JPS6092444A - Nonmagnetic sintered hard alloy - Google Patents
Nonmagnetic sintered hard alloyInfo
- Publication number
- JPS6092444A JPS6092444A JP20178083A JP20178083A JPS6092444A JP S6092444 A JPS6092444 A JP S6092444A JP 20178083 A JP20178083 A JP 20178083A JP 20178083 A JP20178083 A JP 20178083A JP S6092444 A JPS6092444 A JP S6092444A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- amount
- titanium
- strength
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【発明の詳細な説明】 本発明は、非磁性の超硬合金に関するものである。[Detailed description of the invention] The present invention relates to a non-magnetic cemented carbide.
現在、超硬合金は硬度および強度など機械的特性にすぐ
れた材料として広範囲な用途シとイ共せられている。Currently, cemented carbide is used in a wide range of applications as a material with excellent mechanical properties such as hardness and strength.
しかし、超硬合金として最も広く用0られているのは炭
化タングステン基超硬合金であり、これは通常コバルト
を結合材として用いるが、コバルトが強磁性体であるた
めに、これを用いた超硬合金も強磁性体となる。また、
コバルトを結合材とした超硬合金を非磁性体とするため
にコバルトの含有量を減少させても効果がないばかりで
なく、コバルト量の減少に伴って超硬合金の機械的強度
は低下する。However, the most widely used cemented carbide is tungsten carbide-based cemented carbide, which usually uses cobalt as a binder, but since cobalt is a ferromagnetic material, Hard metals also become ferromagnetic. Also,
Reducing the cobalt content to make a cemented carbide using cobalt as a binder non-magnetic is not only ineffective, but also reduces the mechanical strength of the cemented carbide as the amount of cobalt decreases. .
そこで超硬合金の用途によって非磁性が要求される場合
は、ニッケルを結合材とし炭化タングステン中の炭素量
を理論値より少なくしてニッケル中にタングステンを溶
は込ませ、キューリ一点を降下させることにより非磁性
とする方法、また、銅−ニッケル合金を結合相に用いる
方法などが試みられている。Therefore, if non-magnetism is required depending on the application of the cemented carbide, it is necessary to use nickel as a binder, reduce the amount of carbon in tungsten carbide than the theoretical value, melt tungsten into the nickel, and lower the Curie point. Attempts have been made to make the material non-magnetic, and to use a copper-nickel alloy as a binder phase.
しかしながら、上記の方法によって得られた該合金は高
温強度、耐蝕性または耐酸性の点において必ずしも満足
すべきものではない。However, the alloy obtained by the above method is not necessarily satisfactory in high temperature strength, corrosion resistance, or acid resistance.
本発明は、上記した問題点に鑑み研究を重ねてなしたも
ので、超硬合金のもつ特性すなわち一高温強度など機械
的特性を犠牲にすることな(、かつ耐蝕性または耐酸化
性にすぐれた非磁性の超硬合金を提出することを目的と
するものである。The present invention was developed after repeated research in view of the above-mentioned problems, and it has been developed to improve the properties of cemented carbide, without sacrificing mechanical properties such as high-temperature strength (and excellent corrosion resistance or oxidation resistance). The purpose of this study is to provide a non-magnetic cemented carbide.
本発明は、周期律表の48.58.5a族の遷移金属か
らなる炭化物、炭窒化物および窒化物の1種または2種
以上に、重量比で7〜20%のチタンを含むヂタンーニ
ッケル合金を0.5〜4096を含む非磁性超硬合金で
ある。The present invention provides a ditanium-nickel alloy containing titanium in a weight ratio of 7 to 20% in one or more of carbides, carbonitrides, and nitrides made of transition metals in group 48.58.5a of the periodic table. It is a non-magnetic cemented carbide containing 0.5 to 4096.
以下、」1記の如くなした理由について説明する。Below, the reason for doing as described in ``1'' will be explained.
チタンは周知の通り耐蝕性にすぐれ、しかも融点が鉄族
金属よりも高いために、これを含有せしめた超硬合金は
耐蝕性にすぐれ、かつ高温強度も」1昇する。また耐酸
化性においても合金中にチタンがイj存すると、その表
面にチタン酸化物が形成されて合金内部への酸化の進行
が遅れるため結果的に合金全体の耐酸化性が改善される
。As is well known, titanium has excellent corrosion resistance and has a higher melting point than iron group metals, so a cemented carbide containing titanium has excellent corrosion resistance and also has an increased high temperature strength by 1. In terms of oxidation resistance, when titanium is present in the alloy, titanium oxide is formed on the surface of the alloy, delaying the progress of oxidation into the interior of the alloy, and as a result, the oxidation resistance of the entire alloy is improved.
また、該合金が非磁性となるのは次のような事由による
ものと推察される。すなわち、第1図のニツケルーチタ
ンニ元状態図に示すように、チタン量が増すにつれてキ
ューリ一点は降下(磁気変態曲線A)L、これが重量比
で7%を越えると常温時に非磁性となる。また添加した
チタンの一部は原料のタングステン中に含まれる遊離炭
素を吸収して炭化チタンとなる。したがって生成した炭
化チタンは硬質物質の役割を果す。Further, it is presumed that the reason why the alloy becomes non-magnetic is due to the following reasons. In other words, as shown in the original phase diagram of Nickel-Titanium in Figure 1, as the amount of titanium increases, the Curie point drops (magnetic transformation curve A) L, and when this exceeds 7% by weight, it becomes non-magnetic at room temperature. . Further, a part of the added titanium absorbs free carbon contained in the raw material tungsten and becomes titanium carbide. Therefore, the produced titanium carbide plays the role of a hard material.
然して、結合相中のチタン量が7%より少ないと該合金
は磁性を示すようになり、これが209V;を越えると
異常相が発生して合金の強度に悪影響をおよぼす。これ
らのことから結合相中のチタンの量は7〜20%の範囲
内とする必要がある。なお、チタンの添加方法は、チタ
ン粉末または水素化チタン粉末など任意に用いてよい。However, if the amount of titanium in the binder phase is less than 7%, the alloy will exhibit magnetism, and if it exceeds 209 V, an abnormal phase will occur, which will adversely affect the strength of the alloy. For these reasons, the amount of titanium in the binder phase must be within the range of 7 to 20%. Note that titanium may be added by any method such as titanium powder or titanium hydride powder.
また、チタン−ニッケル結合相の合金中に占める割合は
、重量比で0.5 %以下であれば該合金の焼結性が悪
化すること、ならびに合金の機械的強度が劣化するし、
合金中の結合相が40%を越えると硬度が著しく低下す
る。Furthermore, if the proportion of the titanium-nickel binder phase in the alloy is less than 0.5% by weight, the sinterability of the alloy will deteriorate and the mechanical strength of the alloy will deteriorate.
If the binder phase in the alloy exceeds 40%, the hardness decreases significantly.
本発明は、」1記したようにチタン−ニッケル合金を結
合材として用いることによって非磁性化および高温強度
などの機械的特性または耐蝕性あるいは耐酸化性の改善
は、炭化タングステンを基材とする場合は勿論のこと炭
化タングステン以外の4 ;1 、5 ;1 、5 a
族の遷移金属からなる炭化物、炭窒化物および窒化物を
基材とした場合にも+iiJ記したのと同様の効果が得
られる。As described in 1., the present invention provides non-magnetization and improvement of mechanical properties such as high-temperature strength, corrosion resistance, and oxidation resistance by using a titanium-nickel alloy as a binder. Of course, 4 ; 1 , 5 ; 1 , 5 a other than tungsten carbide
Effects similar to those described in +iiJ can also be obtained when carbides, carbonitrides, and nitrides made of transition metals of the group A are used as base materials.
以下実施例を述べる。Examples will be described below.
実施例1
全炭素ff16.20%、平均粒度3〜4μの炭化タン
グステン粉末83g、チタン粉末2g、ニッケル粉末1
5gに溶媒を加え、ボールミルにて約48時間混合した
後乾燥させ、プレス成形し、次いで1400℃にて60
分間真空焼結した。この焼結された合金は磁性を含まず
、合金組織は硬質相として炭化タングステン、炭化チタ
ンを含み、結合相はニッケル、チタン、タングステン、
炭素などであり、η相、遊離炭素などの有害な相を含ま
ず良好なものであった。Example 1 Total carbon ff 16.20%, average particle size 3-4μ tungsten carbide powder 83g, titanium powder 2g, nickel powder 1
A solvent was added to 5 g, mixed in a ball mill for about 48 hours, dried, press-molded, and then heated at 1400°C for 60 hours.
Vacuum sintered for minutes. This sintered alloy is non-magnetic, and the alloy structure contains tungsten carbide and titanium carbide as hard phases, and the binder phase is nickel, titanium, tungsten,
It was a good product, containing no harmful phases such as η phase or free carbon.
また、抗折力は240 kq /rtra、硬度はHR
As2.8であった。Also, transverse rupture strength is 240 kq/rtra, hardness is HR
As was 2.8.
実施例2
上記実施例1に示す方法により硬質炭化物とNi −T
iの焼結体を第1表に示す組成で製作した。Example 2 Hard carbide and Ni-T were prepared by the method shown in Example 1 above.
A sintered body of i was manufactured with the composition shown in Table 1.
第1表
上記第1表において、試料黒1〜9は本発明合金の組成
を示したもので、試料7alQ、11は本発明合金と比
較のために用いた合金組成である。これらについて物性
および磁性を測定した結果を以トーの第2表に示す。Table 1 In Table 1 above, Samples 1 to 9 indicate the compositions of the alloys of the present invention, and Samples 7alQ and 11 have alloy compositions used for comparison with the alloys of the present invention. The results of measuring the physical properties and magnetism of these materials are shown in Table 2 below.
第2表
第2表から明らかなように、本発明合金はいずれも磁性
がなく、しかも抗折力および硬度など共にすぐれた値を
示している。As is clear from Table 2, all of the alloys of the present invention have no magnetism and exhibit excellent values in terms of transverse rupture strength and hardness.
したがって本発明による超硬合金は、いずれもが結合相
によって磁性が変化し、また炭化物の性質により、ある
いは炭化物と結合相の濡れ性などによって特性値は互い
に多少相違するがすぐれた非磁性の超硬合金となる。Therefore, all of the cemented carbides according to the present invention have excellent non-magnetic super alloys, although their magnetic properties change depending on the binder phase, and their characteristic values differ slightly depending on the nature of the carbide or the wettability of the carbide and the binder phase. It becomes a hard alloy.
以上説明したように、本発明による合金は炭化タングス
テンなどの基材に所定量のチタン−ニッケル合金を含有
させることによって非磁性の超硬合金となるもので、高
温強度、耐蝕性および耐酸化性にもすぐれた特性を示す
ものである。As explained above, the alloy according to the present invention becomes a non-magnetic cemented carbide by incorporating a predetermined amount of titanium-nickel alloy into a base material such as tungsten carbide, and has excellent high-temperature strength, corrosion resistance, and oxidation resistance. It also shows excellent properties.
第1図はニッケルーチタン二元状態図である。 A−−一磁気変態曲線 特許出願人 FIG. 1 is a nickel-titanium binary phase diagram. A--Magnetic transformation curve patent applicant
Claims (1)
金属からなる炭化物、炭窒化物および窒化物の1種また
は2種以」二に6、重量比で7〜2096のチタンを含
むチタン一二・yケル合金を0.5〜40%含むことを
特徴とする非磁性超硬合金。(1) Contains one or more carbides, carbonitrides, and nitrides consisting of transition metals in groups 48, 5a, and 5a of the periodic table, and contains titanium in a weight ratio of 7 to 2096 A non-magnetic cemented carbide characterized by containing 0.5 to 40% of titanium-12-ykel alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20178083A JPS6092444A (en) | 1983-10-26 | 1983-10-26 | Nonmagnetic sintered hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20178083A JPS6092444A (en) | 1983-10-26 | 1983-10-26 | Nonmagnetic sintered hard alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6092444A true JPS6092444A (en) | 1985-05-24 |
JPS6252026B2 JPS6252026B2 (en) | 1987-11-02 |
Family
ID=16446817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20178083A Granted JPS6092444A (en) | 1983-10-26 | 1983-10-26 | Nonmagnetic sintered hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6092444A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002086042A (en) * | 2000-09-13 | 2002-03-26 | Dijet Ind Co Ltd | Coating tool |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0280027U (en) * | 1988-12-08 | 1990-06-20 | ||
JP6655925B2 (en) | 2015-09-24 | 2020-03-04 | 東京エレクトロン株式会社 | Stage device and probe device |
-
1983
- 1983-10-26 JP JP20178083A patent/JPS6092444A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002086042A (en) * | 2000-09-13 | 2002-03-26 | Dijet Ind Co Ltd | Coating tool |
Also Published As
Publication number | Publication date |
---|---|
JPS6252026B2 (en) | 1987-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4684405A (en) | Sintered tungsten carbide material and manufacturing method | |
JP3717525B2 (en) | Hard sintered alloy | |
JP2660455B2 (en) | Heat resistant hard sintered alloy | |
JPS5867842A (en) | Hard sintered alloy | |
JPS5916952A (en) | Fe-based sintered material excellent in wear resistance | |
US3677722A (en) | Cemented carbide composition and method of preparation | |
JPH04501438A (en) | carbide metal body | |
EP0169054A2 (en) | Composite materials and products | |
JPS6092444A (en) | Nonmagnetic sintered hard alloy | |
JPH01261270A (en) | Metal-containing titanium carbonitride-chromium carbide ceramic | |
JPH073357A (en) | High hardness cemented carbide excellent in oxidation resistance | |
US5935349A (en) | Intermetallic nickel-aluminum base alloy and material formed of the alloy | |
JPS6248745B2 (en) | ||
JPS6117895B2 (en) | ||
JPH06279913A (en) | Composition for metal injection molding | |
JPS5949297B2 (en) | Hard sintered alloy for decorative parts | |
JPS62211340A (en) | Corrosion resistant hard alloy | |
JP2502322B2 (en) | High toughness cermet | |
JPS613861A (en) | Sintered heat-and wear-resistant hard alloy for hot working tool | |
JPH08199284A (en) | Sintered hard alloy with high corrosion resistance and high wear resistance | |
JPS5935418B2 (en) | Production method of titanium nitride-based hard sintered alloy for decorative parts | |
CA1078225A (en) | Metallurgical composition embodying hard metal carbides, and method of making | |
JPH03173739A (en) | Sintered hard alloy having excellent strength and corrosion resistance | |
JPS5948948B2 (en) | Sintered hard alloy with excellent corrosion resistance | |
JPS6112848A (en) | Zirconium diboride sintered body |