JPS6057499B2 - hard sintered alloy - Google Patents

hard sintered alloy

Info

Publication number
JPS6057499B2
JPS6057499B2 JP16573881A JP16573881A JPS6057499B2 JP S6057499 B2 JPS6057499 B2 JP S6057499B2 JP 16573881 A JP16573881 A JP 16573881A JP 16573881 A JP16573881 A JP 16573881A JP S6057499 B2 JPS6057499 B2 JP S6057499B2
Authority
JP
Japan
Prior art keywords
powder
hard
phase
sintered alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16573881A
Other languages
Japanese (ja)
Other versions
JPS5867842A (en
Inventor
研一 高木
楷夫 野北
啓三 玉井
正仁 福森
成一 大平
恒幸 井手
博之 山根
忠雄 渡辺
嘉一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP16573881A priority Critical patent/JPS6057499B2/en
Priority to DE19823238555 priority patent/DE3238555A1/en
Priority to SE8205907A priority patent/SE459504B/en
Priority to FR8217394A priority patent/FR2514788B1/en
Priority to GB08229892A priority patent/GB2109409B/en
Publication of JPS5867842A publication Critical patent/JPS5867842A/en
Publication of JPS6057499B2 publication Critical patent/JPS6057499B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides

Description

【発明の詳細な説明】 本発明はFeを含む複硼化物を主体とする硬質相と該硬
質相を結合する結合相よりなる硬質焼結合金に関し、さ
らに詳しくは機械的強度ならびに靭性の優れた硬質焼結
合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hard sintered alloy comprising a hard phase mainly composed of a complex boride containing Fe and a binder phase that binds the hard phase. It relates to hard sintered alloys.

従来、硬質材料としてはWC基超硬合金,ステライト,
高速度鋼等が存在する。最近これらに代わる材料として
鉄硼化物および鉄複硼化物を硬質相として有する硬質焼
結合金が、特公昭第?一27818号、特公昭第56−
8904号および特公昭第56−15773号に提案さ
れている。これらの提案に開示された硬質焼結合金は鉄
硼化物あるいは鉄硼化物とCr,MO,W,Ti,V,
Nb,Ta,Hf,Zr,CO等の硼化物形成元素のう
ち.いずれか1種以上の硼化物および/または複硼化物
よりなる硬質相と、Fe,Cr,Ni,MO,W,Ti
,V,Nb,Ta,Hf,Zr,Cu等の金属および/
またはこれらを含む合金の1種以上からなる結合相とか
らなる。
Conventionally, hard materials include WC-based cemented carbide, stellite,
High speed steel etc. exist. Recently, hard sintered alloys having iron borides and iron complex borides as hard phases have been developed as materials to replace these materials. No. 127818, Special Publication No. 56-
No. 8904 and Japanese Patent Publication No. 56-15773. The hard sintered alloys disclosed in these proposals include iron boride or iron boride and Cr, MO, W, Ti, V,
Among boride-forming elements such as Nb, Ta, Hf, Zr, and CO. A hard phase consisting of any one or more borides and/or complex borides, and Fe, Cr, Ni, MO, W, Ti
, V, Nb, Ta, Hf, Zr, Cu and other metals and/
or a binder phase consisting of one or more types of alloys containing these.

さらに硬質相を形成する硼化;物はMBあるいはM2B
(以下、Mは金属を表わす)、複硼化物はMxNyB(
以下、M,Nは複硼化物の金属を表わす。xおよびYは
M,Nが化合物を形成するのに必要な化学量論的な数値
を表わす)等の構造を持つ金属間化合物からなる。
ク特公昭56−15773号においてはさらにA],
Si及び0含有量を限定することにより硬度および靭性
の改善をはかつた硬質焼結合金が提案されていス本発明
の目的はこれらの提案に開示された硬質焼結合金の持つ
優れた耐食性、耐酸化性、耐摩耗性を維持しつつ、機械
的強度ならびに靭性、およびそれらの安定性のさらに優
れた硬質焼結合金を提供することにある。
Furthermore, boride forms a hard phase; the material is MB or M2B
(hereinafter, M represents metal), complex boride is MxNyB (
Hereinafter, M and N represent complex boride metals. x and Y are composed of an intermetallic compound having a structure such that M and N represent stoichiometric values necessary to form a compound.
In Ku Special Publication No. 56-15773, further A],
Hard sintered alloys with improved hardness and toughness have been proposed by limiting the Si and 0 contents.The purpose of the present invention is to improve the excellent corrosion resistance of the hard sintered alloys disclosed in these proposals. The object of the present invention is to provide a hard sintered alloy that maintains oxidation resistance and wear resistance, and has even better mechanical strength, toughness, and stability thereof.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明は少なくとも10%(以下%は重量%を表わす)
のFeを含む複硼化物よりなる硬質相を40〜95%と
、該硬質相を結合する結合相よりなる硬)質焼結合金で
あつて、該硬質焼結合金中の、B含有量3〜8%、Cr
含有量35%以下、Ni含有量35%以下、AI含有量
2.85%以下、Si含有量0.03〜4.75%、C
含有量0.95%以下、O含有量2.3%以下であり、
かつMOおよび/またはW含有量が(MO・および/ま
たはW)/Bの原子比で0.75〜1.25を満足する
範囲内にあり、残部がFeおよび不可避的不純物である
ことを骨子とする硬質焼結合金に係る。
In the present invention, at least 10% (hereinafter % represents weight %)
A hard sintered alloy comprising 40 to 95% of a hard phase made of a complex boride containing Fe and a binder phase that binds the hard phase, the hard sintered alloy having a B content of 3 ~8%, Cr
Content: 35% or less, Ni content: 35% or less, AI content: 2.85% or less, Si content: 0.03 to 4.75%, C
The content is 0.95% or less, the O content is 2.3% or less,
The main point is that the MO and/or W content is within a range that satisfies the atomic ratio of (MO and/or W)/B from 0.75 to 1.25, with the remainder being Fe and unavoidable impurities. Pertains to hard sintered alloys.

該硬質焼結合金(以下本焼結合金と呼ぶ)は、・主要構
成元素を前記のようにし、特に(MOおよび/またはW
)/Bの原子比を0.75〜1.25の範囲にしたとき
に、硬度がRA8O〜93の範囲で、175〜300k
91wdという高い抗析力を安定して示す。
The hard sintered alloy (hereinafter referred to as sintered alloy) has the main constituent elements as described above, and in particular (MO and/or W).
)/B atomic ratio in the range of 0.75 to 1.25, the hardness is in the range of RA8O to 93, and is 175 to 300k.
It stably exhibits a high anti-resistance force of 91wd.

(MOおよび/またはW)/Bの原子比を1前後にとる
と何故、抗析力が高くかつバラツキが少なくなるのか、
理由ははつきりしないが、更に詳細に調べてみると硬質
相を形成するFeを含む複硼化物が、主としてMO2F
eB2あるいはWFeB型またはこれらの混合した複硼
化物と、その他若干の■LMl.B,MxNyB型の硼
化物で構成されていることが判明した。さらに、特にW
含有量が多い場合にはW2FeB?の複硼化物も認めら
れた。MO2Fe八,WFeBあるいはW2F′EB2
型の複硼化物において、MOl:.Wは相互に、Feは
Cr,Ni,COの元素と、部分的に置換していること
が観察される。
Why does setting the atomic ratio of (MO and/or W)/B around 1 result in higher anti-deposition strength and less variation?
Although the reason is not clear, a more detailed investigation shows that the complex boride containing Fe that forms the hard phase is mainly MO2F.
eB2 or WFeB type or a mixed boride thereof, and some other LMl. It was found that it was composed of B, MxNyB type boride. Furthermore, especially W
If the content is large, W2FeB? Complex borides were also observed. MO2Fe8, WFeB or W2F'EB2
In complex borides of type MOl:. It is observed that W partially substitutes with each other, and Fe partially substitutes with the elements Cr, Ni, and CO.

よつて以下これら3種の複硼化物のMOあるいはwが部
分的に置換した形態、FeがCr,Ni,COと部分的
に置換した形態も含めて、MO2FeB2,WFeB,
W2Fe八型複硼化物と総称することにする。
Therefore, in the following, we will include forms in which MO or w of these three types of complex borides is partially substituted, forms in which Fe is partially substituted with Cr, Ni, and CO, MO2FeB2, WFeB,
These will be collectively referred to as W2Fe type 8 complex borides.

これらのMO2FeB2,WFeB,W2FeB2型の
複硼化物を主体とした硬質相を形成させるためには、少
なくとも10%のFeを硬質相に含む?要があなお、本
焼結合金においてFeおよびFeを含む複数化物を用い
たのは、Feを含有する複硼化物の焼結体が充分に高い
硬度と靭性を示すこと、CrやNiなどの適量添加によ
つてステンレス鋼と同様の優れた耐食性と耐熱性、耐酸
化性を示すこと、Feを主とした硼化物粉末は工業的に
容易に作ることができること、Feは資源的に豊富であ
り、かつ安価であることによる。
In order to form a hard phase mainly composed of these MO2FeB2, WFeB, and W2FeB2 type complex borides, at least 10% of Fe must be included in the hard phase. The main point is that Fe and Fe-containing compounds were used in this sintered alloy because the Fe-containing complex boride sintered body exhibits sufficiently high hardness and toughness, and the reason why Fe and Fe-containing compounds were used When added in an appropriate amount, it exhibits excellent corrosion resistance, heat resistance, and oxidation resistance similar to that of stainless steel; boride powder containing mainly Fe can be easily produced industrially; and Fe is an abundant resource. This is because it is available and inexpensive.

本焼結合金の硬度は硬質相となる複硼化物の量と結合相
の量および結合相の硬度に依存する。
The hardness of the sintered alloy depends on the amount of complex boride serving as the hard phase, the amount of the binder phase, and the hardness of the binder phase.

本焼結合金の硬度はRAで80〜93の範囲である。硬
度をRA8O以上にするには、硬質相の量を最低40%
必要とする。一方、硬質相の量が95%をこえると、硬
度がRA93となるものの、抗析力が175kg′ml
以下となる。よつて硬質相の量は40〜95%の範囲と
する。硬質相形成元素であるBは、硬質相を下限で40
%形成させるために3%を必要とし、硬質相を95%形
成させるために8%を必要とする。
The hardness of the sintered alloy is in the range of RA from 80 to 93. To achieve a hardness of RA8O or higher, the amount of hard phase must be at least 40%.
I need. On the other hand, when the amount of hard phase exceeds 95%, the hardness is RA93, but the anti-destructive strength is 175 kg'ml.
The following is true. Therefore, the amount of hard phase should be in the range of 40 to 95%. B, which is a hard phase forming element, forms a hard phase with a lower limit of 40
3% is required for 95% formation and 8% is required for 95% hard phase formation.

よつてBの限定範囲は3〜8%とする。MOおよびWは
B同様硬質相となる複硼化物を形成する元素であり、(
MOおよび/またはW)/Bの原子比で0.75〜1.
25を満足する範囲内で含有された時、本焼結合金は硬
度RA8O〜93の範囲内で、175〜300k91i
という高い抗析力を安定して示す。
Therefore, the limited range of B is 3 to 8%. Like B, MO and W are elements that form a complex boride that becomes a hard phase;
The atomic ratio of MO and/or W)/B is 0.75 to 1.
25, the sintered alloy has a hardness of RA8O to 93 and a hardness of 175 to 300k91i.
It stably exhibits high anti-deposition strength.

さらに(MOおよび/またはW)/Bの原子比を0.9
0〜1.20とすると、さらに高い抗析力が得られる。
よつてMOおよび/またはWの含有量は、(MOおよび
/またはW)/Bの原子比で0.75〜1.25s好ま
しくは0.90〜1.20を満たす範囲とする。Crは
本焼結合金の耐食性、耐熱性および耐酸化性を向上させ
るばかりでなく、Niと組合せて使用した場合には、結
合相をオーステナイト化することにより本硬質合金を非
磁性にする働きを持つ。
Furthermore, the atomic ratio of (MO and/or W)/B is 0.9
When it is set to 0 to 1.20, even higher anti-deposition strength can be obtained.
Therefore, the content of MO and/or W is in a range that satisfies the atomic ratio (MO and/or W)/B of 0.75 to 1.25s, preferably 0.90 to 1.20. Cr not only improves the corrosion resistance, heat resistance, and oxidation resistance of the sintered alloy, but when used in combination with Ni, it also has the effect of making the hard alloy nonmagnetic by austenitizing the binder phase. have

本焼結合金を機械的強度と耐摩耗性を必要とし耐食性を
必要としない用途に適用する場合は、本焼結合金中に特
にCrを含有する必要はないが、通常はこれらの特性と
合わせて耐食性も必要とされる場合が多いので、耐食性
が必要な場合Crは下限で0.5%含まれることが好ま
しい。一方、Cr含有量が35%をこえると耐食性、耐
熱性および耐酸化性の面からは優れるものの、機械的強
度が低下し、抗析力が175k91i以下となる。よつ
てCr含有量は35%以下、好ましくは0.5〜35%
とする。NiはCrと同様に耐食性、耐酸化性に役立つ
元素であり、また結合相の組織をオーステナイト系の非
磁性材とする場合に必要とする元素である。
When applying a sintered alloy to applications that require mechanical strength and wear resistance but do not require corrosion resistance, it is not necessary to specifically include Cr in the sintered alloy, but it is usually necessary to incorporate Cr in conjunction with these properties. Therefore, when corrosion resistance is required, it is preferable that Cr be contained at a lower limit of 0.5%. On the other hand, if the Cr content exceeds 35%, although it is excellent in terms of corrosion resistance, heat resistance, and oxidation resistance, the mechanical strength decreases and the anti-destructive strength becomes 175k91i or less. Therefore, the Cr content is 35% or less, preferably 0.5 to 35%.
shall be. Like Cr, Ni is an element useful for corrosion resistance and oxidation resistance, and is also an element required when the structure of the binder phase is an austenitic nonmagnetic material.

これらの目的を達成させるためには、最大35%までで
目的を達する。COは硬質相であるMO2FeB2,W
FeB,W2FeB2型硼化物中の主にFeと置換可能
な元素であり、また結合相がフェライト相である場合、
結合相の赤熱硬度を高める効果を有し、0.5%の添加
でその効果が認められる。
In order to achieve these objectives, reach the objectives by up to 35%. CO is a hard phase MO2FeB2,W
FeB, W2FeB2 is an element that can mainly replace Fe in the boride, and when the bonding phase is a ferrite phase,
It has the effect of increasing the red-hot hardness of the binder phase, and this effect is observed when added at 0.5%.

しかし35%をこえると抗折力が175k91i以下と
なる。よつて上限を35%とする。Cuは本焼結合金の
熱伝導性と耐食性を改善する目的の場合に添加する元素
であつて、0.1%の添加で効果がみられ、35%を越
えると、硬度および抗折力の低下を生ずる。
However, when it exceeds 35%, the transverse rupture strength becomes 175k91i or less. Therefore, the upper limit is set at 35%. Cu is an element added for the purpose of improving the thermal conductivity and corrosion resistance of the sintered alloy, and an effect is seen when added at 0.1%, and when it exceeds 35%, the hardness and transverse rupture strength decrease. causes a decrease.

よつてCu含有量は35%以下とする。周期律表の■b
族のTi,Zr,Hfおよび■b族の■,Nb,Ta,
の各金属はMO2FeB2,WFeB,W2FeB2型
複硼化物のMOもしくはWと置換され、かつ一部が結合
相中での合金化のために消費される。
Therefore, the Cu content is set to 35% or less. ■b of the periodic table
Ti, Zr, Hf of the group and ■, Nb, Ta of the b group,
Each metal is substituted with MO or W in the MO2FeB2, WFeB, W2FeB2 type complex boride, and a portion is consumed for alloying in the binder phase.

これら■a族、Va族の金属は本焼結合金の硬度を向上
させるばかりでなく、液相焼結時の結晶粒の粗大化を防
止する効果を持つ。これらの金属は全般に高価な元素で
あるが、少量の添加で大きな効果を示す。従つてこれら
■b族、Vb族の金属は各金属の合計が5%でその効果
がみられる”が、コスト面もかんがみ各金属の合計が1
5%の範囲であれば、硬度,抗折力、共に満足するもの
が得られる。よつてこれらの金属の合計は15%以下と
する。Cは酸化物の還元ならびに結合相の硬度を高め・
るのに効果のある元素で、その効果により本焼結合金全
体の硬度を高めるが、0.95%をこえても硬度は向上
せず、かえつて抗折力が低下し始める。
These group (1) a and Va group metals not only improve the hardness of the sintered alloy but also have the effect of preventing coarsening of crystal grains during liquid phase sintering. Although these metals are generally expensive elements, they exhibit great effects when added in small amounts. Therefore, these group IIb and group Vb metals are effective when the total amount of each metal is 5%.However, considering the cost, the total amount of each metal is 1%.
Within the range of 5%, satisfactory hardness and transverse rupture strength can be obtained. Therefore, the total amount of these metals should be 15% or less. C increases the reduction of oxides and the hardness of the binder phase.
This element is effective in increasing the hardness of the sintered alloy as a whole, but even if it exceeds 0.95%, the hardness does not improve and the transverse rupture strength begins to decrease.

よつてC含有量は0.95%以下とする。Alは原料粉
から混入するものであつて、Bお)よびOと反応し、A
1硼化物,Al酸化物を形成しやすく、特ににの酸化物
は本焼結合金の焼結性を阻害する。
Therefore, the C content is set to 0.95% or less. Al is mixed in from the raw material powder and reacts with B) and O, resulting in A
Monoboride and Al oxide are likely to be formed, and in particular, aluminum oxide inhibits the sinterability of the sintered alloy.

従つて本焼結合金中に含まれるAlの量はできるだけ少
ないことが好ましいが、1%以下であればその影響は比
較的少ない。しかし本焼結合金中へのOの混入を極力防
止した場合、Nが2.85%以下であればにによる害は
かなり小さなものにすることができる。よつてに含有量
は2.85%以下とする。0はB,Cr,Al,Si等
と反応して酸化物を形成し、焼結性を阻害すると共に抗
折力の低下とバラツキの拡大を生ずるため、その量は極
力少なくした方が良い。
Therefore, it is preferable that the amount of Al contained in the sintered alloy is as small as possible, but if it is 1% or less, its influence is relatively small. However, if the incorporation of O into the sintered alloy is prevented as much as possible, and the N content is 2.85% or less, the damage caused by crabs can be considerably reduced. Therefore, the content should be 2.85% or less. Since zero reacts with B, Cr, Al, Si, etc. to form oxides, which impairs sinterability and causes a decrease in transverse rupture strength and an increase in variation, it is better to reduce its amount as much as possible.

しかしその量が2.3%以下であれはその影響は比較的
少なく、よつてO含有量は2.3%以下とする。S1は
主に原料粉から混入してくる元素である。
However, if the amount is 2.3% or less, the effect is relatively small, and therefore the O content is set to 2.3% or less. S1 is an element that is mainly mixed in from the raw material powder.

このSiは本焼結合金の焼結性を向上させ、密度の上昇
をもたらし、結果的に本焼結合金の機械的特性を向上さ
せる効果を有している。しかし0.03%以下ではその
効果は少なく、4.75%をこえると本焼結合金をかえ
つて脆化させる。よつてSi含有量は0.03〜4.7
5%とする。なお、本焼結合金は前記特公昭に開示され
ているように、ボロン源として、水またはガスアトマイ
ズによつて作成したFe−BまたはFe−B系合金粉末
を使用するか、場合によつてはフェロボロン粉末,Ni
,Cr,W,Ti,MO等の各ボライド粉末もしくはB
単体粉を用い、これらとMO,W,Ti,V,Fe,C
r,Ni,CO,Cu等の単体金属粉、もしくはこれら
を2種以上を含む合金粉とを所定の組成になるように配
合し、必要に応じて、炭素粉もしくは炭化物を混合し、
これらの混合粉を振動ボールミルを用い、有機溶媒中で
湿式粉砕後、乾燥造粒、成形を行い、該成形体を非酸化
性雰囲気中で、液相焼結を行うことにより製造される。
This Si has the effect of improving the sinterability of the sintered alloy, increasing the density, and, as a result, improving the mechanical properties of the sintered alloy. However, if it is less than 0.03%, the effect will be small, and if it exceeds 4.75%, the sintered alloy will become brittle. Therefore, the Si content is 0.03 to 4.7
5%. In addition, as disclosed in the above-mentioned Japanese Patent Application Publication No. 2003-120022, the sintered alloy is produced by using Fe-B or Fe-B alloy powder prepared by water or gas atomization as a boron source, or in some cases by using Fe-B or Fe-B alloy powder prepared by water or gas atomization. Ferroboron powder, Ni
, Cr, W, Ti, MO, etc. or B
Using simple powders, these and MO, W, Ti, V, Fe, C
Blending elemental metal powder such as r, Ni, CO, Cu, etc. or alloy powder containing two or more of these to a predetermined composition, and if necessary, mixing carbon powder or carbide,
The mixed powder is wet-pulverized in an organic solvent using a vibrating ball mill, dried, granulated, and molded, and the molded product is subjected to liquid-phase sintering in a non-oxidizing atmosphere.

液相焼結法を用いることにより、本焼結合金はほぼ10
0%の密度となる。焼結の際の酸化防止のため、真空、
還元性ガス、あるいは不活性ガスなどの非酸化性雰囲気
中で、焼結を行うことが重要である。液相焼結は通常1
100〜1400℃で5〜9紛行;う。焼結温度が11
0(代)未満では、液相が充分な量出現しないため焼結
が充分進行せず、空孔の多い焼結体となる。一方、14
00℃をこえると液相焼結は充分進行するものの、結晶
粒の阻大化がおこり、抗折力の低下を生する。また焼結
時間が5分1未満であると充分な高密度化がなされず、
一方90分をこえても、時間の経過に見合う強度の向上
がみられない。場合によつては強度が低下することもあ
る。よつて9紛以上の焼結時間をとる必要はない。なお
、本焼結合金の空孔を極力減少させる目的で液相焼結法
について述べたが、該目的を達成するためには液相焼結
法のみでなく、熱間静水圧ブレス法,ホットブレス法,
通電焼結法においても充分にその目的を達することがで
きる。
By using the liquid phase sintering method, the main sintered alloy is approximately 10
The density will be 0%. To prevent oxidation during sintering, vacuum,
It is important to perform sintering in a non-oxidizing atmosphere such as a reducing gas or an inert gas. Liquid phase sintering is usually 1
5 to 9 cycles at 100 to 1400°C; Sintering temperature is 11
If it is less than 0, a sufficient amount of liquid phase will not appear, so sintering will not proceed sufficiently, resulting in a sintered body with many pores. On the other hand, 14
When the temperature exceeds 00°C, although liquid phase sintering progresses sufficiently, the crystal grains become enlarged and the transverse rupture strength decreases. Also, if the sintering time is less than 1/5, sufficient densification will not be achieved,
On the other hand, even after 90 minutes, there is no improvement in strength commensurate with the passage of time. In some cases, the strength may decrease. Therefore, it is not necessary to take more than 9 sintering times. The liquid phase sintering method has been described for the purpose of reducing pores in the sintered alloy as much as possible, but in order to achieve this purpose, not only the liquid phase sintering method but also the hot isostatic pressing method, hot isostatic pressing method, hot isostatic pressing method, etc. Breath method,
The purpose can also be fully achieved by the electric current sintering method.

以下実施例で説明する。This will be explained below using examples.

実施例および比較例に供した材料の組成は第1表,第2
表,第3表に示したものを用いた。
The compositions of the materials used in Examples and Comparative Examples are shown in Table 1 and Table 2.
Those shown in Table 3 were used.

r実施例1フェロボロン粉A:20.2%,フェロタン
グステン粉:69.2%,Cr粉:2.1%,Ni粉:
1.1%,力ーボニルFe粉:7.1%,C粉:0.3
%を配合し、鉄製の(以下の実施例も同様)振動ボール
ミル中で28・時間湿式粉砕し、乾燥造粒後成形し、真
空中1300℃で焼結した。
r Example 1 Ferroboron powder A: 20.2%, ferrotungsten powder: 69.2%, Cr powder: 2.1%, Ni powder:
1.1%, carbonyl Fe powder: 7.1%, C powder: 0.3
%, wet milled for 28 hours in an iron vibrating ball mill (the same applies to the following examples), dried, granulated, shaped, and sintered in vacuum at 1300°C.

実施例2 フェロボロン粉B:9.3%,フェロタングステン粉:
22.2%,W粉:27.4%,Cr粉:1.1%,N
i゛粉:2.0%,WB粉:25.0%,カーボニルF
e粉:12.7%,C粉:0.3%を配合し、振動ボー
ルミル中で2時間湿式粉砕し、乾燥造粒後成形し、真空
中1275℃で焼結した。
Example 2 Ferroboron powder B: 9.3%, ferrotungsten powder:
22.2%, W powder: 27.4%, Cr powder: 1.1%, N
i゛ powder: 2.0%, WB powder: 25.0%, carbonyl F
E-powder: 12.7% and C-powder: 0.3% were blended, wet-pulverized for 2 hours in a vibrating ball mill, dried, granulated, molded, and sintered at 1275° C. in vacuum.

実施例3 B含有合金粉A:31.1%,MO粉:35.5%,N
i粉:2.1%,カーボニルFe粉:31.0%,C粉
:0.3%を配合し、振動ボールミル中で2F@間湿式
粉砕し、乾燥造粒後成形し、真空中1225℃で焼結し
た。
Example 3 B-containing alloy powder A: 31.1%, MO powder: 35.5%, N
Blend I powder: 2.1%, carbonyl Fe powder: 31.0%, and C powder: 0.3%, wet-pulverize in a vibrating ball mill for 2F@, dry and granulate, then shape, and in a vacuum at 1225°C. Sintered with

実施例4 B含有合金粉C:44.6%,MO粉:51.2%,N
i粉:1.1%,カーボニルFe粉:2.8%,C粉:
0.3%を配合し、振動ボールミル中で2FgI!間湿
式粉砕し、乾燥造粒後成形し、真空中1225℃で焼結
した。
Example 4 B-containing alloy powder C: 44.6%, MO powder: 51.2%, N
I powder: 1.1%, carbonyl Fe powder: 2.8%, C powder:
0.3% and placed in a vibrating ball mill with 2FgI! After wet pulverization, dry granulation, molding, and sintering at 1225° C. in vacuum.

実施例5 フェロボロン粉A:27.0%,MO粉:39.1%,
Cr8:3.1%,Ni粉:1.l%,MOB粉:29
.1%,カーボニルFe粉:0.3%,C粉:0.3%
を配合し、振動ボールミル中で2叫間湿式粉砕し、乾燥
造粒後成形し、真空中1275℃で焼結した。
Example 5 Ferroboron powder A: 27.0%, MO powder: 39.1%,
Cr8: 3.1%, Ni powder: 1. l%, MOB powder: 29
.. 1%, carbonyl Fe powder: 0.3%, C powder: 0.3%
were mixed, wet-pulverized for two cycles in a vibrating ball mill, dried, granulated, molded, and sintered in vacuum at 1275°C.

実施例6 B含有合金粉C:2&1%,フェロタングステン粉:3
8.0%,MO粉:16.7%,Cr粉:0.5%,N
i粉:0.5%,MOB粉:16.0%,C粉:0.2
%を配合し、振動ボールミル中で2S!間湿式粉砕し、
乾燥造粒後成形し、真空中1275℃で焼結した。
Example 6 B-containing alloy powder C: 2&1%, ferrotungsten powder: 3
8.0%, MO powder: 16.7%, Cr powder: 0.5%, N
I powder: 0.5%, MOB powder: 16.0%, C powder: 0.2
% and placed in a vibrating ball mill for 2S! Wet grinding between
After dry granulation, it was shaped and sintered at 1275° C. in vacuum.

実施例7B含有合金粉C:32.3%,MO粉:28.
0%,Cr粉:0.6%,Ni粉:2.1%,カーボニ
ルFe粉:36.7%,C粉:0.3%を配合し、振動
ボールミル中で2S1間湿式粉砕し、乾燥造粒後成形し
、真空中12500Cで焼結した。
Example 7B-containing alloy powder C: 32.3%, MO powder: 28.
0%, Cr powder: 0.6%, Ni powder: 2.1%, carbonyl Fe powder: 36.7%, C powder: 0.3%, wet milled for 2S1 in a vibrating ball mill, and dried. After granulation, it was molded and sintered at 12500C in vacuum.

実施例8 B含有合金粉C:44.6%,MO粉:47.1%,N
i粉:2.1%,カーボニルFe粉:5.9%,C粉:
0.3%を配合し、振動ボールミル中で2Fn間湿式粉
砕し、乾燥造粒後成形し、真空中1275℃で焼結した
Example 8 B-containing alloy powder C: 44.6%, MO powder: 47.1%, N
I powder: 2.1%, carbonyl Fe powder: 5.9%, C powder:
0.3%, wet milling for 2Fn in a vibrating ball mill, dry granulation, molding, and sintering at 1275° C. in vacuum.

実施例9 B含有合金粉C:32.3%,MO粉:44.8%,C
r粉:0.6%,Ni粉:2.1%,カーボニルFe粉
:19.9%,C粉:0.3%を配合し、振動ボールミ
ル中で2満間湿式粉砕し、乾燥造粒後成形し、真空中1
275℃て焼結した。
Example 9 B-containing alloy powder C: 32.3%, MO powder: 44.8%, C
R powder: 0.6%, Ni powder: 2.1%, carbonyl Fe powder: 19.9%, C powder: 0.3% were blended, wet pulverized for 2 hours in a vibrating ball mill, and dried and granulated. Post-forming and in vacuum 1
It was sintered at 275°C.

実施例10 フェロボロン粉A:27.6%,MO粉:50.6%,
Cr粉:2.3%,Ni粉2.0%,MOB粉:15.
0%,カーボニルFe粉:2.2%,C粉:0.3%を
配合し、振動ボールミル中て2S!間湿式粉砕し、乾燥
造粒後成形し、真空中1275℃で焼結した。
Example 10 Ferroboron powder A: 27.6%, MO powder: 50.6%,
Cr powder: 2.3%, Ni powder 2.0%, MOB powder: 15.
0%, carbonyl Fe powder: 2.2%, C powder: 0.3%, and milled in a vibrating ball mill for 2S! After wet pulverization, dry granulation, molding, and sintering at 1275° C. in vacuum.

実施例11 B含有合金粉A:32.0%,MO粉:39.0%,C
r粉:6.5%,Ni粉:2.0%,カーボニルFe粉
:20.2%,C粉:0.3%を配合し、振動ボールミ
ル中で2潟間湿式粉砕し、乾燥造粒後成形し、真空中1
275℃で焼結した。
Example 11 B-containing alloy powder A: 32.0%, MO powder: 39.0%, C
R powder: 6.5%, Ni powder: 2.0%, carbonyl Fe powder: 20.2%, C powder: 0.3% were blended, wet pulverized in a vibrating ball mill for two times, and then dried and granulated. Post-forming and in vacuum 1
It was sintered at 275°C.

実施例12 B含有合金粉B:43.4%,MO粉:34.3%,C
r粉:21.0%,Ni粉:1.0%,C粉:0.3%
を配合し、振動ボールミル中で2S1間湿式粉砕し、乾
燥造粒後成形し、真空中1275℃で焼結した。
Example 12 B-containing alloy powder B: 43.4%, MO powder: 34.3%, C
R powder: 21.0%, Ni powder: 1.0%, C powder: 0.3%
were blended, wet milled for 2S1 in a vibrating ball mill, dried, granulated, shaped, and sintered at 1275°C in vacuum.

実施例13フェロボロン粉A:30.3%,MO粉:4
1.9%,Cr粉:2.1%,Ni粉:25.4%,C
粉:0.3%を配合し、振動ボールミル中で2叫間湿式
粉砕し、乾燥造粒後成形し、真空中1200℃で焼結し
た。
Example 13 Ferroboron powder A: 30.3%, MO powder: 4
1.9%, Cr powder: 2.1%, Ni powder: 25.4%, C
Powder: 0.3% was blended, wet-pulverized for two cycles in a vibrating ball mill, dried and granulated, molded, and sintered at 1200° C. in vacuum.

実施例14B含有合金粉C:40.7%,フェロチタン
粉:9.5%,MO粉:46.6%,Ni粉:1.1%
,カーボニルFe粉:1.8%,C粉:0.3%を配合
し、振動ボールミル中で28時間湿式粉砕し、乾燥造粒
後成形し、真空中1300℃で焼結した。
Example 14B containing alloy powder C: 40.7%, ferrotitanium powder: 9.5%, MO powder: 46.6%, Ni powder: 1.1%
, carbonyl Fe powder: 1.8%, and C powder: 0.3%, wet milled in a vibrating ball mill for 28 hours, dried, granulated, molded, and sintered at 1300° C. in vacuum.

実施例15 B含有合金粉C:42.0%,フェロバナジウム粉:7
.3%,MO粉:50.4%,C粉:0.3%を配合し
、振動ボールミル中で2濁間湿式粉砕し、乾燥造粒後成
形し、真空中1275℃で焼結した。
Example 15 B-containing alloy powder C: 42.0%, ferrovanadium powder: 7
.. 3%, MO powder: 50.4%, and C powder: 0.3%, wet-pulverized in a vibrating ball mill for 2 hours, dried, granulated, formed, and sintered at 1275° C. in vacuum.

実施例16B含有合金粉C:25.0%,MO粉:28
.5%,Ni粉:1.1%,C9粉:19.0%,MO
B粉:25.3%,カーボニルFe粉:0.8%,C粉
:0.3%を配合し、振動ボールミル中で2濁間湿式粉
砕し、乾燥造粒後成形し、真空中1225℃で焼結した
Example 16B containing alloy powder C: 25.0%, MO powder: 28
.. 5%, Ni powder: 1.1%, C9 powder: 19.0%, MO
Powder B: 25.3%, carbonyl Fe powder: 0.8%, and powder C: 0.3% were blended, wet-pulverized in a vibrating ball mill for 2 turbines, dried and granulated, then molded, and heated at 1225°C in vacuum. Sintered with

実施例17 B含有合金粉C:25.0%,MO粉:28.5%,C
r粉:0.9%,Ni粉:1.0%,Cu粉:19.0
%,MOB粉:25.3%,C粉:0.3%,を配合し
、振動ボールミル中で2S!間湿式粉砕し、乾燥造粒後
成形し、真空中1200℃で焼結した。
Example 17 B-containing alloy powder C: 25.0%, MO powder: 28.5%, C
r powder: 0.9%, Ni powder: 1.0%, Cu powder: 19.0
%, MOB powder: 25.3%, C powder: 0.3%, and put it in a vibrating ball mill for 2S! After wet pulverization, dry granulation, molding, and sintering at 1200° C. in vacuum.

比較例1 フエロボン粉A:35.0%,MO粉:30.0%,C
r粉:3.0%,Ni粉:3.0%,カーボニルFe粉
:28.7%,C粉:0.3%を配合し、振動ボールミ
ル中で280V間湿式粉砕し、乾燥造粒後成形し、真空
中1200℃で焼結した。
Comparative Example 1 Ferrobon powder A: 35.0%, MO powder: 30.0%, C
R powder: 3.0%, Ni powder: 3.0%, carbonyl Fe powder: 28.7%, C powder: 0.3% were blended, wet milled for 280V in a vibrating ball mill, and after dry granulation. It was molded and sintered at 1200°C in vacuum.

比較例2 B含有合金粉B:42.0%,MO粉:54.7%,N
i粉:3.0%,C粉:0.3%を配合し、振動ボール
ミル中て2濁間湿式粉砕し、乾燥造粒後成形し、真空中
1275℃で焼結した。
Comparative Example 2 B-containing alloy powder B: 42.0%, MO powder: 54.7%, N
I powder: 3.0% and C powder: 0.3% were blended, wet-pulverized for two times in a vibrating ball mill, dried, granulated, molded, and sintered at 1275° C. in vacuum.

比較例3 B含有合金粉D:43.0%,B含有合金粉E:16.
0%,MO粉:25.0%,Cr粉:14.6%,Ni
粉1.0%,C粉:0.4%を配合し、振動ボールミル
中で2満間湿式粉砕し、乾燥造粒後成形し、真空中12
25℃で焼結した。
Comparative Example 3 B-containing alloy powder D: 43.0%, B-containing alloy powder E: 16.
0%, MO powder: 25.0%, Cr powder: 14.6%, Ni
1.0% of powder and 0.4% of C powder were blended, wet-pulverized in a vibrating ball mill for 2 hours, dried and granulated, then molded, and crushed in a vacuum for 12 hours.
It was sintered at 25°C.

) 以上の実施例1〜17、および比較例1〜3に基づ
いて作成した本焼結合金の化学分析値、(MOおよび/
またはW)/Bの原子比、硬質相の量、硬度および抗折
力を第4表に示す。
) The chemical analysis values of the sintered alloys prepared based on the above Examples 1 to 17 and Comparative Examples 1 to 3, (MO and/or
Table 4 shows the atomic ratio of W)/B, amount of hard phase, hardness, and transverse rupture strength.

実施例1〜5は特許請求の範囲1に対応するもので、B
含有量と硬質相の量,硬度,抗折力について示した。
Examples 1 to 5 correspond to claim 1, and B
The content, amount of hard phase, hardness, and transverse rupture strength are shown.

実施例6〜10は特許請求の範囲1に対応するもので、
(MOおよび/またはW)/Bの原子比と硬質相の量,
硬度,抗折力について示した。
Examples 6 to 10 correspond to claim 1,
(MO and/or W)/B atomic ratio and amount of hard phase,
Hardness and transverse rupture strength are shown.

実施例11〜13は、特許請求の範囲1に対応するもの
で、特にCr,Niを比較的多く含有した場合の硬質相
の量,硬度,抗折力について示した。
Examples 11 to 13 correspond to claim 1, and particularly show the amount of hard phase, hardness, and transverse rupture strength when relatively large amounts of Cr and Ni are contained.

実施例14〜17は特許請求の範囲3に対応するもので
、■a族のTi,■a族のVならびにCO,お*ゝよび
Cuを各々含有した場合の硬質相の量,硬度,抗折力に
ついて示した。なお、実施例13は非磁性を目的とした
焼結合金の例として示した。
Examples 14 to 17 correspond to claim 3, and show the amount of hard phase, hardness, and resistance when containing Ti of group a, V of group a, CO, O*, and Cu, respectively. The rupture force was shown. Note that Example 13 was shown as an example of a sintered alloy intended for nonmagnetic properties.

比較例1および3は(MOおよび/またはW)/Bの原
子比の小さい場合について示した。
Comparative Examples 1 and 3 are cases where the atomic ratio of (MO and/or W)/B is small.

比較例2は(MOおよび/またはW)/Bの原子比の大
きい場合について示した。本発明はこれら比較例と比べ
ると、明らかに優れた抗折力を示していることがわかる
Comparative Example 2 shows a case where the atomic ratio of (MO and/or W)/B is large. It can be seen that the present invention exhibits clearly superior transverse rupture strength when compared with these comparative examples.

Claims (1)

【特許請求の範囲】 1 Feを含む複硼化物よりなる硬質相を40〜95重
量%(以下%は重量%)と、該硬質相を結合する結合相
よりなる硬質焼結合金であり、該複硼化物はMxNyB
型(以下、M、Nは金属、X、YはM、Nが化合物を形
成するのに必要な化学量論的な数値を表わす)よりなり
、MはMoおよび/またはWであり、NはFe、および
Cr、Niから選ばれた1種以上の元素よりなり、かつ
硬質相に占めるFeの割合は全硬質相の10〜22%で
あり、結合相はFe、およびCr、Ni、Si、Cから
選ばれた1種以上の元素とよりなり、これらの選ばれた
1種以上の元素の含有量は該硬質焼結合金に対して、C
r0.5〜35%Ni0.5〜35% Si0.03〜4.75% C0.05〜0.95% の範囲であり、その他該硬質焼結合金は不純物元素とし
てのAlが2.85%以下、Oが2.3%以下であり、
かつB3〜8%と残部Feおよび不可避的不純物よりな
る硬質焼結合金であつて、Mo/および/またはW含有
量が(Moおよび/またはW)/Bの原子比で0.75
〜1.25を満足する範囲にあることを特徴とする硬質
焼結合金。 2 Moおよび/またはW含有量が(Moおよび/また
はW)/Bの原子比で0.90〜1.20を満足する範
囲内にある特許請求の範囲第1項記載の硬質焼結合金。 3 Feを含す複硼化物よりなる硬質相を40〜95%
と該硬質相を結合する結合相よりなる硬質焼結合金であ
り、該複硼化物はMxNyB型よりなり、MはMoおよ
び/またはWとTi、V、Nb、Ta、Hf、Zrから
選ばれた1種以上の元素とよりなり、NはFe、および
Cr、Ni、Coから選ばれた1種以上の元素とよりな
り、かつ硬質相に占めるFeの割合は全硬質相の10〜
22%であり、結合相はFe、およびCr、Ni、Si
、C、Co、Cu、Ti、V、Nb、Ta、Hf、Zr
から選ばれた1種以上の元素とよりなり、これらの選ば
れた1種以上の元素の含有量は該硬質焼結合金に対して
Cr0.5〜35%Ni0.5〜35% Si0.03〜4.75% C0.05〜0.95% Co0.5〜35% Cu0.1〜35% Ti、V、Nb、Ta、Hf、Zrの合計が0.5〜1
5%の範囲であり、その他該硬質焼結合金は不純物元素
としてのAlが2.85%以下、Oが2.3%以下であ
り、かつB3〜8%と残部Feおよび不可避的不純物よ
りなる硬質焼結合金であつてMoおよび/またはW含有
量が(Moおよび/またはW)/Bの原子比で0.75
〜1.25を満足する範囲にあることを特徴とする硬質
焼結合金。 4 Moおよび/またはW含有量が(Moおよび/また
はW)/Bの原子比で0.90〜1.20を満足する範
囲内にある特許請求の範囲第3項記載の硬質焼結合金。
[Scope of Claims] 1 A hard sintered alloy comprising 40 to 95% by weight (hereinafter % is weight%) of a hard phase made of a complex boride containing Fe and a binder phase that binds the hard phase, Complex boride is MxNyB
type (hereinafter, M and N are metals, X and Y represent the stoichiometric values necessary for M and N to form a compound), M is Mo and/or W, and N is It is composed of Fe and one or more elements selected from Cr, Ni, and the proportion of Fe in the hard phase is 10 to 22% of the total hard phase, and the binder phase is Fe and Cr, Ni, Si, and one or more elements selected from C, and the content of the one or more selected elements is greater than or equal to C.
r0.5-35%Ni0.5-35%Si0.03-4.75%C0.05-0.95%, and in addition, the hard sintered alloy contains 2.85% Al as an impurity element. Hereinafter, O is 2.3% or less,
and a hard sintered alloy consisting of 3 to 8% B and the balance Fe and unavoidable impurities, and the Mo/and/or W content is 0.75 in the atomic ratio of (Mo and/or W)/B.
1.25. 2. The hard sintered alloy according to claim 1, wherein the Mo and/or W content is within a range satisfying an atomic ratio of (Mo and/or W)/B from 0.90 to 1.20. 3 40 to 95% hard phase consisting of complex boride containing Fe
and a binder phase that binds the hard phase, the complex boride is of the MxNyB type, and M is selected from Mo and/or W and Ti, V, Nb, Ta, Hf, and Zr. N is composed of Fe and one or more elements selected from Cr, Ni, and Co, and the proportion of Fe in the hard phase is 10 to 10% of the total hard phase.
22%, the bonded phase is Fe, and Cr, Ni, Si
, C, Co, Cu, Ti, V, Nb, Ta, Hf, Zr
The content of the selected one or more elements is Cr0.5-35% Ni0.5-35% Si0.03 with respect to the hard sintered alloy. ~4.75% C0.05~0.95% Co0.5~35% Cu0.1~35% Total of Ti, V, Nb, Ta, Hf, and Zr is 0.5~1
In addition, the hard sintered alloy has Al as an impurity element of 2.85% or less, O of 2.3% or less, and B of 3 to 8%, with the balance consisting of Fe and unavoidable impurities. A hard sintered alloy with a Mo and/or W content of (Mo and/or W)/B atomic ratio of 0.75
1.25. 4. The hard sintered alloy according to claim 3, wherein the Mo and/or W content is within a range satisfying the atomic ratio of (Mo and/or W)/B from 0.90 to 1.20.
JP16573881A 1981-10-19 1981-10-19 hard sintered alloy Expired JPS6057499B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16573881A JPS6057499B2 (en) 1981-10-19 1981-10-19 hard sintered alloy
DE19823238555 DE3238555A1 (en) 1981-10-19 1982-10-18 SINTER HARD ALLOY
SE8205907A SE459504B (en) 1981-10-19 1982-10-18 SINTRAD BORID BASED HAIR ALLOY
FR8217394A FR2514788B1 (en) 1981-10-19 1982-10-18 HARD SINTER ALLOY
GB08229892A GB2109409B (en) 1981-10-19 1982-10-19 Sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16573881A JPS6057499B2 (en) 1981-10-19 1981-10-19 hard sintered alloy

Publications (2)

Publication Number Publication Date
JPS5867842A JPS5867842A (en) 1983-04-22
JPS6057499B2 true JPS6057499B2 (en) 1985-12-16

Family

ID=15818133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16573881A Expired JPS6057499B2 (en) 1981-10-19 1981-10-19 hard sintered alloy

Country Status (5)

Country Link
JP (1) JPS6057499B2 (en)
DE (1) DE3238555A1 (en)
FR (1) FR2514788B1 (en)
GB (1) GB2109409B (en)
SE (1) SE459504B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880600A (en) * 1983-05-27 1989-11-14 Ford Motor Company Method of making and using a titanium diboride comprising body
GB2143847B (en) * 1983-07-26 1986-09-24 Us Energy Hard material
US4673550A (en) * 1984-10-23 1987-06-16 Serge Dallaire TiB2 -based materials and process of producing the same
JP2874159B2 (en) * 1986-04-14 1999-03-24 日産自動車株式会社 Rocker arm for internal combustion engine
JPS63162801A (en) * 1986-12-26 1988-07-06 Toyo Kohan Co Ltd Manufacture of screw for resin processing machine
DE3844941C2 (en) * 1987-09-30 1996-07-18 Kobe Steel Ltd Corrosion and wear resistant alloy
DE3833121C2 (en) * 1987-09-30 1996-07-25 Kobe Steel Ltd Corrosion and wear resistant sintered alloy and its use
JPH0211738A (en) * 1988-06-28 1990-01-16 Ngk Spark Plug Co Ltd Ceramic-metal sliding structure
JP2668955B2 (en) * 1988-07-08 1997-10-27 旭硝子株式会社 Double boride-based sintered body and method for producing the same
JPH0478377A (en) * 1990-07-20 1992-03-12 Tokyo Electron Ltd Toggle type gate
JP2660455B2 (en) * 1991-02-08 1997-10-08 東洋鋼鈑株式会社 Heat resistant hard sintered alloy
FR2678286B1 (en) * 1991-06-28 1994-06-17 Sandvik Hard Materials Sa CERMETS BASED ON TRANSITIONAL METALS, THEIR MANUFACTURE AND THEIR APPLICATIONS.
JPH05209247A (en) * 1991-09-21 1993-08-20 Hitachi Metals Ltd Cermet alloy and its production
US7731776B2 (en) 2005-12-02 2010-06-08 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with superior erosion performance
US8323790B2 (en) 2007-11-20 2012-12-04 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with low melting point binder
JP5497540B2 (en) * 2010-06-01 2014-05-21 住友重機械工業株式会社 Method for producing alloy containing M3B2 type dispersion
CN104004953B (en) * 2014-06-08 2016-03-16 湖南人文科技学院 Boride-base cerment of a kind of pair of hard phase complex intensifying and preparation method thereof
CN106222512A (en) * 2016-08-26 2016-12-14 郴州市泰益表面涂层技术有限公司 A kind of polynary boride-based superhard bimetal screw rod and preparation method thereof
EP3650562B1 (en) * 2017-05-11 2023-09-27 Hyperion Materials & Technologies (Sweden) AB An iron tungsten borocarbide body for nuclear shielding applications
CN113755711B (en) * 2021-08-18 2022-05-20 西安理工大学 Preparation method of W-Fe-B hard alloy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2179836A (en) * 1937-09-27 1939-11-14 Hughes Tool Co Hard facing alloy
FR2302347A1 (en) * 1975-02-27 1976-09-24 Toyo Kohan Co Ltd Sintered hard metal alloy of iron, or iron-containing, boride - dispersed through metallic phase
DE2508851A1 (en) * 1975-02-28 1976-09-09 Toyo Kohan Co Ltd Sintered hard metal alloy of iron, or iron-containing, boride - dispersed through metallic phase
US3999952A (en) * 1975-02-28 1976-12-28 Toyo Kohan Co., Ltd. Sintered hard alloy of multiple boride containing iron
DE2829702C3 (en) * 1978-07-06 1982-02-18 Metallgesellschaft Ag, 6000 Frankfurt Nickel-based alloy
US4235630A (en) * 1978-09-05 1980-11-25 Caterpillar Tractor Co. Wear-resistant molybdenum-iron boride alloy and method of making same
DE2846889C2 (en) * 1978-10-27 1985-07-18 Toyo Kohan Co., Ltd., Tokio/Tokyo Alloy powder, process for its manufacture and its use for the manufacture of sintered molded parts
US4365994A (en) * 1979-03-23 1982-12-28 Allied Corporation Complex boride particle containing alloys

Also Published As

Publication number Publication date
DE3238555C2 (en) 1990-12-06
DE3238555A1 (en) 1983-05-11
JPS5867842A (en) 1983-04-22
SE459504B (en) 1989-07-10
FR2514788A1 (en) 1983-04-22
SE8205907L (en) 1983-04-20
GB2109409B (en) 1985-02-13
GB2109409A (en) 1983-06-02
SE8205907D0 (en) 1982-10-18
FR2514788B1 (en) 1987-06-26

Similar Documents

Publication Publication Date Title
JPS6057499B2 (en) hard sintered alloy
JP3717525B2 (en) Hard sintered alloy
US4093454A (en) Nickel-base sintered alloy
JP2660455B2 (en) Heat resistant hard sintered alloy
JP2010504427A (en) Metal powder
JP2010516896A (en) Metal compound
CN101516549A (en) Iron-based powder
JPS63274736A (en) Niobium alloy
JP4149623B2 (en) Double boride hard sintered alloy and screw for resin processing machine using the alloy
JP2001081526A (en) Iron-base cemented carbide and its manufacture
JPS61243152A (en) High magnetic premeability amorphous alloy and its production
JPH03180450A (en) Fe, nd and b type alloy for use for permanent magnet, sintered permanent magnet and its manufacture
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
JP2631791B2 (en) High corrosion resistance, high strength hard sintered alloy
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JP2502322B2 (en) High toughness cermet
JPS63143236A (en) Composite boride sintered body
JPS61295302A (en) Low-alloy iron powder for sintering
JPS6092444A (en) Nonmagnetic sintered hard alloy
JPS58213859A (en) Corrosion-resistant sintered material
JP3603318B2 (en) Double boride based sintered alloy
JP2002038236A (en) Heat-resisting alloy having low thermal expansion and its production method
JPS6119593B2 (en)
JPH0559481A (en) Sintered hard alloy having high hardness
JPH073376A (en) Multiple boride cermet sintered compact and ageing method thereof