JPS5916952A - Fe-based sintered material excellent in wear resistance - Google Patents

Fe-based sintered material excellent in wear resistance

Info

Publication number
JPS5916952A
JPS5916952A JP12626482A JP12626482A JPS5916952A JP S5916952 A JPS5916952 A JP S5916952A JP 12626482 A JP12626482 A JP 12626482A JP 12626482 A JP12626482 A JP 12626482A JP S5916952 A JPS5916952 A JP S5916952A
Authority
JP
Japan
Prior art keywords
carbides
wear resistance
area ratio
particle size
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12626482A
Other languages
Japanese (ja)
Other versions
JPH0115579B2 (en
Inventor
Masayuki Iijima
正幸 飯島
Hidetoshi Akutsu
阿久津 英俊
Kazuyuki Hoshino
和之 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP12626482A priority Critical patent/JPS5916952A/en
Publication of JPS5916952A publication Critical patent/JPS5916952A/en
Publication of JPH0115579B2 publication Critical patent/JPH0115579B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the Fe-based sintered material useful as a structural element provided with excellent wear resistance, high strength and high toughness, by specifying the contents of Cr and C as main components, and the surface ratio, particle size and density ratio of carbides. CONSTITUTION:The Fe-based sintered material comprising 4-25wt% Cr, 1.5- 5% C, 0.05-2% one or more of P, B and Si, and the balance Fe and inevitable impurities. It has the structure that carbides having Vickers hardness above 1,200 are dispersed in the martensite-based matrix at a surface ratio above 15%. Said carbides are controlled so that a part having an averge particle size above 5mu occupies 10% or more, by surface ratio, of the entire body of the carbides and that a density ratio above 92% is held. This sintered material is let optionally contain 0.1-20% one or more of Mo, W, Nb, Ti and V or further 0.1-10% one or more of Ni, Co, Cu and Mn. This sintered material when used as the structural element of a construction or mining machinery exhibits excellent properties.

Description

【発明の詳細な説明】 この発明は、すぐれた耐摩耗性を有し、特に苛酷な摩耗
条件である土砂摩耗や混抄摩耗にさらされる建設機械や
鉱山機械の構造卯月の製造に用いるのに適したFe基焼
結材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has excellent wear resistance and is particularly suitable for use in manufacturing construction machines and mining machines that are exposed to severe wear conditions such as dirt wear and mixed paper wear. This invention relates to Fe-based sintered materials.

従来、この種の構造部材の製造には、クロム鋳鉄やOr
−Mo鋳鉄、さらにOr−MO−V鋳鉄などの白銑系鋳
鉄が使用されているが、これらの白銑系鋳鉄は、いずれ
も硬くて脆い炭化物が針状、板状。
Traditionally, chrome cast iron and Or
White pig iron cast irons such as -Mo cast iron and Or-MO-V cast iron are used, but these white pig iron cast irons all have hard and brittle carbides in the form of needles or plates.

あるいは網目状に析出した組織をもつものであるため、
高硬度をもつものの強度および靭性が著しく劣り、この
結果実用に際しては比較的短かい使用寿命しか示・さす
、また鋳造性もきわめて悪く、巣の発生の著しいもので
あるため、安定的量産性に欠けるという問題点があるも
のである。
Or, because it has a network-like precipitated structure,
Although it has high hardness, its strength and toughness are extremely poor, and as a result, it has a relatively short service life in practical use, and its castability is also extremely poor and the formation of cavities is significant, making it difficult to achieve stable mass production. There is a problem that it is missing.

一方、これら構造部拐の製造に際して、摩耗部分に耐摩
耗性のすぐれた炭化タングステン基超硬合金や炭化チタ
ン基サーメットなどのチップ全ろう付けする試みもなさ
れているが、これらの桐材は高価であるばかシでなく、
耐衝撃性などの問題があり、さらにろう付は強度にも問
題があって十分満足する信頼性が得られていないのが現
状である。
On the other hand, when manufacturing these structural parts, attempts have been made to braze the entire chip to wear parts using materials such as tungsten carbide-based cemented carbide or titanium carbide-based cermet, which have excellent wear resistance, but these paulownia materials are expensive. Not an idiot who is
There are problems such as impact resistance, and brazing also has problems with strength, so it is currently not possible to obtain sufficient reliability.

そこで、本発明者等は、上述のような観点から、すぐれ
た耐摩耗性を有し、特に土砂摩耗や混抄摩耗などの苛酷
な摩耗条件にさらされる構造部材の製造に適した桐材を
、安定的量産性の可能な粉末冶金法を用いて、コスト安
く得べく研究を行なった結果、焼結材料を、重量係で、
Cr:4〜25チ。
Therefore, from the above-mentioned viewpoint, the present inventors developed paulownia wood, which has excellent abrasion resistance and is particularly suitable for manufacturing structural members that are exposed to severe abrasion conditions such as sand abrasion and paper mixed abrasion. As a result of conducting research to obtain low-cost materials using powder metallurgy that allows for stable mass production, we have found that sintered materials can be made by weight,
Cr: 4 to 25 inches.

C:15〜5LI)、P、B、およびSiのうちの1種
または2種以上:005〜2係を含有し、さらに必要に
応じてMo、 W 、 Nb、 Ti、  V 、およ
びZrのうちの1種または2種以上:01〜20係と、
111゜CO,Cu、およびMnのうちの1種または2
種以上二01〜10%のいずれか、または両方を含有し
、残りがFeと不可避不純物からなる組成を有すると共
に、主としてマルテンサイトからなる素地にビッカース
硬さで1200以上を有する炭化物が面積比で15’l
f以上分散した組織を有し、かつ前記炭化物のうち、炭
化物全体に対する面積比で101以上が平均粒径:5μ
m以上を有する炭化物で占められ、さらに92%以上の
密度比を有するもので構成すると、前記Fe基焼結材料
においては、上記炭化物によってすぐれた耐摩耗性が確
保され、また上記マルテンサイト素地および密度比によ
って高強度および高靭性が確保されるようになり、した
がって、このFe基焼結材料を上記のような苛酷な摩耗
環境下で使用した場合、著しく長期に亘ってすぐれた性
能を発揮するようになるという知見を得たのである。
C: 15-5LI), P, B, and one or more of Si: 005-2, and if necessary, one of Mo, W, Nb, Ti, V, and Zr. One or more types of: 01-20 staff,
111゜One or two of CO, Cu, and Mn
It has a composition containing either or both of 201% to 10% of 20% to 10%, with the remainder consisting of Fe and unavoidable impurities, and has a carbide having a Vickers hardness of 1200 or more on a substrate mainly consisting of martensite in terms of area ratio. 15'l
It has a structure in which f or more is dispersed, and among the carbides, an area ratio of 101 or more to the whole carbide has an average particle size of 5μ
When the Fe-based sintered material is composed of carbides having a density of m or more and a density ratio of 92% or more, the carbide ensures excellent wear resistance, and the martensitic matrix and The density ratio ensures high strength and high toughness, and therefore, when this Fe-based sintered material is used under severe wear environments such as those mentioned above, it exhibits excellent long-term performance. I have gained knowledge that this will happen.

この発明は、上記知見にもとづいてなされたものであっ
て、成分組成、炭化物の面積比、および密度比を上記の
通シに限定した理由を以下に説明する。
This invention has been made based on the above findings, and the reason why the component composition, the area ratio of carbides, and the density ratio are limited to the above-mentioned values will be explained below.

A、成分組成 い−) C C成分には、素地に固溶して、これを強化すると共に、
Or、さらに必要に応じて含有されたMo。
A. Ingredient composition -) C In the C component, as well as solid solution in the base material and strengthen it,
Or, and Mo contained as needed.

W、 Nb、 Ti、  V、およびZrと結合してビ
ッカース硬さで1200以上を有する硬い炭化物を形成
して材料の耐摩耗性を向上させる作用があるが、その含
有量が1.5%未満では、素地中に分散析出する炭化物
の量が少なすぎて、全体面積比で15係未満となると共
に、5μm以上の平均粒径をもった炭化物の量も炭化物
全体に対する面積比で10係未満となってし捷い、土砂
などによる摩耗が著しく、所望のすぐれた耐摩耗性を確
保することができず、さらに素地を構成するマルテンサ
イトの割合も全体面積比で70%未満となってしまって
所望の強度および耐摩耗性を確保することができず、一
方5%を越えて含有させると、材料が極端に脆化するよ
うになって所望の強度および靭性を確保するのが困難に
なることから、その含有量を15〜5係と定めた。
It combines with W, Nb, Ti, V, and Zr to form a hard carbide with a Vickers hardness of 1200 or more and improves the wear resistance of the material, but its content is less than 1.5%. In this case, the amount of carbides dispersed and precipitated in the matrix is so small that the total area ratio is less than 15%, and the amount of carbides with an average particle size of 5 μm or more is also less than 10% in area ratio to the total carbide. The material became brittle and suffered significant abrasion due to dirt and sand, making it impossible to secure the desired excellent abrasion resistance, and furthermore, the proportion of martensite that made up the base material was less than 70% of the total area. Desired strength and wear resistance cannot be secured, while if the content exceeds 5%, the material becomes extremely brittle, making it difficult to secure desired strength and toughness. Therefore, the content was determined to be 15 to 5.

(b)  cr Or酸成分は、素地に固溶して、これを強化すると共に
、上記のようにCと結合して高硬度を有するOr炭化物
を形成し、かつMo、 W、 Nb、 Ti、 V。
(b) The crOr acid component is dissolved in the base material to strengthen it, and as described above, combines with C to form an Or carbide having high hardness, and contains Mo, W, Nb, Ti, V.

およびZrを含有する場合には、これと複炭化゛物を形
成し、もって相料の耐摩耗性を向上させる作用があるが
、その含有量が4チ未満では、C成分の場合と同様に所
定の炭化物を所定の量、分散析出させることができず、
一方25係を越えて含有させると、C成分の場合と同様
に材料が脆化するようになることから、その含有量を4
〜25qbと定めた。
When it contains Zr and Zr, it forms a double carbide with this, which has the effect of improving the wear resistance of the phase material, but if the content is less than 4%, the same effect as in the case of the C component occurs. Unable to disperse and precipitate a specified amount of carbide,
On the other hand, if the content exceeds 25%, the material becomes brittle as in the case of C component, so the content should be reduced to 4%.
It was determined to be ~25qb.

(C)P、B、およびSi これらの成分には焼結性を著しく改善して、材料を緻密
化し、かつ素地中に固溶し、もって強度を向上させる作
用があるが、その含有量が0.05係未満では前記作用
に所望の改善効果が得られず、一方2係を越えて含有さ
せると焼結時の液相の量が多くなりすぎて形状変形が生
ずるようになると共に靭性が逆に低下するようになるこ
とから、その含有量を、0.05〜2係と定めた。
(C) P, B, and Si These components have the effect of significantly improving sinterability, densifying the material, and solidly dissolving in the base material, thereby improving strength. If the content is less than 0.05, the desired improvement effect on the above action cannot be obtained, while if the content exceeds 2, the amount of liquid phase during sintering becomes too large, causing shape deformation and decreasing toughness. On the contrary, the content was determined to be 0.05 to 2.

(d)  Mo、 W 、 Nb、 Ti、  V 、
およびZrこれらの成分には、素地に固溶して、これを
強化するほか、Cと結合してきわめて硬い炭化物および
複炭化物を形成し、もって桐材の耐摩耗性を一段と向上
させる作用があるので、必要に応じて含有させるが、そ
の含有量が0.1%未満では所望の耐摩耗性向上効果が
得られず、一方20atjを越えて含有させると相料に
脆化傾向が現われるようになることから、その含有量全
0.1〜20チと定めた。
(d) Mo, W, Nb, Ti, V,
and Zr These components not only solidly dissolve in the base material and strengthen it, but also combine with C to form extremely hard carbides and double carbides, thereby further improving the wear resistance of paulownia wood. Therefore, it is included as necessary, but if the content is less than 0.1%, the desired effect of improving wear resistance cannot be obtained, while if it is included in excess of 20atj, the phase material tends to become brittle. Therefore, the total content was determined to be 0.1 to 20 inches.

(cL)  Ni、 Co、 Cu、 およびMnこれ
らの成分には、素地に固溶して、これ’t 一段と強化
し、かつ材料の靭性を著しく向上させる作用があるので
、特に強度および靭性が要求される場合に必要に応じて
含有させるが、その含有量が0.1%未満では前記作用
に所望の向上効果が得られず、一方10%’を越えて含
有させてもよシ一層の向上効果は現われないことから、
経済性をも考慮して、その含有量’i 0.1〜10%
と定めた。
(cL) Ni, Co, Cu, and Mn These components have the effect of forming a solid solution in the base material, further strengthening it, and significantly improving the toughness of the material, so they are suitable for materials with particular requirements for strength and toughness. However, if the content is less than 0.1%, the desired effect of improving the above action cannot be obtained, but on the other hand, if the content exceeds 10%, further improvement may be obtained. Since no effect appears,
Taking economic efficiency into consideration, the content 'i 0.1-10%
It was determined that

B、密度比 密度比が92%未満では、空孔寝過に原因する剥離摩耗
が生ずるようになるばかりでなく、所望の高強度を確保
することが困難となることから、密度比の下限値′ff
:92%と定めた。
B. Density Ratio If the density ratio is less than 92%, not only will exfoliation wear caused by overfilling of pores occur, but it will also be difficult to secure the desired high strength, so the lower limit of the density ratio 'ff
: Set as 92%.

つぎに、この発明のFe基焼結椙桐材実施例により具体
的に説明する。
Next, the present invention will be specifically explained using an example of the Fe-based sintered paulownia wood material.

実施例 原料粉末として、粒度−100meshのFe粉末、い
ずれも粒度−100meshを有し、かつCr含有量が
それぞれ5チ、13係、25壬、35チ、および65係
の5種のFe −Or合金粉末、同一100meshの
カーボン粉末、いずれも平均粒径:3μmを有するMO
C粉末 Ni粉末、W粉末、およびCOC粉末いずれも
粒度−150meshのTIC粉末、VC粉末、 N1
)C粉末、およびWC粉末、同一100meshのCu
粉末。
Examples of raw material powders include Fe powder with a particle size of -100 mesh, and five types of Fe-Or, all of which have a particle size of -100 mesh, and have Cr contents of 5, 13, 25, 35, and 65, respectively. Alloy powder, carbon powder of the same 100 mesh, both MO with average particle size: 3 μm
C powder Ni powder, W powder, and COC powder all have a particle size of -150 mesh TIC powder, VC powder, N1
) C powder, WC powder, same 100 mesh Cu
powder.

同一100meshのFe−OrFe−0r−合金(C
!r:13%。
Fe-OrFe-0r-alloy (C
! r: 13%.

Mo:1%、Nbニア%含有)粉末、同一100meS
hのFe−Zr合金(Zr:60%含有)粉末、同一1
00meshのFe−Mn合金(Mnニア5%含有)粉
末、および同一100meshのFe −Cr −Mn
 −Mo−Ni合金(Or : 10%。
Mo: 1%, Nb nia% content) powder, same 100meS
h Fe-Zr alloy (Zr: 60% content) powder, same 1
00 mesh Fe-Mn alloy (containing 5% Mn nia) powder and the same 100 mesh Fe-Cr-Mn
-Mo-Ni alloy (Or: 10%.

Mn: l %、 Mo: 1 %、 Ni: 3%含
有)粉末、さらにいずれも同一100 meshのFe
−P合金(P:27係含有)粉末、Fe−B合金(B:
17%含有)粉末、Ni −P合金(P:12係含有)
粉末、およびFe−81合金(Si:42%含有)粉末
を用意し、これら原料粉末をそれぞれ第1表に示される
配合組成に配合し、湿式ボールミルにて混合し、乾燥し
た後、4〜6ton/mの圧力にて圧粉体に成形し、つ
いでこの圧粉体を真空中、1030℃〜1200℃の温
度範囲内の所定温度で焼結し、引続いて焼結後850〜
1030℃の温度範囲内の所定温度から油焼入れし、最
終的に150〜250℃の温度範囲内の所定温度で焼戻
し処理を行なうことによって、実質的に配合組成と同一
の成分組成をもった本発明焼結合金1〜49をそれぞれ
製造した。
(containing Mn: 1%, Mo: 1%, Ni: 3%) powder, and also Fe of the same 100 mesh
-P alloy (P: 27 content) powder, Fe-B alloy (B:
(17% content) powder, Ni-P alloy (P:12% content)
Powder and Fe-81 alloy (Si: 42% content) powder were prepared, and these raw material powders were blended into the composition shown in Table 1, mixed in a wet ball mill, dried, and then 4 to 6 tons The green compact is formed into a compact at a pressure of 1,030°C to 1,200°C in a vacuum, and then sintered at a predetermined temperature within a temperature range of 850°C to 1,200°C after sintering.
By oil quenching from a predetermined temperature within the temperature range of 1030°C and finally tempering at a predetermined temperature within the temperature range of 150 to 250°C, a book with substantially the same composition as the blended composition is produced. Invention sintered alloys 1 to 49 were produced, respectively.

つぎに、この結果得られた本発明焼結合金1〜49につ
いて、密度比、炭化物面積比、平均粒径: 5 /l 
m以上を有する炭化物の炭化物全体に占める面積比およ
びビッカース硬さを測定すると共に、共づり形式で、粒
度−30meshの土砂を30容量係含有する泥水中、
荷重: 5 Kg / cnl 、回転速度=200 
r−T’1m、+試験時間:20時間の条件で摩耗試験
を行ない、そ′の摩耗深さを測定した。これらの測定結
果を第2表に示した。また第2表には比較の目的で従来
Or鋳鉄(C: 3.3 %、 Si:1.7tI)。
Next, regarding the resulting sintered alloys 1 to 49 of the present invention, the density ratio, carbide area ratio, and average grain size: 5/l
In addition to measuring the area ratio and Vickers hardness of carbides having a particle size of 1.0 m or more to the whole carbide, in muddy water containing 30 volumetric volumes of earth and sand with a grain size of -30 mesh,
Load: 5 Kg/cnl, rotation speed = 200
A wear test was conducted under the conditions of r-T'1 m, +test time: 20 hours, and the wear depth was measured. The results of these measurements are shown in Table 2. Table 2 also shows conventional Or cast iron (C: 3.3%, Si: 1.7tI) for comparison purposes.

Mn:Q、9%、Or:1.5係含有)の同一条件によ
る摩耗試験結果も示した。
The wear test results under the same conditions for Mn:Q, 9%, Or: 1.5% are also shown.

第2表に示される結果から、本発明焼結合金1〜49は
、いずれも従来Or鋳鉄に比して著しくすぐれた耐摩耗
性を有し、かつ高強度、高硬度、および高靭性をもつこ
とが明らかである。
From the results shown in Table 2, all of the sintered alloys 1 to 49 of the present invention have significantly superior wear resistance compared to conventional Or cast iron, and also have high strength, high hardness, and high toughness. That is clear.

上述のように、この発明の焼結桐材は、すぐれた耐摩耗
性を有し、かつ高強度および高靭性を有するので、これ
らの特性が要求される分野での使用は勿論のこと、特に
土砂摩耗や混抄摩耗などの苛酷な摩耗環境にさらされる
建設機械や鉱山機械の構造部月として使用した場合にも
著しく長期に亘ってすぐれた性能を発揮するのである。
As mentioned above, the sintered paulownia material of the present invention has excellent wear resistance, high strength, and high toughness, so it can of course be used in fields that require these properties, and especially Even when used in the structural parts of construction machinery and mining machinery, which are exposed to severe abrasion environments such as soil abrasion and mixed paper abrasion, it exhibits excellent performance over an extremely long period of time.

出願人−三菱金属株式会社Applicant - Mitsubishi Metals Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)  Or: 4〜25 %、  O: 1.5〜
5 %、 P、 B。 およびSlのうちの1種または2種以上:0.05〜2
係を含有し、残りがFeと不可避不純物からなる組成C
以上重量%)含有すると共に、主としてマルテンサイト
からなる素地にビッカース硬さで1200以上を有する
炭化物が面積比で15係以上分散した組織を有し、かつ
前記炭化物のうち、炭化物全体に対する面積比で10係
以上が平均粒径゛5μm以上を有する炭化物で占められ
、さらに92壬以上の密度比を有することを特徴とする
耐摩耗性にすぐれたFe基焼結材料。
(1) Or: 4-25%, O: 1.5-
5%, P, B. and one or more of Sl: 0.05-2
Composition C containing Fe and the remainder consisting of Fe and unavoidable impurities
% by weight or more), and has a structure in which carbides having a Vickers hardness of 1200 or more are dispersed in an area ratio of 15 or more in a matrix mainly consisting of martensite, and among the carbides, the area ratio to the whole carbide is An Fe-based sintered material having excellent wear resistance, characterized in that a ratio of 10 or more is occupied by carbide having an average grain size of 5 μm or more, and further has a density ratio of 92 or more.
(2)Or: 4〜25 %、 C: 1.5〜5 %
、 P、  B。 およびSlのうちの1種または2種以上: 0.05〜
2eI)?:金含有、さらにMo、  W 、 Nb、
 Ti、 V 、およびZrのうちの1種または2種以
上二〇、1〜20%を含有し、残りがFeと不可避不純
物からなる組成(以上重量%)を有すると共に、主とし
てマルテンサイトからなる素地にビッカース硬さで12
00以上を有する炭化物が面積比で15%以上分散した
組織を有し、かつ前記炭化物のうち、炭化物全体に対す
る面積比で10%以上が平均粒径:5μm以上を有する
炭化物で占められ、さら[92%以上の密度比を有する
こと全特徴とする耐摩耗性にすぐれたFθ基焼結拐桐材
(2) Or: 4-25%, C: 1.5-5%
, P, B. and one or more of Sl: 0.05~
2eI)? : Contains gold, further contains Mo, W, Nb,
A base material containing 1 to 20% of one or more of Ti, V, and Zr, with the remainder consisting of Fe and unavoidable impurities (weight percent), and mainly consisting of martensite. Vickers hardness is 12
It has a structure in which carbides having 00 or more are dispersed in an area ratio of 15% or more, and among the carbides, 10% or more in area ratio of the entire carbide is occupied by carbides having an average particle size of 5 μm or more, and [ Fθ-based sintered paulownia material with excellent wear resistance, characterized by having a density ratio of 92% or more
(3)Cr:4〜25%、 C: 1.5〜5%、 P
、 B。 およびSiのうちの1種または2種以上二〇、05〜2
係を含有し、さらにNi、 Co、 Cu、およびMn
のうちの1種または2種以上:o、1〜10%を含有し
、残シがFeと不可避不純物からなる組成(以上重量%
)含有すると共に、主としてマルテンサイトからなる素
地にビッカース硬さで1200以上を有する炭化物が面
積比で15係以上分散した組織を有し、かつ前記炭化物
のうち、炭化物全体に対する面積比で10係以上が平均
粒径:5μm以上を有する炭化物で占められ、さらに9
2係以上の密度比を有することを特徴とする耐摩耗性に
すぐれたFe基焼結拐桐材 (/l)  Or: 4〜25%、C:L5〜5%、P
、B。 およびSlのうぢの1種または2種以上:0.05〜2
%を含有し、さらにMo、 W 、 Nb、 Ti、 
 V 、およびZrのうちの1種または2種以上:o1
〜2o係と* Ni−、Co、 Cu、およびM]1の
うちの1種寸たは2種以上;01〜10%とを含有し、
残9がFeと不可避不純物からなる組成(以上重量係)
ヲ有すると共に、主としてマルテンサイトからなる素地
にビッカース硬さで1200以上を有する炭化物が面積
比で15係以上分散した組織を有し、かつ前記炭化物の
うち、炭化物全体に対する面積比で101以上が平均粒
径:5μm以上を有する炭化物で占められ、さらVC9
2%以上の密度比を有することを特徴とす乙耐摩耗性に
すぐれたF−e基焼結桐材。
(3) Cr: 4-25%, C: 1.5-5%, P
,B. and one or more of Si 20, 05-2
further contains Ni, Co, Cu, and Mn
One or more of the following: o, 1 to 10%, with the remainder consisting of Fe and unavoidable impurities (more than 1% by weight)
), and has a structure in which carbides having a Vickers hardness of 1200 or more are dispersed in a matrix mainly consisting of martensite with an area ratio of 15 or more, and among the carbides, the area ratio to the whole carbide is 10 or more is occupied by carbides having an average particle size of 5 μm or more, and 9
Fe-based sintered paulownia material with excellent wear resistance characterized by having a density ratio of 2 or more (/l) Or: 4 to 25%, C: L 5 to 5%, P
,B. and one or more types of Sl: 0.05 to 2
%, and further contains Mo, W, Nb, Ti,
One or more of V and Zr: o1
~2o and *Ni-, Co, Cu, and M] One or more of 1; 01 to 10%;
The remaining 9 consists of Fe and unavoidable impurities (this is the weight)
In addition, it has a structure in which carbides having a Vickers hardness of 1200 or more are dispersed in an area ratio of 15 or more in a matrix mainly consisting of martensite, and among the carbides, an average area ratio of 101 or more to the whole carbide is Particle size: dominated by carbides with a particle size of 5 μm or more, and VC9
A Fe-based sintered paulownia material with excellent wear resistance characterized by having a density ratio of 2% or more.
JP12626482A 1982-07-20 1982-07-20 Fe-based sintered material excellent in wear resistance Granted JPS5916952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12626482A JPS5916952A (en) 1982-07-20 1982-07-20 Fe-based sintered material excellent in wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12626482A JPS5916952A (en) 1982-07-20 1982-07-20 Fe-based sintered material excellent in wear resistance

Publications (2)

Publication Number Publication Date
JPS5916952A true JPS5916952A (en) 1984-01-28
JPH0115579B2 JPH0115579B2 (en) 1989-03-17

Family

ID=14930876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12626482A Granted JPS5916952A (en) 1982-07-20 1982-07-20 Fe-based sintered material excellent in wear resistance

Country Status (1)

Country Link
JP (1) JPS5916952A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985847A (en) * 1982-11-08 1984-05-17 Mitsubishi Metal Corp Fe-base sintered material for sliding member of internal-combustion engine
JPS5996250A (en) * 1982-11-26 1984-06-02 Nissan Motor Co Ltd Wear resistant sintered alloy
JPS59104454A (en) * 1982-12-02 1984-06-16 Nissan Motor Co Ltd Anti-wear sintered alloy
JPS60228656A (en) * 1984-04-10 1985-11-13 Hitachi Powdered Metals Co Ltd Wear resistant sintered iron-base material and its manufacture
JPS62167860A (en) * 1986-01-21 1987-07-24 Riken Corp Combination of cam nose material and rocker pad material
JPS6342357A (en) * 1986-08-08 1988-02-23 Nissan Motor Co Ltd Wear-resistant ferrous sintered alloy
JPS6475653A (en) * 1987-09-18 1989-03-22 Hitachi Metals Ltd Screw for high-temperature forming combining corrosion resistance with wear resistance
JPS6483397A (en) * 1987-09-28 1989-03-29 Mitsubishi Heavy Ind Ltd Composite wire for build-up welding for hard facing
JPH0456751A (en) * 1990-06-27 1992-02-24 Komatsu Ltd Sintered alloy
WO1993015319A1 (en) * 1989-04-28 1993-08-05 Nobuya Amano Vane of compressor made of sintered iron alloy
JPH05214483A (en) * 1992-01-31 1993-08-24 Fujikoo:Kk Material having wear resistance to lump ore
JPH07118817A (en) * 1993-10-18 1995-05-09 Mitsubishi Materials Corp Valve seat
JPH07188872A (en) * 1993-12-27 1995-07-25 Mitsubishi Materials Corp Valve seat made of iron base sintered alloy for internal combustion engine
US5804137A (en) * 1995-05-31 1998-09-08 Samsung Heavy Industries Co., Ltd. Corrosion and wear resistant iron alloy
JP2001049381A (en) * 1999-08-10 2001-02-20 Kurimoto Ltd Wear resistant alloy cast iron material
JP2004263294A (en) * 2003-02-13 2004-09-24 Mitsubishi Steel Mfg Co Ltd Alloy steel powder having improved sintering property for metal injection molding and sintered body
US6852143B2 (en) * 2001-01-31 2005-02-08 Hitachi Powdered Metals Co., Ltd. Turbo component for turbocharger
US7922836B2 (en) 2004-04-22 2011-04-12 Komatsu Ltd. Ferrous abrasion resistant sliding material
JP2013057094A (en) * 2011-09-07 2013-03-28 Hitachi Powdered Metals Co Ltd Sintered alloy and manufacturing method thereof
JP2018532881A (en) * 2015-09-08 2018-11-08 スコペルタ・インコーポレイテッドScoperta, Inc. Non-magnetic strong carbide forming alloys for powder production
JP2020523479A (en) * 2017-06-13 2020-08-06 エリコン メテコ(ユーエス)インコーポレイテッド High hard phase fraction non-magnetic alloy
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230207A (en) * 1975-09-03 1977-03-07 Hitachi Ltd High carbon-high chromium base tool steel for cold working and a metho d for production of same
JPS5462108A (en) * 1977-10-27 1979-05-18 Nippon Piston Ring Co Ltd Abrasion resistant sintered alloy
JPS552777A (en) * 1978-06-23 1980-01-10 Toyota Motor Corp Wear resistant, sintered alloy
JPS55145156A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Sintered alloy material for internal combustion engine
JPS57108247A (en) * 1980-12-24 1982-07-06 Hitachi Powdered Metals Co Ltd Member of moving valve mechanism of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230207A (en) * 1975-09-03 1977-03-07 Hitachi Ltd High carbon-high chromium base tool steel for cold working and a metho d for production of same
JPS5462108A (en) * 1977-10-27 1979-05-18 Nippon Piston Ring Co Ltd Abrasion resistant sintered alloy
JPS552777A (en) * 1978-06-23 1980-01-10 Toyota Motor Corp Wear resistant, sintered alloy
JPS55145156A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Sintered alloy material for internal combustion engine
JPS57108247A (en) * 1980-12-24 1982-07-06 Hitachi Powdered Metals Co Ltd Member of moving valve mechanism of internal combustion engine

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0116297B2 (en) * 1982-11-08 1989-03-23 Mitsubishi Metal Corp
JPS5985847A (en) * 1982-11-08 1984-05-17 Mitsubishi Metal Corp Fe-base sintered material for sliding member of internal-combustion engine
JPS5996250A (en) * 1982-11-26 1984-06-02 Nissan Motor Co Ltd Wear resistant sintered alloy
JPH0350823B2 (en) * 1982-11-26 1991-08-02 Nissan Motor
JPS59104454A (en) * 1982-12-02 1984-06-16 Nissan Motor Co Ltd Anti-wear sintered alloy
JPH0350824B2 (en) * 1982-12-02 1991-08-02 Nissan Motor
JPS60228656A (en) * 1984-04-10 1985-11-13 Hitachi Powdered Metals Co Ltd Wear resistant sintered iron-base material and its manufacture
JPH0360897B2 (en) * 1984-04-10 1991-09-18 Hitachi Funmatsu Yakin Kk
JPS62167860A (en) * 1986-01-21 1987-07-24 Riken Corp Combination of cam nose material and rocker pad material
JPS6342357A (en) * 1986-08-08 1988-02-23 Nissan Motor Co Ltd Wear-resistant ferrous sintered alloy
JPS6475653A (en) * 1987-09-18 1989-03-22 Hitachi Metals Ltd Screw for high-temperature forming combining corrosion resistance with wear resistance
JPS6483397A (en) * 1987-09-28 1989-03-29 Mitsubishi Heavy Ind Ltd Composite wire for build-up welding for hard facing
WO1993015319A1 (en) * 1989-04-28 1993-08-05 Nobuya Amano Vane of compressor made of sintered iron alloy
JPH0456751A (en) * 1990-06-27 1992-02-24 Komatsu Ltd Sintered alloy
JPH05214483A (en) * 1992-01-31 1993-08-24 Fujikoo:Kk Material having wear resistance to lump ore
JPH07118817A (en) * 1993-10-18 1995-05-09 Mitsubishi Materials Corp Valve seat
JPH07188872A (en) * 1993-12-27 1995-07-25 Mitsubishi Materials Corp Valve seat made of iron base sintered alloy for internal combustion engine
US5804137A (en) * 1995-05-31 1998-09-08 Samsung Heavy Industries Co., Ltd. Corrosion and wear resistant iron alloy
JP2001049381A (en) * 1999-08-10 2001-02-20 Kurimoto Ltd Wear resistant alloy cast iron material
US6852143B2 (en) * 2001-01-31 2005-02-08 Hitachi Powdered Metals Co., Ltd. Turbo component for turbocharger
JP2004263294A (en) * 2003-02-13 2004-09-24 Mitsubishi Steel Mfg Co Ltd Alloy steel powder having improved sintering property for metal injection molding and sintered body
US7922836B2 (en) 2004-04-22 2011-04-12 Komatsu Ltd. Ferrous abrasion resistant sliding material
US7967922B2 (en) 2004-04-22 2011-06-28 Komatsu Ltd. Ferrous abrasion resistant sliding material
JP2013057094A (en) * 2011-09-07 2013-03-28 Hitachi Powdered Metals Co Ltd Sintered alloy and manufacturing method thereof
JP2018532881A (en) * 2015-09-08 2018-11-08 スコペルタ・インコーポレイテッドScoperta, Inc. Non-magnetic strong carbide forming alloys for powder production
JP2020523479A (en) * 2017-06-13 2020-08-06 エリコン メテコ(ユーエス)インコーポレイテッド High hard phase fraction non-magnetic alloy
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Also Published As

Publication number Publication date
JPH0115579B2 (en) 1989-03-17

Similar Documents

Publication Publication Date Title
JPS5916952A (en) Fe-based sintered material excellent in wear resistance
JPS6011096B2 (en) Composite made of sintered charcoal alloy and cast iron
KR20000029801A (en) Hard sintered alloy
JPH04501438A (en) carbide metal body
JPS5822359A (en) Iron base sintered alloy for structural member of fuel supply apparatus
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
JPS5916951A (en) Fe-based sintered material excellent in wear resistance
US3890105A (en) Metallic sintering powder or alloy
JPS5940217B2 (en) Fe-based sintered alloy with wear resistance
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
US3301673A (en) Liquid phase sintering process
JP4140928B2 (en) Wear resistant hard sintered alloy
JPS60125348A (en) Tool material
JPS62211340A (en) Corrosion resistant hard alloy
EP0277239A1 (en) Abrasion-resistant sintered alloy and process for its production
JPH0768600B2 (en) Compound boride sintered body
JPH01212737A (en) Wear-resistant ferrous sintered alloy
JPH04107238A (en) Corrosion resistance and wear resistant cermet
JPS6092444A (en) Nonmagnetic sintered hard alloy
JPH01283340A (en) Manufacture of high density and high strength sintered body
JPS613861A (en) Sintered heat-and wear-resistant hard alloy for hot working tool
JPS58181845A (en) Tough cermet
JPS61261455A (en) Wire for dot printer
JPS58189345A (en) Manufacture of tough cermet
JPH06207246A (en) Carbide dispersed maraging steel