, the heating rate is 1 to 100° C./min, preferably 1 to b. If it is less than 750° C., Mo2FeB2 type complex boride will not be formed by solid phase reaction. On the other hand, when the temperature exceeds 1500℃, M
Although the o2FeB2-based complex boride is sufficiently formed, it remains in a powder state due to the formation of a liquid phase, making it impossible to obtain the Mo2FeB2-based complex boride. Moreover, the cost increases because energy required for heating is consumed more than necessary. Therefore, the heating temperature is 750-1500°C, preferably 90°C.
The temperature shall be 0 to 1350°C. If the holding time is shorter than 1 minute, it will not end in 1 minute. In addition, even if the length of time exceeds 5 hours, the Mo2
The solid-phase reaction to form the FeB2-based complex boride was sufficiently completed, and no effect was observed as the time was increased. Therefore, the holding time is from 1 minute to 5 hours, preferably from 5 minutes to
It will be 3 hours.

なお、熱処理中にはMo2FeB2系複硼化物形成反応
とともに、該複硼化物を形成する固相反応を十分に行わ
せるために、粉砕混合した熱処理前の粉末表面の酸化皮
膜をCによるブードワ反応(C+ 1 / 202→C
O>により十分に還元除去することが好ましい。したが
って、熱処理中の雰囲気としては非酸化性雰囲気である
、真空、N2ガス、Arガス、HeガスまたはN2ガス
のうち、還元性が強い雰囲気の真空およびN2ガス中が
より好ましい。
During the heat treatment, in order to sufficiently carry out the Mo2FeB2-based complex boride formation reaction and the solid phase reaction that forms the complex boride, the oxide film on the surface of the pulverized and mixed powder before heat treatment was subjected to a Boudoir reaction (C). C+ 1/202→C
It is preferable to sufficiently reduce and remove with O>. Therefore, the atmosphere during the heat treatment is preferably a non-oxidizing atmosphere such as vacuum, N2 gas, Ar gas, He gas, or N2 gas, which is a highly reducing atmosphere such as vacuum or N2 gas.

熱処理後冷却することにより、Mo2FeB2系複硼化
物粉末が得られるが、液相を生成させずに固相状態のま
ま適正な条件で熱処理を行えば、粉砕混合した0、1〜
50μmの原料粉末の大きさのままで粒成長することな
く、0.1〜50μmのMo2FeB2系複硼化物粉末
が得られる。なお、このMo2FeB2系複硼化物粉末
中に残存するC量は0.005〜1重量%、O量は0.
001〜1重量%であるが、熱処理前の原料粉末の酸化
が進んでおり、酸素含有量が多い場合には、(C+1/
202→Co)で表わされるブードワ反応に従い、酸化
皮膜を還元するのに十分なCを添加し、前記残留Cおよ
びO量に調整される。この添加するC量が多い場合には
、原料粉末同士が接触しているネック部分におけるCが
介在した液相の生成によるものと考えられる、ネック部
の接触合体が起こり、50μmを越える大きさのスケル
トン(本来は骸骨、骨格の意味であり、粉末粒子が接触
点同士で結合し、十分に隙間を持った状態で集、合した
ポーラスな粉末の集合体)を形成することがあるが、軽
い粉砕で、容易に0.1〜50μmの大きさにすること
が可能である。
Mo2FeB2-based complex boride powder can be obtained by cooling after heat treatment, but if heat treatment is performed under appropriate conditions in the solid phase without forming a liquid phase, the pulverized and mixed 0,1-
Mo2FeB2-based complex boride powder with a size of 0.1 to 50 μm can be obtained without grain growth while keeping the size of the raw material powder of 50 μm. The amount of C remaining in this Mo2FeB2 complex boride powder is 0.005 to 1% by weight, and the amount of O is 0.005 to 1% by weight.
001 to 1% by weight, but if the raw material powder before heat treatment is oxidized and the oxygen content is high, (C+1/
According to the Boudoir reaction represented by 202→Co), enough C is added to reduce the oxide film, and the amount of residual C and O is adjusted to the above amount. When the amount of added C is large, contact coalescence of the neck portions occurs, which is thought to be due to the formation of a liquid phase containing C at the neck portions where the raw material powders are in contact with each other, resulting in the formation of particles larger than 50 μm. Skeletons (originally meaning skeleton or skeleton; powder particles are bonded at contact points and aggregated together with sufficient gaps to form porous powder aggregates) may form, but they are light By pulverization, it can be easily made into a size of 0.1 to 50 μm.

平均粒径が0 、1〜50 μmのMo2FeB2系複
硼化物粉末は、平均粒径が0.1μm未満だと取り扱い
が容易でないばかりでなく、粉砕に多くの時間とエネル
ギーを消費するためにコストが高くなる。また、50μ
m以上の粗い粉末だと、サーメットあるいはセラミック
ス等の原料粉末として用いる場合に、さらに細かく粉砕
する必要を生じることが多く、適当でない。したがフて
、製造されたMo2FeB2系複硼化物粉末の平均粒径
は0.1〜50μm、  好ましくは0.1〜25μm
とする。
Mo2FeB2 complex boride powder with an average particle size of 0.1 to 50 μm is not only difficult to handle if the average particle size is less than 0.1 μm, but it is also expensive because it consumes a lot of time and energy for pulverization. becomes higher. Also, 50μ
Coarse powders with a particle size of m or more often require further finer grinding when used as raw material powders for cermets, ceramics, etc., and are not suitable. Therefore, the average particle size of the produced Mo2FeB2 complex boride powder is 0.1 to 50 μm, preferably 0.1 to 25 μm.
shall be.

ただし、Mo2FeB2系複硼化物粉末を溶射用粉末に
混合して使用する場合や、精密な押型に入れ、プレス機
によって圧縮して所望の形と大きさに加圧成形する場合
等には粉末の充填を速やかに行う必要があり、粗い粉末
がより適していることもあり、未粉砕のまま使用しても
さしつかえない。
However, when using Mo2FeB2 complex boride powder mixed with powder for thermal spraying, or when putting it into a precision mold and compressing it with a press machine to pressure mold it into the desired shape and size, the powder Since it is necessary to fill the powder quickly and a coarse powder is more suitable, it may be used unpulverized.

[実施例] 本発明の実施例1〜14を、第1〜5表により説明する
[Example] Examples 1 to 14 of the present invention will be explained with reference to Tables 1 to 5.

実施例1 原料粉末として、第1表に示す鍼金属粉末、および第2
表に示す硼化物および合金粉末の中から、Fe粉末、M
o粉末、Fe−B硼化物粉末、M。
Example 1 As raw material powders, acupuncture metal powders shown in Table 1 and
Among the borides and alloy powders shown in the table, Fe powder, M
o powder, Fe-B boride powder, M.

−B硼化物粉末を用い、第3表に示すように各々5.9
重量%、26.3重量%、17.8重量%、50.0重
量%配合した。この場合の化学組成は第4表に示すよう
に、Bが7.97重量%、Moが71.01重量%、F
eが20.76重量%であり、100重量%に溝だない
残部は、C,Oおよび不可避的不純物元素の重量である
。このように配合した粉末を、振動ボールミルによりア
セトン中で28時時間式粉砕混合を行った後、乾燥、整
粒を行い、平均粒径を第5表に示すように1.5μmと
した。これらのボールミル後の粉末を加圧成形せずにそ
のままアルミナ磁性器に入れ、炉内に一度に挿入する粉
末量を5kgとし、第5表に示すよ\うに、真空中で昇
温速度10℃/分、加熱温度1300℃、および保持時
間20分間で熱処理を行った。
-B boride powder, each 5.9% as shown in Table 3.
% by weight, 26.3% by weight, 17.8% by weight, and 50.0% by weight. As shown in Table 4, the chemical composition in this case is 7.97% by weight of B, 71.01% by weight of Mo, and 7.97% by weight of B.
e is 20.76% by weight, and the remainder that is not 100% by weight is the weight of C, O, and unavoidable impurity elements. The thus blended powder was pulverized and mixed in acetone for 28 hours using a vibrating ball mill, then dried and sized to give an average particle size of 1.5 μm as shown in Table 5. These ball-milled powders were put into an alumina magnetic container as they were without being press-molded, and the amount of powder inserted into the furnace at one time was 5 kg, and the heating rate was 10°C in vacuum as shown in Table 5. The heat treatment was performed at a heating temperature of 1300°C and a holding time of 20 minutes.

第1図および第2図に、実施例1で製造したMo2Fe
B2系複硼化物粉末の組織を示す走査型電子顕微鏡写真
、およびCu −Kα線によるX線回折図形をJCPD
S−No、180839のデーターとともに示すように
、平均粒径が2.0μmであり、第4表に示すようにC
f1Lが0.02重量%、Onが0.1重量%であるM
o2FeB2系複硼化物粉末が製造できた。
1 and 2 show the Mo2Fe produced in Example 1.
A scanning electron micrograph showing the structure of B2-based complex boride powder and an X-ray diffraction pattern using Cu-Kα rays were published by JCPD.
As shown with the data of S-No. 180839, the average particle size is 2.0 μm, and as shown in Table 4, C
M in which f1L is 0.02% by weight and On is 0.1% by weight
o2FeB2-based complex boride powder could be produced.

実施例2〜14 実施例1と同様に、原料粉末として第1表に第1表 純金属粉末の純度および平均粒径 示す純金属粉末、および第2表に示す硼化物および合金
粉末を用い、第3表に示すように配合した。
Examples 2 to 14 As in Example 1, pure metal powders shown in Table 1 with purity and average particle size of pure metal powders shown in Table 1 and boride and alloy powders shown in Table 2 were used as raw material powders, The formulations were as shown in Table 3.

この場合の化学組成を第4表に示す。ボールミル時間、
昇温速度、炉内雰囲気、加熱温度および保持時間等の作
業条件は第5表に示すとうりであり、熱処理後の形状が
粉末かどうかを確認するとともに、X線回折測定により
、Mo2FeB2系複硼化物が形成されているかどうか
を調べたところ、平均粒径が第5表に示すように1.5
〜10.。
The chemical composition in this case is shown in Table 4. ball mill time,
The working conditions, such as heating rate, furnace atmosphere, heating temperature, and holding time, are as shown in Table 5. In addition to confirming whether the shape after heat treatment is powder, the Mo2FeB2 complex was determined by X-ray diffraction measurement. When we investigated whether borides were formed, we found that the average particle size was 1.5 as shown in Table 5.
~10. .

/I IIIてあり、第4表に示すようにC量が0.O
1〜0.10重量%、O量が0.05〜0.30重量%
であるMo2FeB2系複硼化物粉末が製造できた。
/I III, and as shown in Table 4, the amount of C is 0. O
1 to 0.10% by weight, O amount 0.05 to 0.30% by weight
A Mo2FeB2 complex boride powder was produced.

比較例 実施例1と同じ組成に配合した20gの粉末を、アーク
溶製法により2100°Cの高温度で完全に溶融させ、
得られた融液を冷却してブロック試料を作り、これをス
タンプミルを用いて機械的に粉砕篩別してMo2FeB
2系複硼化物を製造したが、−度に処理できる量が少量
であり、コストが高く、長時間を要した。
Comparative Example 20g of powder blended with the same composition as Example 1 was completely melted at a high temperature of 2100 ° C by arc melting method.
The obtained melt was cooled to make a block sample, which was mechanically crushed and sieved using a stamp mill to obtain Mo2FeB.
Although a two-system complex boride was produced, the amount that could be processed at one time was small, the cost was high, and it took a long time.

[発明の効果] 本発明は、耐熱性、高温強度、靭性、硬度、耐酸化性、
耐食性に優れたMo2FeB2型複硼化物粉末、 (M
o +F e +Cr ) 3B2型複硼化物粉末、お
よび(M OT F e e Cr + X ) 3 
B 2型複硼化物粉末を、低温で大量に製造で遣る新規
な工業的製造方法である。
[Effects of the invention] The present invention has excellent heat resistance, high temperature strength, toughness, hardness, oxidation resistance,
Mo2FeB2 type complex boride powder with excellent corrosion resistance (M
o +F e +Cr ) 3B2 type complex boride powder, and (M OT F e e Cr + X) 3
This is a new industrial manufacturing method that uses B2 type complex boride powder in large quantities at low temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1のMo2FeB2系複硼化物粉末の組
織を示す、倍率が3000倍の走査型電子顕微鏡写真、
および第2図は実施例1のM 02FeB2型複硼化物
粉末のX線回折図形を示す図である。 第 図 第 図 0 0 2θ 0 0 手続補正書(方式) %式% 1、事件の表示  平成1年特許願第332588号2
、発明の名称  Mo2FeB2系複硼化物粉末の製造
方法3、補正をする者 事件との関係  特許出願人 代表者 久 能 部 4、代 理 人 住 所 東京都千代田区霞が関1丁目4番3号 東洋鋼鈑株式会社内 氏 名
FIG. 1 is a scanning electron micrograph at a magnification of 3000 times, showing the structure of the Mo2FeB2-based complex boride powder of Example 1.
and FIG. 2 is a diagram showing an X-ray diffraction pattern of the M 02FeB2 type complex boride powder of Example 1. Figure Figure Figure 0 0 2θ 0 0 Procedural amendment (method) % formula % 1, Indication of case 1999 Patent Application No. 332588 2
, Title of the invention Method for producing Mo2FeB2-based complex boride powder 3, Relationship with the person making the amendment Patent applicant representative Kunobe 4, agent address Toyo Kohan Co., Ltd. 1-4-3 Kasumigaseki, Chiyoda-ku, Tokyo Company name

Claims (5)

【特許請求の範囲】[Claims] (1)Fe、Mo、Bの単体粉末、前記元素のうち2種
以上を含む硼化物および合金粉末、およびCを含有する
前記単体、硼化物および合金粉末、およびC粉末の2種
以上を、Bが7.2〜8.8重量%、Moが64〜78
重量%、残部がFeおよび不可避的不純物よりなるよう
に配合し、平均粒径0.1〜50μmの範囲に粉砕混合
後、非酸化性雰囲気中で昇温速度0.5〜100℃/分
、加熱温度750〜1500℃、保持時間1分〜5時間
で熱処理し、Cによる還元反応を行わせるとともに固相
反応によりMo_2FeB_2型複硼化物を形成させた
後、冷却および粉砕を行い、Mo_2FeB_2型複硼
化物を全体の90重量%以上含み、残留C量が0.00
5〜1重量%、残留O量が0.001〜0.5重量%で
あり、かつ粉末の平均粒径が0.1〜50μmであるこ
とを特徴とするMo_2FeB_2型複硼化物粉末の製
造方法。
(1) Fe, Mo, and B elemental powders, boride and alloy powders containing two or more of the above elements, and two or more of the elemental elements, boride and alloy powders containing C, and C powder, B is 7.2-8.8% by weight, Mo is 64-78%
% by weight, the balance being Fe and unavoidable impurities, pulverized and mixed to have an average particle size in the range of 0.1 to 50 μm, and heated at a rate of 0.5 to 100° C./min in a non-oxidizing atmosphere. Heat treatment is performed at a heating temperature of 750 to 1500°C and a holding time of 1 minute to 5 hours to perform a reduction reaction with C and form a Mo_2FeB_2 type complex boride by solid phase reaction, followed by cooling and pulverization to form a Mo_2FeB_2 type complex. Contains 90% or more of boride by weight and has a residual C content of 0.00
5 to 1% by weight, residual O content is 0.001 to 0.5% by weight, and the average particle size of the powder is 0.1 to 50 μm. .
(2)Fe、Mo、B、Crの単体粉末、前記元素のう
ち2種以上を含む硼化物および合金粉末、およびCを含
有する前記単体、硼化物および合金粉末、およびC粉末
の2種以上を、Bが7.2〜10.2重量%、Moが4
5.5〜78重量%、Crが0.1〜35重量%、残部
がFeおよび不可避的不純物よりなるように配合し、平
均粒径0.1〜50μmの範囲に粉砕混合後、非酸化性
雰囲気中で昇温速度0.5〜100℃/分、加熱温度7
50〜1500℃、保持時間1分〜5時間で熱処理し、
Cによる還元反応を行わせるとともに固相反応により(
Mo、Fe、Cr)_3B_2型複硼化物を形成させた
後、冷却および粉砕を行い、(Mo、Fe、Cr)_3
B_2型複硼化物を全体の90重量%以上含み、残留C
量が0.005〜1重量%、残留O量が0.001〜0
.5重量%であり、かつ粉末の平均粒径が0.1〜50
μmであることを特徴とする(Mo、Fe、Cr)_3
B_2型複硼化物粉末の製造方法。
(2) Single powders of Fe, Mo, B, and Cr, boride and alloy powders containing two or more of the above elements, and two or more of the single powders, borides and alloy powders containing C, and C powders. , B is 7.2 to 10.2 wt%, Mo is 4
5.5 to 78% by weight, 0.1 to 35% by weight of Cr, and the balance consisting of Fe and unavoidable impurities. After grinding and mixing to an average particle size of 0.1 to 50 μm, non-oxidizing Heating rate 0.5-100℃/min in atmosphere, heating temperature 7
Heat treated at 50 to 1500°C for a holding time of 1 minute to 5 hours,
A reduction reaction with C is carried out and a solid phase reaction (
After forming a type complex boride (Mo, Fe, Cr)_3B_2, it is cooled and pulverized to form (Mo, Fe, Cr)_3
Contains 90% by weight or more of B_2 type complex boride, with residual C
The amount is 0.005 to 1% by weight, and the amount of residual O is 0.001 to 0.
.. 5% by weight, and the average particle size of the powder is 0.1-50
(Mo, Fe, Cr)_3
Method for producing B_2 type complex boride powder.
(3)Fe、Mo、B、Cr、Ti、Zr、Hf、V、
Nb、Ta、W、Co、Re、Niの単体粉末、前記元
素のうち2種以上を含む硼化物および合金粉末、および
Cを含有する前記単体、硼化物および合金粉末、および
C粉末の2種以上を、Bが7.2〜10.2重量%、M
oが45.5〜78重量%、Crが0.1〜35重量%
、かつTi、Zr、Hf、V、Nb、Ta、W、Co、
Re、Niからなるグループから選ばれた1種またはそ
れ以上の元素の合計が0.1〜20重量%、残部がFe
および不可避的不純物よりなるように配合し、平均粒径
0.1〜50μmの範囲に粉砕混合後、非酸化性雰囲気
中で昇温速度0.5〜100℃/分、加熱温度750〜
1500℃、保持時間1分〜5時間で熱処理し、Cによ
る還元反応を行わせるとともに固相反応により(Mo、
Fe、Cr、X)_3B_2(以下、XはTi、Zr、
Hf、V、Nb、Ta、W、Co、Re、Niからなる
グループから選ばれた1種または2種以上の元素を表わ
す)型複硼化物を形成させたのち、冷却および粉砕を行
い、(Mo、Fe、Cr、X)_3B_2型複硼化物を
全体の90重量%以上含み、残留C量が0.005〜1
重量%、残留O量が0.001〜0.5重量%であり、
かつ粉末の平均粒径が0.1〜50μmであることを特
徴とする(Mo、Fe、Cr、X)_3B_2型複硼化
物粉末の製造方法。
(3) Fe, Mo, B, Cr, Ti, Zr, Hf, V,
Single powders of Nb, Ta, W, Co, Re, and Ni, boride and alloy powders containing two or more of the above elements, and two types of single powders, borides and alloy powders containing C, and C powders. The above, B is 7.2 to 10.2% by weight, M
O is 45.5 to 78% by weight, Cr is 0.1 to 35% by weight
, and Ti, Zr, Hf, V, Nb, Ta, W, Co,
The total content of one or more elements selected from the group consisting of Re and Ni is 0.1 to 20% by weight, and the balance is Fe.
and unavoidable impurities, pulverized and mixed to have an average particle size in the range of 0.1 to 50 μm, and then heated in a non-oxidizing atmosphere at a heating rate of 0.5 to 100°C/min and a heating temperature of 750 to 750°C.
Heat treatment was carried out at 1500°C for a holding time of 1 minute to 5 hours to carry out a reduction reaction with C and to conduct a solid phase reaction (Mo,
Fe, Cr, X)_3B_2 (hereinafter, X is Ti, Zr,
After forming a )-type complex boride representing one or more elements selected from the group consisting of Hf, V, Nb, Ta, W, Co, Re, and Ni, cooling and pulverization are performed. Contains 90% by weight or more of Mo, Fe, Cr,
% by weight, the amount of residual O is 0.001 to 0.5% by weight,
A method for producing a (Mo, Fe, Cr,
(4)粉砕混合工程において、機械的合金法あるいは機
械的粉砕混合法を用いることを特徴とする請求項1、2
または3記載の複硼化物粉末の製造方法。
(4) Claims 1 and 2, characterized in that in the pulverization and mixing step, a mechanical alloying method or a mechanical pulverization and mixing method is used.
Or the method for producing complex boride powder according to 3.
(5)非酸化性雰囲気が、真空、H_2ガス、Arガス
、HeガスまたはN_2ガスであることを特徴とする、
請求項1、2または3記載の複硼化物粉末の製造方法。
(5) The non-oxidizing atmosphere is vacuum, H_2 gas, Ar gas, He gas or N_2 gas,
A method for producing a complex boride powder according to claim 1, 2 or 3.
JP33258889A 1989-12-25 1989-12-25 Method for producing Mo-lower 2 FeB-lower 2 type complex boride powder Expired - Fee Related JPH06102539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33258889A JPH06102539B2 (en) 1989-12-25 1989-12-25 Method for producing Mo-lower 2 FeB-lower 2 type complex boride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33258889A JPH06102539B2 (en) 1989-12-25 1989-12-25 Method for producing Mo-lower 2 FeB-lower 2 type complex boride powder

Publications (2)

Publication Number Publication Date
JPH03193623A true JPH03193623A (en) 1991-08-23
JPH06102539B2 JPH06102539B2 (en) 1994-12-14

Family

ID=18256616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33258889A Expired - Fee Related JPH06102539B2 (en) 1989-12-25 1989-12-25 Method for producing Mo-lower 2 FeB-lower 2 type complex boride powder

Country Status (1)

Country Link
JP (1) JPH06102539B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014268A1 (en) * 1994-11-08 1996-05-17 The Australian National University Production of metal boride powders
JP2011063486A (en) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method
JP4836943B2 (en) * 2004-05-11 2011-12-14 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア Osmium diboride compound, tool, surface coating material, abrasive, coating method, polishing method, and cutting method
CN102618769A (en) * 2012-04-05 2012-08-01 北京科技大学 Manufacturing method of Mo2FeB2 based steel bonded hard alloy
JP2013147419A (en) * 2012-01-19 2013-08-01 General Electric Co <Ge> Method for removing organic contaminant from boron-containing powder by high temperature processing
CN112680689A (en) * 2020-12-09 2021-04-20 中国南方电网有限责任公司超高压输电公司柳州局 Composition gradient Ni60-Mo2FeB2Preparation method of composite coating and composite coating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014268A1 (en) * 1994-11-08 1996-05-17 The Australian National University Production of metal boride powders
JP4836943B2 (en) * 2004-05-11 2011-12-14 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア Osmium diboride compound, tool, surface coating material, abrasive, coating method, polishing method, and cutting method
JP2011063486A (en) * 2009-09-18 2011-03-31 Sumitomo Osaka Cement Co Ltd Method for producing high-purity metal boride particle, and high-purity metal boride particle obtained by the method
JP2013147419A (en) * 2012-01-19 2013-08-01 General Electric Co <Ge> Method for removing organic contaminant from boron-containing powder by high temperature processing
CN102618769A (en) * 2012-04-05 2012-08-01 北京科技大学 Manufacturing method of Mo2FeB2 based steel bonded hard alloy
CN112680689A (en) * 2020-12-09 2021-04-20 中国南方电网有限责任公司超高压输电公司柳州局 Composition gradient Ni60-Mo2FeB2Preparation method of composite coating and composite coating

Also Published As

Publication number Publication date
JPH06102539B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
KR100584113B1 (en) Method of making a fecral material and such material
JP3717525B2 (en) Hard sintered alloy
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
JPS62238344A (en) Mechanical alloying method
EP1711342B1 (en) Wear resistant materials
JPS6057499B2 (en) hard sintered alloy
CA1309882C (en) Powder particles for fine-grained hard material alloys and a process for the preparation of such particles
US7465432B2 (en) Fine tungsten carbide powder and process for producing the same
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
JP4149623B2 (en) Double boride hard sintered alloy and screw for resin processing machine using the alloy
US4263046A (en) Sinterable mass for producing workpieces of alloy steel
JP4060803B2 (en) Method for producing zirconium boride powder
US5145513A (en) Process for the preparing via the in situ reduction of their components and grinding oxide/metal composite materials
JP3553496B2 (en) Titanium carbide based alloys of hard materials, their preparation and use
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPH0478713B2 (en)
JP6949414B2 (en) Magnet powder and method for manufacturing magnet powder
US3184834A (en) Selected mo-nb-si-ti compositions and objects thereof
JPS6317210A (en) Production of aluminum nitride powder
JPS63143236A (en) Composite boride sintered body
JPH06340941A (en) Nano-phase composite hard material and its production
JPH04371536A (en) Production of tial intermetallic compound powder
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
JPS6112801A (en) Production of powder for dispersion-strengthened alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees