JP2001049381A - Wear resistant alloy cast iron material - Google Patents
Wear resistant alloy cast iron materialInfo
- Publication number
- JP2001049381A JP2001049381A JP11226292A JP22629299A JP2001049381A JP 2001049381 A JP2001049381 A JP 2001049381A JP 11226292 A JP11226292 A JP 11226292A JP 22629299 A JP22629299 A JP 22629299A JP 2001049381 A JP2001049381 A JP 2001049381A
- Authority
- JP
- Japan
- Prior art keywords
- hardness
- carbide
- weight
- cast iron
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は耐摩耗合金鋳鉄、と
くに粉砕機ローラ、混練機ブレード、各種ライナー類、
シュートなど装置の主として擦過摩耗に直面する部材に
係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant alloy cast iron, in particular, a crusher roller, a kneader blade, various liners,
The present invention relates to a member such as a chute that mainly faces abrasion wear of a device.
【0002】[0002]
【従来の技術】古来、建設機械、窯業、砕石、採鉱、電
力、浚渫などの設備や産業用機械においては、取り扱う
原料、素材との接触、擦過する部材の摩耗が著しく、構
造物としての物理的強度の他に、耐摩耗性が重要な条件
となって各種の耐摩耗材が開発され用途に応じて使い分
けされている。2. Description of the Related Art Since ancient times, construction equipment, ceramics, crushed stone, mining, electric power, dredging, and other equipment and industrial machinery have been exposed to remarkable contact with raw materials and materials to be handled and abrasion of members to be rubbed. In addition to the target strength, wear resistance is an important condition, and various wear-resistant materials have been developed and used properly according to applications.
【0003】耐摩耗材はある期間の使用によって自らも
摩耗退入し所定の作業効率を挙げることができなくなる
から当然取り替えなければならない。そのため一層長期
間の使用に耐えてより多量の原料を破砕、粉砕するため
の高度な耐摩耗性と、構造部材として所定の機械的強度
を満足できる材料が求められ、高クロム鋳鉄が耐摩耗材
の内でも広範に多用された。Abrasion-resistant materials have to be replaced because they wear out and retreat after a certain period of use and cannot achieve a predetermined work efficiency. Therefore, high wear resistance for crushing and pulverizing a larger amount of raw materials to withstand use for a longer period of time and a material capable of satisfying a predetermined mechanical strength as a structural member are required. It was used extensively within.
【0004】表1は周知のASTM:A532/A53
2Mに規定する高クロム鋳鉄材の化学成分の抜粋であ
り、クラスIはいわゆるニハード(Ni−Hard)
材、クラスIIおよびIIIは高Cr材であり、亜共晶の範
囲にあるC値にCrを主体にNi、Moを添加して高硬
度の炭化物を析出して基地内に分散し、全体として緻密
で強固な耐摩耗組織を形成することが基本的な原則であ
る。[0004] Table 1 shows well-known ASTM: A532 / A53.
This is an excerpt of the chemical composition of the high chromium cast iron specified in 2M. Class I is the so-called Ni-Hard.
The materials, Class II and III are high Cr materials, and add Ni and Mo mainly with Cr to C value in the range of hypoeutectic to precipitate high hardness carbides and disperse them in the matrix. The basic principle is to form a dense and strong wear-resistant structure.
【0005】[0005]
【表1】 [Table 1]
【0006】しかし、耐摩耗材も機械、装置を構成する
部材としての役割を分担しているから、機械的な強度、
とくに靭性の面からも組織や成分を選択して耐摩耗性と
靭性の両要件を両立しなければないらない。CとCrの
含有量比を操作することによって耐摩耗性の向上に有効
な高硬度の炭化物量を適当量晶出させることが出来る
が、炭化物量比が高くなると靭性低下により機械的強度
が保証出来なくなり、逆に炭化物量比を下げると耐摩耗
性が低下する。このため、CとCr比により規定される
共晶点を少し下回る亜共晶狙いの組成とし、且つ硬化焼
入れ熱処理により基地硬度を高めた材料が一般に用いら
れている。However, since the wear-resistant material also plays a role as a member constituting the machine and the device, the mechanical strength,
In particular, from the viewpoint of toughness, the structure and components must be selected to satisfy both requirements of wear resistance and toughness. By manipulating the content ratio of C and Cr, it is possible to crystallize an appropriate amount of high-hardness carbide, which is effective for improving wear resistance, but as the ratio of carbide increases, mechanical strength is guaranteed due to a decrease in toughness. It becomes impossible, and conversely, if the amount ratio of carbide is reduced, the wear resistance is reduced. For this reason, a material having a target composition of a hypoeutectic slightly lower than the eutectic point defined by the C: Cr ratio and having a higher base hardness by hardening and quenching heat treatment is generally used.
【0007】図6はFe−Cr−C系状態図へ前記のA
STM各規格のC、Cr組成を重ねて書き加えた図であ
り、何れもγ相〜M7C3またはM3C炭化物析出の境界
を区切る共晶線より低C側、すなわち亜共晶範囲に含ま
れ、ある程度の機械的強度や耐衝撃性に配慮した成分で
あることを示している。FIG. 6 is a graph showing the above-mentioned A to Fe--Cr--C phase diagram.
It is the figure which added the composition of C and Cr of each STM in a superimposed manner, and all are lower C side than the eutectic line which separates the boundary of γ phase to M 7 C 3 or M 3 C carbide precipitation, that is, the hypoeutectic range. , Indicating that the component is a component that takes into account some mechanical strength and impact resistance.
【0008】しかしながら最近の操業コストの低減、メ
ンテナンス費用の軽減策の一つとして従来技術のレベル
を超えた耐摩耗性を要求する声が強く、主として擦過摩
耗条件下で稼働する部材で機械的強度をさほど重大な要
素としないケースには、過共晶組成の高Cr鋳鉄も使用
されるようになり、たとえば重量%でC:3.0〜4.
0%、Cr:20.0〜30.0%、Mo:3.0%が
適用され、到達硬度がロックウェルC硬度(HRC)で
65(ショア硬度Hs90)前後の高値に達する耐摩耗
材が活用されている。しかしながら、稼働コストの削減
要求はなお、留まるところのないのが実情であり、より
高耐摩耗性部材の開発が業界から強く求められている趨
勢にある。However, as one of recent measures for reducing operating costs and maintenance costs, there is a strong demand for wear resistance exceeding the level of the prior art. Mainly, members that operate under abrasion wear conditions have mechanical strength. Is not a critical factor, high chromium cast iron having a hypereutectic composition has also been used. For example, C: 3.0 to 4.0% by weight.
0%, Cr: 20.0-30.0%, Mo: 3.0% are applied, and wear-resistant materials whose ultimate hardness reaches a high value of about 65 (Shore hardness Hs90) in Rockwell C hardness (HRC) are used. Have been. However, there is still an endless demand for a reduction in operating costs, and there is a trend that the industry strongly demands the development of higher wear-resistant members.
【0009】[0009]
【発明が解決しようとする課題】耐摩耗性の向上のため
には従来技術よりもCやCrを大量に添加しマイクロビ
ッカース硬度(以下HmVと略記する)が1800に達
するM7C3型のCr炭化物を過剰に析出させる方法が直
接的である。THE INVENTION Problems to be Solved] To improve wear resistance of (hereinafter abbreviated as HmV) mass added to the micro-Vickers hardness of C and Cr than the prior art of M 7 C 3 type reaching 1800 The method of precipitating excessive Cr carbide is straightforward.
【0010】しかしM7C3のCr炭化物は脆性が強く過
剰に晶出させると鋳造割れなど部材製造上の問題を生じ
る。またC、Crを大量に添加し過共晶範囲に入ると機
械的強度が大幅に低下するために、擦過摩耗条件下の使
用であっても割れの発生する危険性が増大する。従って
従来のCr炭化物を大量に晶出させた合金鋳鉄材では耐
摩耗性改善に限界がある。However, Cr carbide of M 7 C 3 is so brittle that excessive crystallization causes problems such as casting cracks in manufacturing members. Further, when a large amount of C and Cr is added and enters the hypereutectic range, the mechanical strength is greatly reduced, and thus the risk of cracking increases even when used under abrasion wear conditions. Therefore, there is a limit to the improvement in wear resistance of the conventional alloy cast iron material in which a large amount of Cr carbide is crystallized.
【0011】たとえば特開平5−214483号の従来
技術では、主要成分として重量%C:3.0〜7.0
%、Cr:15.0〜35.0%、Mo:3.0〜10
・0%、W:3.0〜10.0%、V:0.5〜2.0
%の耐塊鉱物摩耗材料を提案した。従来の高Cr鋳鉄製
耐塊鉱物摩耗部材が塊鉱物との衝突で炭化物が破壊脱落
すること、基地強度が低いため炭化物を保持できないこ
と、基地自体の摩耗を課題とし、炭化物硬度を上げ基地
強化を図ったことを趣旨とする。For example, in the prior art of Japanese Patent Application Laid-Open No. 5-214483, weight% C: 3.0 to 7.0 is used as a main component.
%, Cr: 15.0 to 35.0%, Mo: 3.0 to 10
0%, W: 3.0 to 10.0%, V: 0.5 to 2.0
% Lump-resistant mineral wear material was proposed. The conventional high Cr cast iron lump-resistant mineral wear member breaks and falls off carbides due to collisions with lump minerals.The low strength of the base makes it impossible to hold carbides. The purpose is to achieve.
【0012】しかしこの従来技術のC−Cr%によって
特定される範囲を先の図6の上へ重ねて書き加えてみる
と(図のハッチング部分)、大部分が過共晶組成の範囲
に属し、強度や硬度は予定通りの向上が期待できるとし
ても、衝撃に遭遇したとき亀裂や破断、剥離に充分耐え
られるか懸念の起こる余地があり、作業条件に慎重な制
約を付けざるを得ない。However, when the range specified by C-Cr% of the prior art is added to the above-mentioned FIG. 6 (hatched portion in the figure), most of the range belongs to the range of the hypereutectic composition. Even if strength and hardness can be expected to improve as expected, there is room for concern whether cracks, ruptures and peeling can be sufficiently achieved when an impact is encountered, so that the working conditions must be carefully restricted.
【0013】一方、炭化物を抱持する基地は機械的強度
をあるレベルに保つ亜共晶範囲とし、特殊な鋳造手段で
局部的に摩耗面の耐摩耗性だけを向上させる従来技術も
ある。特開平5−253665号では、主成分を重量%
で、C;2.5〜3.7%、Cr:14〜18%、M
o:1〜4%、V:0.5〜1%、Nb:0.3〜1.
0%、残部Feの亜共晶成分において、耐摩耗性を特に
必要とする部分のみを急冷することによってHRC67
以上の摩耗面を形成したと謳う。急冷する方法として
は、摩耗面を形成する鋳型面を鋼粒で成形した鋳型や、
金型(冷やし金方式)を採っている。On the other hand, there is a prior art in which the base holding the carbide is in a hypoeutectic range where the mechanical strength is maintained at a certain level, and only the wear resistance of the wear surface is locally improved by special casting means. JP-A-5-253665 discloses that the main component is
2.5 to 3.7%, Cr: 14 to 18%, M
o: 1-4%, V: 0.5-1%, Nb: 0.3-1.
In the hypoeutectic component of 0% and the balance of Fe, only the portion particularly requiring abrasion resistance is rapidly cooled to obtain HRC67.
It claims to have formed the above wear surface. As a method of quenching, the mold surface forming the wear surface is molded with steel grains,
The mold (cooling method) is used.
【0014】この方法は、基地成分を亜共晶組成として
破断亀裂に対抗できる機械的性質を維持しつつも必要な
摩耗面のみを強化しようとするものである。しかし特殊
な鋳型を局部的に使い分けるためには、工場の鋳物砂循
環再利用のシステムが完備していないと困難であるし、
冷やし金方式も多種類に亘る部材の寸法、形状に全て対
応するだけの準備が極めて煩瑣であり非能率である。In this method, the base component is made to have a hypoeutectic composition, and it is intended to strengthen only a necessary wear surface while maintaining mechanical properties that can resist a fracture crack. However, it is difficult to use special molds locally unless the factory has a complete system for recycling sand foundry.
As for the chilling system, preparations for all sizes and shapes of various members are extremely complicated and inefficient.
【0015】本発明は以上に述べた課題を解決するた
め、摩耗面の耐摩耗性向上は、従来のCr炭化物以上に
高硬度の炭化物を形成する成分元素を添加すると共に、
該添加元素の炭化物形成作用に伴うC消費によって、ベ
ースとなる組成を亜共晶範囲へ移行し、さらに最適の熱
処理によって基地硬度を向上して耐摩耗性の卓抜したレ
ベルアップを図ることを目的とする。In order to solve the above-mentioned problems, the present invention improves the wear resistance of the wear surface by adding a component element which forms carbide having higher hardness than conventional Cr carbide,
The purpose is to shift the base composition to the hypoeutectic range by the consumption of carbon accompanying the carbide forming action of the added element, and to further improve the base hardness by the optimal heat treatment to achieve an outstanding level of wear resistance. And
【0016】[0016]
【課題を解決するための手段】本発明に係る耐摩耗合金
鋳鉄材はC:3.8〜4.5%、Si:1.0%以下、
Mn:1.5%以下、Cr:10.0〜20.0%、M
o:3.0〜4.5%、W:3.0〜4.0%、Nb:
3.0〜5.0%、(何れも重量%)および不可避的不
純物の元素を含み残部が実質的にFeの高Cr鋳鉄より
なり、最適な熱処理温度で加熱保持した後、焼入れ処理
を施してロックウェル硬度C(HRC)69またはショ
ア硬度(Hs)100以上の高硬度を具えると共に、前
記WおよびNbの炭化物形成作用により補正したC重量
%とCr重量%との関係においてFe−Cr−C系の炭
化物共晶線より常に低C側の亜共晶範囲に含まれること
によって前記の課題を解決した。According to the present invention, a wear-resistant alloy cast iron material according to the present invention comprises C: 3.8 to 4.5%, Si: 1.0% or less,
Mn: 1.5% or less, Cr: 10.0 to 20.0%, M
o: 3.0 to 4.5%, W: 3.0 to 4.0%, Nb:
3.0 to 5.0% (all in weight%) and the unavoidable impurity element and the balance is substantially composed of high Cr cast iron of Fe. After being heated and maintained at an optimal heat treatment temperature, a quenching treatment is performed. And a high hardness of Rockwell hardness C (HRC) of 69 or Shore hardness (Hs) of 100 or more, and Fe-Cr in the relationship between C weight% and Cr weight% corrected by the carbide forming action of W and Nb. The above problem was solved by being always included in the hypoeutectic range lower on the C side than the -C based carbide eutectic line.
【0017】なお前記の基本条件において炭化物形成作
用のC%の補正が C%−[W%×(C原子量/W原子量)+Nb%×(C
原子量/Nb原子量)] によることが好ましい実施の形態である。Under the above basic conditions, the correction of C% of the carbide forming action is C%-[W% × (C atomic weight / W atomic weight) + Nb% × (C
Atomic weight / Nb atomic weight)] is a preferred embodiment.
【0018】図6のFe−Cr−C系状態図においてA
STM規格のC、Cr組成範囲を書き加えてみると亜共
晶範囲に含まれるが、初晶の炭化物は粗大に成長し靭性
を著しく低下させるため、規格化はされていないが過共
晶範囲に属する高Cr鋳鉄も現実には使用されており、
破断、亀裂のリスクに絶えず直面するのも現実であっ
た。本発明ではFe−Cr−C系にNb、Wの炭化物形
成元素を添加してCr炭化物(HmV:1800まで)
よりさらに高硬度のWC、NbC(HmV:2400〜
3000)を分散析出させて炭化物自身の耐摩耗性を格
段に向上すると共に、炭化物形成に伴ってCを消費し組
成を過共晶から亜共晶範囲へ移行して機械的強度を向上
することを特徴とする。In the Fe--Cr--C phase diagram of FIG.
When adding the C and Cr composition ranges of the STM standard, they are included in the hypoeutectic range. However, the primary carbides grow coarsely and significantly reduce toughness. High-Cr cast iron belonging to
It was also a reality that the risk of breakage and cracking was constantly faced. In the present invention, Nb and W carbide forming elements are added to the Fe—Cr—C system to form Cr carbide (HmV: up to 1800).
Even higher hardness WC, NbC (HmV: 2400
3000) by dispersing and precipitating to significantly improve the wear resistance of the carbide itself, and also by consuming carbon with the formation of carbide and shifting the composition from the hypereutectic to the hypoeutectic range to improve the mechanical strength. It is characterized by.
【0019】C消費量はC、Nb、Wの原子量から算出
することができる。すなわちW1重量%あたりの消費量
は12/183.90=0.065%であり、Nb1重
量%当たりのC消費量は12/92.91=0.129
%と算出され、この消費量分が基準組成から減じられた
ことになる。したがってFe−Cr−C系のCを多く添
加した過共晶組成は、W、Nbの多量添加によってCが
多く消費され、共晶または亜共晶組成へ移行して機械的
強度の改善に貢献する。The C consumption can be calculated from the atomic weights of C, Nb and W. That is, the consumption amount per 1% by weight of W is 12 / 183.90 = 0.065%, and the consumption amount of C per 1% by weight of Nb is 12 / 92.91 = 0.129.
%, Which means that this consumed amount has been subtracted from the reference composition. Therefore, in the hypereutectic composition to which a large amount of Fe-Cr-C-based C is added, a large amount of C is consumed by adding a large amount of W and Nb, and the transition to the eutectic or hypoeutectic composition contributes to the improvement of mechanical strength. I do.
【0020】高Cr鋳鉄にNbを3.0〜4.5重量%
添加した場合、図2の金属顕微鏡写真(倍率400)で
示すように花弁状の共晶MC(Nbを主体とした炭化
物)が晶出しWを3.0〜4.0重量%添加した場合、
魚骨状の初晶(Wを主体とした炭化物)が生成する。N
bCの硬度はHmV2400,WC、W2C、(Fe、
W)6CなどW炭化物で2400〜3000HmVを具
え、このことは図3の従来技術の高Cr鋳鉄を同じ条件
で撮影した金属顕微鏡写真と比べてみればその差は明白
であり、後記する実施例のように、W、Nbの初晶炭化
物の有無がHRCの測定値を顕著に支配する原因である
ことを証明している。Nb is 3.0 to 4.5% by weight in high Cr cast iron
As shown in the metal micrograph of FIG. 2 (400 magnification), petal eutectic MC (carbide mainly composed of Nb) was crystallized, and when W was added in an amount of 3.0 to 4.0% by weight,
A fish-bone-like primary crystal (a carbide mainly composed of W) is formed. N
The hardness of bC is HmV2400, WC, W 2 C, (Fe,
W) comprising a 2400~3000HmV in W carbides such as 6 C, this is the difference is evident Come to comparison with metal microscope photograph of the high Cr cast iron of the prior art of FIG. 3 in the same conditions, later performed As shown in the examples, it has been proved that the presence or absence of the primary carbides of W and Nb is a cause that significantly controls the measured value of HRC.
【0021】本発明の成分限定について個別に説明す
る。単位はいずれも重量%である。 C:3.8〜4.5% Cは3.8%未満では晶出する炭化物量が少なく耐摩耗
性の点で不十分である。4.5%以上では機械的強度に
乏しくなり、鋳造割れや使用時割れ発生の危険性が増大
する。 Si:1.0%以下 主として溶湯の脱酸を目的として添加するが、1.0%
を超えるとトルースタイトを生成して耐摩耗性を劣化さ
せ、また靭性面からも好ましくないので1.0%以下と
する。 Mn:1.0%以下 溶湯の脱酸効果はあるが、1.5%を超えると残留オー
ステナイトが増加し硬さの低下を招くので1.5%以下
とする。 Cr:10.0〜20.0% Crは一部基地中に固溶し焼入れ性を向上させCと結合
して硬質の炭化物を形成する主要元素である。しかし1
0%未満では生成炭化物量が少ないので耐摩耗性が劣
り、20%を超えると鋳造割れが多くなり安定的な製造
が困難となるので10.0〜20.0%とする。 Mo:3.0〜4.5% Moは熱処理時の焼入れ性を改善し、冷却速度の遅くな
る厚肉品においてトルースタイトの生成を抑えるために
必要である。また、一部のMoは硬質な炭化物を基地中
に形成するので基地硬度の向上に効果がある。 W:3.0〜4.0% WはCと結合し高硬度なM6C型の炭化物を形成し耐摩
耗性を向上させる本発明材の主要元素である。3.0%
未満ではその効果は小さく、4%を超えると靭性に乏し
くなるので3.0〜4.0%に限定する。 Nb:3.0〜5.0% NbはCを結合し高硬度なMC型炭化物を形成する本発
明材の主要元素である。基地中にほとんど固溶せず、C
rやFeと複炭化物を形成しない。3%未満ではNb炭
化物がほとんど晶出しないし、5.0%以上では溶解が
困難となりこれ以上の添加は不必要である。The component limitation of the present invention will be described individually. All units are% by weight. C: 3.8% to 4.5% If C is less than 3.8%, the amount of carbides to be crystallized is small and the wear resistance is insufficient. If it is 4.5% or more, the mechanical strength is poor, and the risk of casting cracks and cracks during use increases. Si: 1.0% or less Added mainly for the purpose of deoxidizing molten metal.
If it exceeds 0.005%, troostite is formed to deteriorate wear resistance, and it is not preferable in terms of toughness. Mn: 1.0% or less The molten metal has a deoxidizing effect, but if it exceeds 1.5%, retained austenite increases and causes a decrease in hardness. Cr: 10.0 to 20.0% Cr is a main element that forms a hard carbide by forming a solid solution in a part of the matrix, improving the quenchability, and combining with C. But one
If it is less than 0%, the amount of carbides formed is small, so that the wear resistance is inferior. If it exceeds 20%, casting cracks increase and stable production becomes difficult. Mo: 3.0 to 4.5% Mo is necessary for improving the hardenability at the time of heat treatment and for suppressing the formation of troostite in a thick-walled product having a slow cooling rate. Also, some Mo forms a hard carbide in the matrix, which is effective in improving the hardness of the matrix. W: 3.0 to 4.0% W is a main element of the material of the present invention that combines with C to form a high-hardness M 6 C-type carbide and improves wear resistance. 3.0%
If it is less than 4%, the effect is small, and if it exceeds 4%, the toughness is poor. Therefore, the content is limited to 3.0 to 4.0%. Nb: 3.0 to 5.0% Nb is a main element of the material of the present invention that combines C to form a high-hardness MC-type carbide. Almost no solid solution in the base, C
Does not form double carbides with r and Fe. If it is less than 3%, Nb carbide is hardly crystallized, and if it is more than 5.0%, it becomes difficult to dissolve, and further addition is unnecessary.
【0022】熱処理について説明すれば、熱処理温度1
123°K未満では基地組織に生成するM23C6型の炭
化物が少なく、1273°Kを超えると残留オーステナ
イト量が増加し硬さが低下すると共に耐摩耗性を低下さ
せる。したがって焼入れ温度は1123〜1273°K
とした。以上の条件により本発明の耐摩耗合金鋳鉄は硬
さHRC69(Hs100)以上を有し耐摩耗性の優れ
た材料となり、かつ製造時および使用時に割れの発生し
ない材料が得られる。The heat treatment will be described.
If the temperature is less than 123 ° K, the amount of M 23 C 6 type carbide generated in the matrix structure is small. If the temperature exceeds 1273 ° K, the amount of retained austenite increases, the hardness decreases, and the wear resistance decreases. Therefore, the quenching temperature is 1123 to 1273 ° K
And Under the above conditions, the wear-resistant alloy cast iron of the present invention becomes a material having a hardness of HRC69 (Hs100) or more and having excellent wear resistance, and a material which does not crack during production and use.
【0023】[0023]
【発明の実施の形態】本発明の実施例(試料No.1、
2)と比較例(同No.3)および従来例(同No.
4)を成分、硬度、耐摩耗性毎に並べて本発明の効果を
実証した。実証試験の方法として供試材は30TのYブ
ロックで統一し、高周波溶解炉によって大気中で溶解
し、ブロックレンガに鋳造し、Yブロックは1123〜
1273°Kに加熱保持した後、空冷焼入れを行った。
表2は試験材の化学成分である。またWおよびNbの成
分%(重量%)から前記の炭化物形成時に消費するC量
を算出し、本来のC重量%から差し引いた補正C重量%
を併記した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention (sample No. 1,
2) and the comparative example (No. 3) and the conventional example (No. 3).
The effect of the present invention was demonstrated by arranging 4) for each component, hardness and wear resistance. As a method of the verification test, the test material was unified with a Y block of 30T, melted in the air by a high-frequency melting furnace, cast into block brick, and the Y block was 1123-
After heating and holding at 1273 ° K, air cooling quenching was performed.
Table 2 shows the chemical components of the test materials. Further, the amount of C consumed during the formation of the carbide is calculated from the component% (wt%) of W and Nb, and the corrected C weight% is subtracted from the original C weight%.
Is also described.
【0024】[0024]
【表2】 [Table 2]
【0025】図1は図6と同じFe−Cr−C系状態図
において、試料No.1〜No.4の各材料をC−Cr
の交点をプロットして〜で示し、さらに各試料の補
正C重量%−Cr重量%の交点をプロットして’〜
’で示し、補正による推移を矢印で結んだ関係図であ
る。図のように本発明の実施形態であるNo.1、N
o.2は、当初の点、から補正後の’、’まで
移行してほぼ共晶線上または亜共晶範囲に入るのに対
し、比較例、は補正した’も含め何れも過共晶範
囲に留まり、その意味で使用条件に対する機械的強度、
または耐衝撃性の懸念が改善されてないという明白な差
が認められる。FIG. 1 shows the same Fe—Cr—C phase diagram as FIG. 1 to No. C-Cr
Are plotted, and the intersection of the corrected C weight% -Cr weight% of each sample is plotted as
It is a relationship diagram indicated by 'and connecting the transitions due to correction with arrows. As shown in FIG. 1, N
o. 2 was shifted from the initial point to ',' after the correction, and almost entered the eutectic line or the hypoeutectic range, whereas the comparative example, including the corrected ', remained in the hypereutectic range. , In that sense the mechanical strength for the operating conditions,
Or there is a clear difference that the impact resistance concerns have not been improved.
【0026】この懸念を裏付ける事実として、比較例N
o.3はYブロックの鋳造外観検査によって亀裂の発生
が認められ、C、Cr、Nbの多量配合によって耐摩耗
性の増強と硬度の向上が図られることは明らかなもの
の、過共晶範囲における靭性低下が実用的には耐えられ
ない危惧を含むことも明瞭に示唆している。As a fact supporting this concern, Comparative Example N
o. In No. 3, cracks were observed by Y-block casting appearance inspection, and it is clear that a large amount of C, Cr, and Nb can enhance wear resistance and improve hardness, but decrease toughness in the hypereutectic range. Also clearly indicate that it contains fears that cannot be practically tolerated.
【0027】実務上は試料No.1またはNo.2はF
e−Cr−C系状態図上、Cr−Cの関係では過共晶に
属し、W、Nbの炭化物形成作用によって算出したCr
−補正C%からは亜共晶範囲に移行する付近の成分が耐
摩耗性と靭性のバランスがよく保たれた極めて好ましい
実施例として推奨できる。In practice, the sample No. 1 or No. 2 is F
On the e-Cr-C phase diagram, Cr belongs to hypereutectic in the relation of Cr-C, and Cr calculated by the carbide forming action of W and Nb.
From the corrected C%, components near the transition to the hypoeutectic range can be recommended as a highly preferred embodiment in which the balance between wear resistance and toughness is well maintained.
【0028】次にNo.1〜No.4を溶製した30T
のYブロックに1123、1173,1223°Kの熱
処理を施した後、硬さ試験片を採取し、ロックウェル硬
さ試験およびマイクロビッカース硬さ試験を行い、最高
硬度を示した材料について加圧摩耗試験を行った。表3
に試験結果を示す。加圧摩耗試験の値は従来材を基準と
した発明材の加圧耐摩耗比を示す。本発明の実施例であ
るNo.1、No.2は、従来材のNo.4に比べロッ
クウェル硬度、マイクロビッカース硬度共に向上し耐摩
耗性も約1.6倍の性能を示した。図4にロックウェル
硬さおよびマイクロビッカース硬さと加圧耐摩耗比の関
係について示す。図4から硬さの上昇によって加圧耐摩
耗比は向上することがわかる。Next, No. 1 to No. 30T made from 4
After heat treatment of 1123, 1173, and 1223 ° K on the Y block, a hardness test piece was collected and subjected to a Rockwell hardness test and a Micro Vickers hardness test. The test was performed. Table 3
Shows the test results. The value of the pressure abrasion test indicates the pressure abrasion resistance ratio of the invented material based on the conventional material. In the embodiment of the present invention, No. 1, No. No. 2 is No. 2 of the conventional material. Compared to No. 4, both Rockwell hardness and Micro Vickers hardness were improved, and the abrasion resistance was about 1.6 times higher. FIG. 4 shows the relationship between the Rockwell hardness and micro Vickers hardness and the wear resistance under pressure. From FIG. 4, it can be seen that the increase in hardness improves the wear resistance under pressure.
【0029】[0029]
【表3】 [Table 3]
【0030】本発明の実施例で最も高い硬度が得られた
試料No.2と従来材であるNo.4をアスファルトを
混練するスパイラルフローミキサー用ブレードに適用し
て耐摩耗性の比較を行った。製品は重量が約8kgで肉
厚30mm、縦200mm×横140mmの平板状でミ
キサーの回転アームに配置され、スパイラルに回転して
砕石、砂、コールタール等を含むアスファルトを混練す
る。実操業期間9ケ月後の製品の摩耗量を測定し、初期
重量に対する摩耗減量の割合を従来材を1として本発明
実施例の耐摩耗倍率を表4および図5に示した。図5か
ら明らかなように実操業では従来材に比べ本発明実施例
では2.1倍の耐摩耗性の向上が認められる。[0030] In the sample of the present invention, the highest hardness was obtained. No. 2 and No. 2 which is a conventional material. No. 4 was applied to a spiral flow mixer blade for kneading asphalt to compare the abrasion resistance. The product is a flat plate having a weight of about 8 kg, a wall thickness of 30 mm, a length of 200 mm and a width of 140 mm, which is arranged on a rotating arm of a mixer, and is rotated spirally to knead asphalt including crushed stone, sand, coal tar and the like. The wear amount of the product after 9 months of the actual operation period was measured, and the wear resistance ratio of the example of the present invention is shown in Table 4 and FIG. As is clear from FIG. 5, in the actual operation, the abrasion resistance is improved 2.1 times in the example of the present invention as compared with the conventional material.
【0031】[0031]
【表4】 [Table 4]
【0032】[0032]
【発明の効果】本発明は以上述べたように本来の耐摩耗
性向上については定評のある過共晶の範囲に入りなが
ら、靭性を失わない亜共晶範囲とほぼ実質的に同じ靭性
を保って、極めて高硬度のW、Nb炭化物を形成する効
果と、比較的安定した亜共晶範囲の基地強度とを並立さ
せ、かつ、微細なCr炭化物を分散析出させた理想的な
耐摩耗部材を提供する効果がある。言うまでもなく高C
r鋳鉄へさらに炭化物形成元素を添加して炭化物の硬度
を向上する作用自体はは公知であり、多くの先行技術も
報告されているが、本発明のように耐摩耗性と靭性の平
衡関係を状態図の上から特定した汎用性の高い原則に到
達した従来技術は絶無であり、具体的な指針を明示した
点で当該技術分野に及ぼす貢献は格段に顕著なものがあ
る。As described above, the present invention maintains the toughness substantially the same as the hypoeutectic range where the toughness is not lost, while the inherent improvement in wear resistance falls within the well-established hypereutectic range. Thus, an ideal wear-resistant member having both the effect of forming extremely hard W and Nb carbides and the base strength in a relatively stable hypoeutectic range and dispersing and precipitating fine Cr carbides is produced. Has the effect of providing. Needless to say, high C
The action itself of increasing the hardness of carbide by further adding a carbide-forming element to the cast iron is known, and many prior arts have been reported, but as in the present invention, the equilibrium relationship between wear resistance and toughness is determined. The prior art that has reached the principle of high versatility specified from the state diagram is infinite, and the contribution to the technical field is remarkably remarkable when concrete guidelines are specified.
【図1】本発明および従来技術の作用を説明するFe−
Cr−C系の状態図である。FIG. 1 is a graph showing the effects of the present invention and the prior art.
It is a state diagram of a Cr-C system.
【図2】本発明実施例の金属顕微鏡組織写真(A)およ
び析出組成を説明する略図(B)である。FIGS. 2A and 2B are a metallographic micrograph (A) and a schematic diagram (B) illustrating a precipitation composition of an example of the present invention.
【図3】従来技術の金属顕微鏡組織写真である。FIG. 3 is a metallographic micrograph of a conventional technique.
【図4】ロックウェルC硬度(HRC)およびマイクロ
ビッカース硬度(HmV)と加圧耐摩耗比の関係図であ
る。FIG. 4 is a graph showing the relationship between the Rockwell C hardness (HRC) and the micro Vickers hardness (HmV) and the wear resistance under pressure.
【図5】本発明実施例(No.2)と従来技術材(N
o.4)フィールドテストにおける摩耗量の関係図であ
る。FIG. 5 shows an embodiment of the present invention (No. 2) and a prior art material (N).
o. 4) It is a relation diagram of the amount of wear in the field test.
【図6】従来技術の組成範囲を表示したFe−Cr−C
系状態図である。FIG. 6 shows Fe—Cr—C showing the composition range of the prior art.
It is a system phase diagram.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野瀬 誠司 大阪市西区北堀江1丁目12番19号 株式会 社栗本鐵工所内 (72)発明者 新宮 良明 大阪市西区北堀江1丁目12番19号 株式会 社栗本鐵工所内 (72)発明者 荒井 澂 大阪市西区北堀江1丁目12番19号 株式会 社栗本鐵工所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seiji Nose 1-12-19 Kitahorie, Nishi-ku, Osaka City Inside Kurimoto Iron Works Co., Ltd. (72) Yoshiaki Shingu 1-1-12-19 Kitahorie, Nishi-ku, Osaka City Inside Kurimoto Ironworks Co., Ltd.
Claims (2)
以下、Mn:1.5%以下、Cr:10.0〜20.0
%、Mo:3.0〜4.5%、W:3.0〜4.0%、
Nb:3.0〜5.0%、(何れも重量%)および不可
避的不純物の元素を含み残部が実質的にFeの高Cr鋳
鉄よりなり、最適な熱処理温度で加熱保持した後、焼入
れ処理を施してロックウェル硬度C(HRC)69また
はショア硬度(Hs)100以上の高硬度を具えると共
に、前記WおよびNbの炭化物形成作用により補正した
C重量%とCr重量%の関係においてFe−Cr−C系
の炭化物共晶線より常に低C側の亜共晶範囲に含まれる
ことを特徴とする耐摩耗合金鋳鉄材。1. C: 3.8 to 4.5%, Si: 1.0%
Mn: 1.5% or less, Cr: 10.0 to 20.0
%, Mo: 3.0 to 4.5%, W: 3.0 to 4.0%,
Nb: 3.0 to 5.0% (all by weight) and unavoidable impurity elements, and the balance is substantially made of high Cr cast iron of Fe. After being heated and maintained at an optimal heat treatment temperature, quenching treatment is performed. To provide a high hardness of Rockwell hardness C (HRC) of 69 or Shore hardness (Hs) of 100 or more, and Fe- in the relation of C weight% and Cr weight% corrected by the carbide forming action of W and Nb. A wear-resistant alloy cast iron material, which is always included in a hypoeutectic range on a lower C side than a Cr-C based carbide eutectic line.
るC%の補正が重量%で、 C%−[W%×(C原子量/W原子量)+Nb%×(C
原子量/Nb原子量)] によることを特徴とする耐摩耗合金鋳鉄材。2. The method according to claim 1, wherein the correction of C% by the carbide forming action is performed by weight%, and C% − [W% × (C atomic weight / W atomic weight) + Nb% × (C
Atomic weight / Nb atomic weight)].
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22629299A JP3489617B2 (en) | 1999-08-10 | 1999-08-10 | Wear-resistant alloy cast iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22629299A JP3489617B2 (en) | 1999-08-10 | 1999-08-10 | Wear-resistant alloy cast iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001049381A true JP2001049381A (en) | 2001-02-20 |
JP3489617B2 JP3489617B2 (en) | 2004-01-26 |
Family
ID=16842934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22629299A Expired - Lifetime JP3489617B2 (en) | 1999-08-10 | 1999-08-10 | Wear-resistant alloy cast iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3489617B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5916952A (en) * | 1982-07-20 | 1984-01-28 | Mitsubishi Metal Corp | Fe-based sintered material excellent in wear resistance |
JPH01283340A (en) * | 1989-03-25 | 1989-11-14 | Daido Steel Co Ltd | Manufacture of high density and high strength sintered body |
JPH02250939A (en) * | 1989-03-23 | 1990-10-08 | Kurimoto Ltd | Abrasion-resistant composite cast body and its manufacture |
JPH0790475A (en) * | 1993-09-21 | 1995-04-04 | Riken Corp | Production of seal ring for floating seat |
JPH0941102A (en) * | 1995-08-04 | 1997-02-10 | Hitachi Metals Ltd | Sintered head alloy |
-
1999
- 1999-08-10 JP JP22629299A patent/JP3489617B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5916952A (en) * | 1982-07-20 | 1984-01-28 | Mitsubishi Metal Corp | Fe-based sintered material excellent in wear resistance |
JPH02250939A (en) * | 1989-03-23 | 1990-10-08 | Kurimoto Ltd | Abrasion-resistant composite cast body and its manufacture |
JPH01283340A (en) * | 1989-03-25 | 1989-11-14 | Daido Steel Co Ltd | Manufacture of high density and high strength sintered body |
JPH0790475A (en) * | 1993-09-21 | 1995-04-04 | Riken Corp | Production of seal ring for floating seat |
JPH0941102A (en) * | 1995-08-04 | 1997-02-10 | Hitachi Metals Ltd | Sintered head alloy |
Also Published As
Publication number | Publication date |
---|---|
JP3489617B2 (en) | 2004-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104451405B (en) | Austenite wear-resistant steel with impact and wear resistance and hot rolled plate manufacturing method | |
CN100453681C (en) | High boron wear-resisting casting steel and preparation process thereof | |
CN100402687C (en) | Multielement high-nickel chromium wear-resistant cast iron and its prepn process | |
CN109913751A (en) | High-strength tenacity Bainite wear-resisting steel and preparation method thereof suitable for large-scale semi-autogenous mill liner plate | |
CN102747290B (en) | Economical wear-resistant steel and manufacturing method thereof | |
WO2019186911A1 (en) | Austenitic wear-resistant steel sheet | |
KR20150034581A (en) | High-hardness, high-toughness, wear-resistant steel plate and manufacturing method thereof | |
CN1865481A (en) | Process for preparing bainite antiwear steel plate | |
CN107201480A (en) | A kind of complex phase forges abrasion-proof backing block preparation method | |
CN1276113C (en) | High boron foundry iron base anti-wear alloy and its heat treatment method | |
CN104120333B (en) | Wear-resistant cast iron material, preparation method thereof and helical blade guard plate made from wear-resistant cast iron material | |
JP2008075108A (en) | Casting for wear-resistant member, and manufacturing method therefor | |
CN112680661B (en) | Alloy steel and preparation method thereof | |
KR100368540B1 (en) | A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof | |
CN105463302B (en) | A kind of preparation method of high rigidity spheroidal graphite cast-iron tup | |
JP4482407B2 (en) | High Cr cast iron products with excellent heat crack resistance and heat treatment method for high Cr cast iron materials | |
JP3496577B2 (en) | Hypoeutectic high chromium cast iron material particularly suitable for large products and method for producing the same | |
JP3950519B2 (en) | High toughness super wear resistant steel and method for producing the same | |
CN104164614A (en) | Wear-resistant ball with favorable mechanical properties | |
CN101555573A (en) | Alloy steel and heat treatment method thereof | |
JP2001049381A (en) | Wear resistant alloy cast iron material | |
JP2000328199A (en) | Wear resistant material | |
CN105506256A (en) | Method for preparing high-hardness wear-resistant cast iron hammerhead | |
CN101429589A (en) | High-strength abrasion-proof steel plate capable of soldering without thermal treatment and method of producing the same | |
JP3070658B2 (en) | High manganese steel with excellent wear resistance and high toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3489617 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101107 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |