JP3496577B2 - Hypoeutectic high chromium cast iron material particularly suitable for large products and method for producing the same - Google Patents

Hypoeutectic high chromium cast iron material particularly suitable for large products and method for producing the same

Info

Publication number
JP3496577B2
JP3496577B2 JP16227899A JP16227899A JP3496577B2 JP 3496577 B2 JP3496577 B2 JP 3496577B2 JP 16227899 A JP16227899 A JP 16227899A JP 16227899 A JP16227899 A JP 16227899A JP 3496577 B2 JP3496577 B2 JP 3496577B2
Authority
JP
Japan
Prior art keywords
hardness
cast iron
hypoeutectic
chromium cast
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16227899A
Other languages
Japanese (ja)
Other versions
JP2000345280A (en
Inventor
澂 荒井
前殿  裕章
勉 戸川
良明 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP16227899A priority Critical patent/JP3496577B2/en
Publication of JP2000345280A publication Critical patent/JP2000345280A/en
Application granted granted Critical
Publication of JP3496577B2 publication Critical patent/JP3496577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高クロム鋳鉄材、特
に大型の耐摩耗部材、たとえば肉厚200mmにも及ぶ
ような大型部材の高クロム鋳鉄に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high chromium cast iron material, and particularly to a large wear resistant member, for example, a large chromium cast iron having a large wall thickness of 200 mm.

【0002】[0002]

【従来の技術】古来、建設機械、窯業、砕石、採鉱、電
力、浚渫などの設備や産業用機械においては、取り扱う
原料、素材との接触、擦過する部材の摩耗が著しく、構
造物としての物理的強度の他に、耐摩耗性が重要な条件
となって各種の耐摩耗材が開発され用途に応じて使い分
けされている。
2. Description of the Related Art Since ancient times, in equipment such as construction machinery, kiln industry, crushed stone, mining, electric power, dredging, and industrial machinery, the raw materials to be handled, contact with raw materials, and abrasion of members to be abraded are remarkable, and physical properties as a structure In addition to dynamic strength, wear resistance is an important condition, and various wear resistant materials have been developed and used properly according to the application.

【0003】耐摩耗材はある期間の使用によって自らも
摩耗退入し所定の作業効率を挙げることができなくなる
から当然取り替えなければならない。そのため一層長期
間の使用に耐えてより多量の原料を破砕、粉砕、搬送な
ど目的の処理を施すための高度な耐摩耗性と、構造部材
として所定の機械的強度を満足できる材料が求められ、
高クロム鋳鉄が耐摩耗材の内でも広範に多用された。
The wear-resistant material must be replaced because the wear-resistant material cannot be used for a certain period of time so that the wear-resistant material cannot withstand predetermined work efficiency. Therefore, a material that can withstand a longer period of time and crushes, crushes, and conveys a larger amount of raw materials and that has a high degree of wear resistance for subjecting the material to the intended treatment, such as a structural member, is required to have a predetermined mechanical strength.
High chrome cast iron was widely used among wear resistant materials.

【0004】表1は周知のASTM:A532/A53
2Mに規定する高クロム鋳鉄材の化学成分の抜粋であ
り、クラス1はいわゆるニハード(Ni−Hard)
材、クラス2および3は高クロム材であり、亜共晶の範
囲にあるC値にCrを主体にNi、Moを添加して高硬
度の炭化物を析出して基地内に分散し、全体として緻密
で強固な耐摩耗組織を形成することが基本的な原則であ
る。
Table 1 shows the well-known ASTM: A532 / A53.
It is an excerpt of the chemical composition of the high chromium cast iron material specified in 2M. Class 1 is so-called Ni-Hard.
Materials, Classes 2 and 3, are high chromium materials, which have a C value in the hypoeutectic range, with Cr as the main component, and Ni and Mo added to precipitate high hardness carbides and disperse them in the matrix. The basic principle is to form a dense and strong wear resistant structure.

【0005】[0005]

【表1】 [Table 1]

【0006】しかし、耐摩耗材も機械、装置を構成する
部材としての役割を分担しているから、機械的な強度、
特に靭性の面からも組織や成分を選択して耐摩耗性と靭
性の両要件を併立しなければないらない。CとCrの含
有量比を操作することによって耐摩耗性の向上に有効な
高硬度の炭化物量を適当量晶出させることが出来るが、
炭化物量比が高くなると靭性低下による機械的強度が保
証出来なくなり、逆に炭化物量比を下げると耐摩耗性が
低下する。このため、CとCr比により規定される共晶
点を少し下回る亜共晶狙いの組成とし、且つ硬化焼入れ
熱処理により基地硬度を高めた材料が一般に用いられて
いる。
However, since the wear resistant material also plays a role as a member that constitutes a machine or device, mechanical strength,
In particular, from the viewpoint of toughness as well, it is necessary to select both the structure and the composition to satisfy both requirements of wear resistance and toughness. By manipulating the content ratio of C and Cr, it is possible to crystallize an appropriate amount of high hardness carbide which is effective for improving wear resistance.
If the carbide content ratio becomes high, the mechanical strength cannot be guaranteed due to the decrease in toughness, and conversely, if the carbide content ratio is decreased, the wear resistance decreases. Therefore, a material having a composition aimed at a hypoeutectic which is slightly lower than the eutectic point defined by the ratio of C and Cr and having an increased matrix hardness by hardening and quenching heat treatment is generally used.

【0007】従来の高クロム鋳鉄系材料は、C2.5〜
3.3重量%、Cr15.0〜30.0重量%を主成分
とし、これに数%台のNi、Moおよび若干量の炭化物
形成元素(W・V・等)を添加した材料が適用されて来
たのは、現地における使用結果や研究開発によって得ら
れた結論であり、この基本材料から出発して後述のよう
な多数の従来技術に発展している。
Conventional high chromium cast iron-based materials have C2.5-
A material containing 3.3% by weight of Cr and 15.0 to 30.0% by weight of Cr as main components, to which several% of Ni, Mo and a small amount of carbide-forming elements (W, V, etc.) is added is applied. What has come is the conclusions obtained from the results of local use and research and development, and starting from this basic material, it has evolved into many conventional technologies as described below.

【0008】[0008]

【発明が解決しようとする課題】近年、作業効率、省
力、省人化によるコストダウンの要求が一段と高まり、
当然、処理能力の向上を求めて装置、機械の大型化が進
む趨勢にある。このことは必然的に個別の耐摩耗部材自
体の大型化を意味し、部材の機能、すなわち耐摩耗性の
一層の向上を迫られる一方、大型化のために新たに発生
する大きな課題と直面する。すなわち耐摩耗部材が厚肉
化および超重量化されて来ると、凝固過程で晶出する炭
化物量は確保出来ても部材の質量効果から焼入れによる
素地硬化の確保が難しくなり、結果的には素地の焼入れ
が不十分のまま、即ち基地硬度が低いまま、主として炭
化物量による耐摩耗性のみを期待した材料の適用に留ま
ざるを得ないという限界に突き当たる。
Recently, demands for cost reduction due to work efficiency, labor saving, and labor saving have been further increased,
Naturally, there is a trend toward increasing the size of equipment and machinery in pursuit of improved processing capacity. This inevitably means an increase in the size of each individual wear-resistant member itself, and while the function of the member, that is, wear resistance, must be further improved, it faces a major new issue due to the increase in size. . That is, if the wear-resistant member becomes thicker and super-weighted, it becomes difficult to secure the hardening of the base material by quenching due to the mass effect of the member even if the amount of carbide crystallized in the solidification process can be secured, and as a result, the base material is hardened. While the quenching is inadequate, that is, the matrix hardness is low, there is no choice but to limit the application to materials that are expected only to have wear resistance mainly due to the amount of carbide.

【0009】一般に熱処理により金属材料の焼入れ性を
確保するには、冷却速度を早めるか、或いは低合金調質
鋼で処理されるように焼入れ硬化能が高い合金元素を添
加する手段が講じられる。しかし、高クロム鋳鉄系材料
は脆性なクロム炭化物が30〜40%面積率で晶出して
いるため、水、油等による急激な焼入れ手段を採ること
が出来ないから空冷焼入れを行わざるを得ないが、対象
部材が厚肉化、超重量化すると焼入れ性を確保すること
が出来ず、肉厚中央部では所望の基地硬度に達しない
し、ブロアー等による強制空冷焼入れで冷却速度を高め
れば、表面と内部の冷却速度の差異に基づく熱応力で焼
き割れを生じることが多くなる。また硬化能が高いとさ
れているMo・Mnは炭化物形成元素でもあるため、多
量に添加すると塊状の炭化物が形成されて材料の脆化を
促し、基地の焼入れ性は改善されても逆に焼割れが生じ
易くなる。
In general, in order to secure the hardenability of a metal material by heat treatment, a means for increasing the cooling rate or adding an alloy element having a high quench hardening ability so that it is treated with a low alloy tempered steel is taken. However, in the high chromium cast iron-based material, brittle chromium carbide is crystallized at an area ratio of 30 to 40%, and therefore rapid quenching means using water, oil, etc. cannot be adopted, and therefore air-quenching must be performed. However, if the target member becomes thicker and super heavy, hardenability cannot be secured, the desired base hardness will not be reached at the center part of the wall thickness, and if the cooling rate is increased by forced air cooling quenching with a blower etc., the surface The thermal stress due to the difference in the cooling rate between the inside and the inside often causes quenching cracks. Mo · Mn, which is said to have a high hardening ability, is also a carbide-forming element, so if added in a large amount, massive carbides will be formed to promote embrittlement of the material. Cracking is likely to occur.

【0010】製品の大型化に対応するための従来技術と
して、特開平2−115343号公報ではC:2.8〜
3.5、Mo:1.0〜3.0、Cr:15〜25、N
i:0.5〜2.0(何れも重量%)よりなる高クロム
鋳鉄に、Ti:2〜5重量%とNを含有させてTiC、
TiCNを組織内に分散させ、きわめて高硬度の炭化物
よりなる材料(MC形炭化物)を得たとあり、特開昭6
1−42553号公報でもC:2.5〜3.5、Cr:
10〜25、Ni:3.0以下、Mo:3.0以下、T
i:5.0〜20.0(何れも重量%)を含み、靭性、
耐摩耗性の両者が優れた合金鋳鉄を開発したと謳う。さ
らに特開平6−240403号公報ではC:2.8〜
3.6、Cr:10〜20,Ni:0.5〜1.5、M
o:1.0〜2.0、W:0.2〜0.8、V:0.5
〜1.2、B:0.2以下(何れも重量%)を含み、焼
入れ温度T(℃)=Cr(重量%)×7+865±20
の範囲に限定することによって、すなわち、低いCr%
では比較的低い焼入れ温度に抑えることによって最高硬
度の得られる焼入れ温度とCr%との相関性を確立し
た。
As a conventional technique for dealing with an increase in size of a product, Japanese Patent Laid-Open No. 2-115343 discloses C: 2.8-
3.5, Mo: 1.0 to 3.0, Cr: 15 to 25, N
i: 0.5-2.0 (all are wt%) high chromium cast iron containing Ti: 2-5 wt% and N, TiC,
It is said that TiCN was dispersed in the structure to obtain a material (MC type carbide) made of carbide having extremely high hardness.
In JP-A-12553 also, C: 2.5 to 3.5 and Cr:
10-25, Ni: 3.0 or less, Mo: 3.0 or less, T
i: 5.0 to 20.0 (all in weight%), toughness,
He claims that he has developed an alloy cast iron with both excellent wear resistance. Further, in JP-A-6-240403, C: 2.8-
3.6, Cr: 10-20, Ni: 0.5-1.5, M
o: 1.0 to 2.0, W: 0.2 to 0.8, V: 0.5
-1.2, B: 0.2 or less (all in weight%), quenching temperature T (° C.) = Cr (weight%) × 7 + 865 ± 20
By limiting the range, ie low Cr%
Then, by controlling the quenching temperature to a relatively low value, the correlation between the quenching temperature at which the maximum hardness is obtained and Cr% was established.

【0011】しかしながら、これら3件の従来技術はす
べて析出する炭化物の硬度をさらに向上することにのみ
着目した改良であるから、製品の大型化に伴って基地の
中央部と表層面付近との間における冷却速度の差や、こ
れに伴う焼割れ、または硬度の大きなバラツキについて
は何の解決を示唆することも出来ず、厚肉の中央部と表
層面近くにおける耐摩耗性の差を縮めるという本発明の
課題解決には無縁と言わざるを得ない。加えて前2件は
高価なTiを相当な配合率で添加することを要件とする
から、原価上の大きな負担増も無視できない。
However, all of these three prior arts are improvements focusing only on further improving the hardness of the precipitated carbides. Therefore, as the size of the product increases, there is a gap between the center of the base and the vicinity of the surface layer. It is impossible to suggest any solution to the difference in cooling rate in the steel, quenching cracks accompanying it, or large variations in hardness, and it is necessary to reduce the difference in wear resistance between the central part of thick wall and the surface layer. It cannot be ignored to solve the problems of the invention. In addition, the previous two cases require the addition of expensive Ti at a considerable compounding ratio, so a large cost increase cannot be ignored.

【0012】本発明は以上の課題を解決するために、た
とえば肉厚が最大部分では200mmを超え、単重が1
0トン近くに及ぶ大型部材であっても、肉厚の中央部分
も表層近くの部分もほぼ同じレベルの高い基地硬度を保
ち、それゆえに従来技術に比べて一段と耐摩耗性の優れ
た大型部材用の高クロム鋳鉄材を提供することを目的と
する。
In order to solve the above problems, the present invention, for example, has a maximum thickness of more than 200 mm and a unit weight of 1
Even for large-sized members that reach nearly 0 tons, both the central part of the wall thickness and the part near the surface layer maintain a high base hardness at almost the same level. Therefore, for large-sized members that are much more wear resistant than the conventional technology. An object of the present invention is to provide a high chromium cast iron material.

【0013】[0013]

【課題を解決するための手段】本発明に係る最大肉厚2
00mmに及ぶ大型製品に適合した高クロム鋳鉄材は
C:2.80〜3.50%、Si:0.30〜1.20
%、Mn:0.70〜1.80%、Cr:15.0〜3
0.0%、Mo:2.00〜4.00%、Ni:0.7
0〜2.00%、N:0.20〜0.40%(何れも重
量%)および不可避的不純物、残りFeよりなる亜共晶
系高クロム鋳鉄において、γ−Fe中へ固溶したNがベ
イナイト変態完了時間を長くすることにより最大肉厚2
00mmに及ぶ大型鋳造品においても肉厚中央部、表層
部を問わず基地硬度がマイクロビッカース硬さ(以下H
mVで表す)800以上で、肉厚断面の全域に亘って
その基地硬度が変らないことによって前記の課題を解決
した。
Maximum wall thickness 2 according to the present invention
High chromium cast iron conforming to及department large-product 00mm is C: 2.80~3.50%, Si: 0.30~1.20
%, Mn: 0.70 to 1.80%, Cr: 15.0 to 3
0.0%, Mo: 2.00 to 4.00%, Ni: 0.7
0 to 2.00%, N: 0.20 to 0.40% (all in weight%), unavoidable impurities, and balance Fe, which is a hypoeutectic high chromium cast iron, and N dissolved as a solid solution in γ-Fe. Has a maximum wall thickness of 2 by increasing the bainite transformation completion time.
Thick central portion even in及department large-scale casting to 300 mm, a base hardness regardless of the surface layer portion micro-Vickers hardness (hereinafter H
(represented by mV) is 800 or more , and the matrix hardness does not change over the entire area of the thick section, thereby solving the above problem.

【0014】 また本発明に係る高クロム鋳鉄材の製造
方法はC:2.80〜3.50%、Si:0.30〜
1.20%、Mn:0.70〜1.80%、Cr:1
5.0〜30.0%、Mo:2.00〜4.00%、N
i:0.70〜2.00%、N:0.20〜0.40%
(何れも重量%)および不可避的不純物、残りFeより
なる亜共晶系高クロム鋳鉄の溶湯を鋳造し、鋳放し手入
れを完了後、最大肉厚200mmに及ぶ大型製品でも焼
割れを生じない冷却速度で緩冷し、Nのオーステナイト
安定化作用によって相変態を長時間側へ移行して前記冷
却速度でも基地の焼入性を維持して肉厚の中央部と表層
部とが共に等しく高硬度を確保して少なくともHmV:
800以上の高硬度基地を形成し、該基地全体に分散析
出した超高硬度炭化物と相まって、耐摩耗組織を肉厚断
面の全域に亘って形成することによって前記の課題を解
決した。
Further, the manufacturing method of the high chromium cast iron material according to the present invention is C: 2.80 to 3.50%, Si: 0.30.
1.20%, Mn: 0.70 to 1.80%, Cr: 1
5.0 to 30.0%, Mo: 2.00 to 4.00%, N
i: 0.70 to 2.00%, N: 0.20 to 0.40%
Cause quench cracking in及department large-products (both by weight) and unavoidable impurities, casting the melt hypoeutectic based high chromium cast iron consisting of the remainder Fe, cast care After completion, the maximum thickness 200mm Slow cooling at a non-cooling rate, the phase transformation shifts to the long-term side by the austenite stabilizing action of N, and the hardenability of the matrix is maintained even at the cooling rate, and the central portion of the wall thickness and the surface layer portion are both equal. Ensure high hardness and at least HmV:
The above problem was solved by forming a high hardness base of 800 or more and forming an abrasion resistant structure over the entire area of the wall thickness section together with the ultra-high hardness carbide dispersed and precipitated throughout the base.

【0015】本発明の高クロム鋳鉄材は一定の靭性も具
えることを前提に亜共晶範囲のC−Crに抑え、耐摩耗
性の根源を形成する高硬度を得るためにバランスするC
r、Ni、Moを添加して炭化物を分散析出させる点で
は従来技術の一般原則の範疇に入る。最大の技術的特徴
は基地の強化にあり、厚肉大型製品に適合して肉厚断面
の全域に亘って硬度のバラツキが小さく、しかも全体と
しては従来技術の基地硬度を大幅に凌駕するレベル(H
mV800以上)を保持することを以て前記課題を解決
する。
The high chromium cast iron material of the present invention has a certain toughness and is controlled to C-Cr in the hypoeutectic range, and is balanced to obtain high hardness forming a root of wear resistance.
The addition of r, Ni and Mo to disperse and precipitate carbides falls within the general principle of the prior art. The greatest technical feature is the strengthening of the base, which is suitable for thick and large-sized products and has a small variation in hardness over the entire thickness section, and as a whole, it is a level that greatly exceeds the base hardness of the conventional technology ( H
The above problem is solved by maintaining the MV of 800 or more).

【0016】この基地硬度の均等な、かつ大幅な向上作
用は、オーステナイト安定化元素、特にNが冷却速度の
遅い場合でも安定して基地の焼入れ性を確保することに
よって発揮される。すなわち、N、Mn、Niなどのオ
ーステナイト安定元素は基地組織の連続冷却変態曲線で
見られる相変態、すなわちマルテンサイト〜ベイナイト
出現曲線を長時間側へ移行させる作用がある。特にNの
場合、侵入型としてFeのγ−格子に固溶するN原子
が、相変態を抑制しγ−Feを安定にすることが知られ
ており、固溶NはS曲線を右にずらすと共にα結晶粒の
核発生を遅らせ、Fe−C系で生ずる550℃のノーズ
を低温側へ下げ、ベイナイト変態を完了する時間も長く
なるという報告が見いだされる。(たとえばEleme
nt ofHardenability ASM[19
50]:150など)本発明ではこの観点から種々の亜
共晶系高クロム鋳鉄材についてγ〜α変態を長時間側へ
移行させる成分の適量添加が厚肉大型製品の品質の安定
強化、特に耐摩耗性の均等性とレベルアップに最適であ
ることを見出した点に最大の特徴がある。
The effect of evenly and significantly improving the hardness of the matrix is exhibited by ensuring the hardenability of the matrix stably even when the austenite stabilizing element, especially N, has a slow cooling rate. That is, the austenite stable elements such as N, Mn, and Ni have a function of shifting the phase transformation seen in the continuous cooling transformation curve of the matrix structure, that is, the martensite-bainite appearance curve to the long-term side. In particular, in the case of N, it is known that an N atom solid-dissolved in the γ-lattice of Fe as an interstitial type suppresses phase transformation and stabilizes γ-Fe, and the solid-solution N shifts the S curve to the right. At the same time, it has been found that the nucleation of α crystal grains is delayed, the nose of 550 ° C. generated in the Fe—C system is lowered to the low temperature side, and the time for completing the bainite transformation also becomes long. (For example, Eleme
nt of Hardenability ASM [19
50]: 150 etc.) In the present invention, from this viewpoint, the addition of an appropriate amount of a component that shifts the γ to α transformation to the long-term side in various hypoeutectic high-chromium cast iron materials enhances the stability of the quality of thick and large-sized products, particularly The greatest feature is that it was found to be uniform in wear resistance and optimal for leveling up.

【0017】つぎに本発明に係る亜共晶系高クロム鋳鉄
材の化学成分の限定理由について説明する。CはCr、
Mo,Wなどと結合して硬質な炭化物を晶出、または熱
処理によって二次析出させる元素であるが、2.80重
量%未満では上記炭化物の生成量(晶出、析出)が不足
し、耐摩耗性を低下させる。一方、3.50重量%を超
えると炭化物が過剰に生成、またはCr含有量によって
は過共晶域となって靭性低下による構造部材としての機
械的強度が保証できなくなる。よってC:2.80〜
3.50重量%とした。
Next, the reasons for limiting the chemical composition of the hypoeutectic high chromium cast iron material according to the present invention will be explained. C is Cr,
It is an element that combines with Mo, W, etc. to crystallize hard carbide or secondary precipitates by heat treatment, but if it is less than 2.80% by weight, the amount of the above-mentioned carbide formed (crystallization, precipitation) is insufficient, Reduces wear. On the other hand, if it exceeds 3.50% by weight, carbide is excessively generated, or depending on the Cr content, it becomes a hypereutectic region, and mechanical strength as a structural member cannot be guaranteed due to a decrease in toughness. Therefore, C: 2.80 ~
It was set to 3.50% by weight.

【0018】Siは脱酸および溶湯の流動性など鋳造性
を確保するために必要な元素であるが、0.30重量%
以下ではその効果がなく、1.20重量%を超えると靭
性の低下と共に焼入れ性の阻害、ならびに厚肉、超重量
部材では凝固過程で相変態(トルースタイト)による凝
固割れを来すため、0.30〜1.20重量%に限定し
た。
Si is an element necessary for ensuring castability such as deoxidation and fluidity of molten metal, but 0.30% by weight
If the content exceeds 1.20% by weight, the toughness deteriorates and the hardenability is impaired, and solidification cracks due to phase transformation (troostite) occur in the solidification process in thick and super heavy members. It was limited to 30 to 1.20% by weight.

【0019】Mnは脱酸および不可避的不純物元素であ
るSの固定作用と共に、オーステナイト安定化による焼
入れ性確保に有効な元素であるが、0.70重量%未満
ではその効果が見られず、一方、1,80重量%を超え
るとオーステナイト安定化により焼入れ性を阻害し基地
硬度が低下する。これにより0.70〜1.80重量%
に限定した。
Mn is an element effective for deoxidation and fixing of S which is an unavoidable impurity element, and is effective for securing hardenability by stabilizing austenite, but if it is less than 0.70% by weight, the effect is not observed. If it exceeds 1,80% by weight, the hardenability is impaired due to the stabilization of austenite and the matrix hardness is lowered. As a result, 0.70 to 1.80% by weight
Limited to.

【0020】NiもMnと同様オーステナイト安定化に
よる焼入れ性確保、ならびに凝固過程の相変態防止に有
効な元素であるが、0.70重量%未満ではその効果が
見られず、2.00重量%を超えると焼入れ性を阻害
し、基地硬度の低下を来すので0.70〜2.00重量
%とした。
Ni, like Mn, is an element effective in securing hardenability by stabilizing austenite and preventing phase transformation in the solidification process, but if it is less than 0.70% by weight, its effect is not observed and 2.00% by weight. If it exceeds 1.0, the hardenability is impaired and the base hardness is lowered, so the content was made 0.70 to 2.00% by weight.

【0021】 さらにNについてもオーステナイト安定
化による焼入れ性確保に不可欠な元素であるが、0.2
重量%未満ではその効果が見られず、0.40重量%
を超えると過飽和なNが凝固過程で放出されガスによる
鋳造欠陥を生じやすくする。よって0.20〜0.40
重量%に限定した。
Further, N is an element indispensable for ensuring hardenability by stabilizing austenite, but 0.2
If it is less than 0 % by weight, the effect is not seen, and 0.40% by weight
If it exceeds, supersaturated N is released in the solidification process, which easily causes casting defects due to gas. Therefore 0.20-0.40
Limited to weight percent.

【0022】CrはCと結合して硬質な炭化物を晶出さ
せ耐摩耗性を確保すると共に、基地に固溶して焼入れ性
ならびに機械的強度を高める重要な元素である。15重
量%未満では生成炭化物量が不足し、一方、30重量%
を超えると炭化物が過剰に生成(晶出、析出)し、また
はC含有量によっては過共晶域となって、共に靭性低下
による構造部材としての機械的強度が保証できなくな
る。よってCrは15.0〜30.0重量%に限定し
た。
Cr is an important element that combines with C to crystallize hard carbides to ensure wear resistance and to form a solid solution in the matrix to enhance hardenability and mechanical strength. If it is less than 15% by weight, the amount of carbide produced is insufficient, while on the other hand, 30% by weight
If it exceeds, the carbides are excessively generated (crystallized, precipitated) or become a hypereutectic region depending on the C content, and mechanical strength as a structural member cannot be guaranteed due to a decrease in toughness. Therefore, Cr is limited to 15.0 to 30.0% by weight.

【0023】Moは晶出炭化物に固溶し硬度を高めると
共に基地の焼入れ性改善に効果が高い元素であるが、
2.00重量%ではその効果が期待できず、4.00重
量%を超えると過剰な炭化物が形成されて脆化を促し、
焼割れを生じやすくする。よってMoは2.00〜4.
00重量%に限定した。
Mo is an element that forms a solid solution in the crystallized carbide to increase the hardness and is highly effective in improving the hardenability of the matrix.
At 2.00% by weight, the effect cannot be expected, and at more than 4.00% by weight, excessive carbide is formed to promote embrittlement,
Makes quench cracks more likely to occur. Therefore, Mo is 2.00-4.
It was limited to 00% by weight.

【0024】W、V、Nb、Ti、Bなど炭化物形成元
素は晶出炭化物に固溶し硬度を高めると共に、一部基地
に固溶して硬質、微細な炭化物を脆化に影響しないよう
基地中に二次析出させ、かつ二次炭化物の析出により基
地オーステナイトを不安定化しマルテンサイト〜ベイナ
イト変態を促進しやすくするが、0.20重量%以下で
はその効果が見られず、合計で1.00重量%を超える
複合添加は二次炭化物が多量に析出し、基地中のCを枯
渇させてマルテンサイト〜ベイナイト変態による基地硬
度の低下を招く。よって炭化物形成元素の複合添加は合
計で0.20〜1.00重量%の範囲に限定した。
Carbide-forming elements such as W, V, Nb, Ti and B form a solid solution with the crystallized carbide to increase the hardness, and also form a solid solution with a part of the matrix to prevent hard and fine carbide from affecting the embrittlement. The secondary austenite is deposited therein and the secondary austenite is precipitated to destabilize the base austenite to facilitate the martensite-bainite transformation, but at 0.20% by weight or less, the effect is not observed, and the total is 1. A composite addition of more than 00% by weight causes a large amount of secondary carbide to be deposited, depletes C in the matrix, and causes a decrease in matrix hardness due to martensite-bainite transformation. Therefore, the combined addition of the carbide-forming elements is limited to the range of 0.20 to 1.00% by weight in total.

【0025】[0025]

【発明の実施の形態】表2は本発明の作用を確認するた
めに実施した実施例および比較例の化学成分であり、比
較例は表1に示したASTMクラス2の基準に従った汎
用材1〜3と、該汎用材へさらに公知の炭化物の硬化促
進元素を増量添加した改良材4〜6よりなり、本発明の
実施例1〜3はCr:15〜30%の各レベルをNi、
Moで強化した公知の構成へ、特にS曲線を長時間側へ
移行させる目的でNを配合した成分よりなっている。
BEST MODE FOR CARRYING OUT THE INVENTION Table 2 shows the chemical components of Examples and Comparative Examples carried out to confirm the action of the present invention. The Comparative Examples are general-purpose materials according to the standard of ASTM Class 2 shown in Table 1. 1 to 3 and improvers 4 to 6 in which known carbide hardening accelerating elements are added to the general-purpose material in an increased amount, and Examples 1 to 3 of the present invention have Cr: 15 to 30% at each level of Ni,
It is composed of a component in which N is added to a known structure reinforced with Mo, particularly for the purpose of shifting the S curve to the long side.

【0026】[0026]

【表2】 [Table 2]

【0027】これらの比較例、実施例の成分よりなる試
験片を1000℃まで加熱した後、合計4.75hrか
けて緩冷した。この冷却速度の根拠は最大肉厚200m
m、製品単重8トンのローラタイヤ実体の空冷速度、す
なわち焼割れを生じない限度における放冷焼入れとし
て、1000℃〜600℃:20分、600℃〜400
℃:1.1hr、400℃〜150℃:3.3hr、合
計4.75hrの緩冷の熱処理曲線を想定して決定した
ものである。
After heating the test pieces composed of the components of these Comparative Examples and Examples to 1000 ° C., they were slowly cooled for a total of 4.75 hours. The basis for this cooling rate is a maximum wall thickness of 200 m
m, air cooling rate of a roller tire body having a unit weight of 8 tons, that is, as cooling quenching in a limit not causing quench cracking, 1000 ° C to 600 ° C: 20 minutes, 600 ° C to 400
C .: 1.1 hr, 400.degree. C. to 150.degree. C .: 3.3 hr, a total of 4.75 hr.

【0028】表3は表2の成分よりなる比較例、実施例
のそれぞれを前記放冷焼入を想定した緩冷速度で到達し
た最終の基地硬度と、それぞれの試験片を3種類の異な
る摩耗試験に供して得られた結果を汎用基準材と比較し
た耐摩耗倍数である。汎用基準材とは従来技術の代表と
して汎用の亜共晶26%高クロム鋳鉄材から30mmの
厚さに切り出し、基準熱処理である空冷焼入を施した試
験片の試験結果の数値を1.0としてそれぞれの試験片
の数値を指数化して表示したものである。
Table 3 shows the final matrix hardness reached in each of the comparative examples and the examples of the components of Table 2 at the slow cooling rate assuming the above-mentioned quenching and quenching, and each test piece with three different types of wear. It is the wear resistance multiple comparing the result obtained by the test with the general-purpose reference material. The general-purpose reference material is a typical example of conventional technology, which is obtained by cutting a general-purpose hypoeutectic 26% high chromium cast iron material to a thickness of 30 mm and subjecting the test result to a standard heat treatment of air-cooled quenching to give a numerical value of 1.0. The numerical value of each test piece is indexed and displayed.

【0029】[0029]

【表3】 [Table 3]

【0030】ここで前記3種類の摩耗試験機の概要は、
図2(加圧)、図3(衝撃)、図4(引掻き)にそれぞ
れ示している。図2の加圧摩耗試験機はラバーホィル1
の円周接線上へ6号珪砂Sを自動供給し、試験片TPを
このラバーへ押し当てて摩耗量を測定する。図3の衝撃
摩耗試験機は回転する4本のアーム2に試験片TPを取
り付け、所定時間、岩石(石英斑岩)Rを衝突させて摩
耗量を測定する。図4の引掻き摩耗試験機は4本のアー
ム3に試験片TPを取り付け、金属シリコンM内で回転
して所定時間当たりの攪拌摩耗量を測定する。なお、そ
れぞれの摩耗試験機の作動条件は表4に一括して示す。
Here, the outline of the three types of abrasion testers is as follows.
2 (pressurization), FIG. 3 (impact), and FIG. 4 (scratching), respectively. 2 is a rubber wheel 1
No. 6 silica sand S is automatically supplied to the circumference tangent line of No. 6, and the test piece TP is pressed against this rubber to measure the amount of wear. In the impact wear tester of FIG. 3, the test piece TP is attached to the four rotating arms 2, and rocks (quartz porphyry) R are made to collide for a predetermined time to measure the wear amount. In the scratch abrasion tester of FIG. 4, the test pieces TP are attached to the four arms 3 and rotated in the metallic silicon M to measure the amount of stirring abrasion per predetermined time. The operating conditions of each abrasion tester are collectively shown in Table 4.

【0031】[0031]

【表4】 [Table 4]

【0032】表3の結果を整理して縦軸に耐摩耗倍数、
横軸に基地硬度(HmV)を目盛って各摩耗試験毎にプ
ロットしたのが図1であり、基地硬度と耐摩耗性との相
関関係を明確に表している。特に引掻き摩耗においてそ
の傾向は最も顕著であり、アブレージョン摩耗に対抗す
る耐摩耗性の決定的な要件が基地硬度に支配される事実
を最も直接的に表示しているデータである。
The results of Table 3 are summarized and the vertical axis shows the wear resistance multiple,
FIG. 1 is a graph in which the hardness of the base (HmV) is plotted on the horizontal axis for each wear test, and the correlation between the base hardness and the wear resistance is clearly shown. In particular, the tendency is most remarkable in scratch wear, and the data most directly indicates the fact that the decisive requirement of wear resistance against abrasion wear is governed by the base hardness.

【0033】表3で認められることは比較例の1〜6は
何れもほぼ同じ成分の基準材に対し基地硬度が格段に低
下し、これと共に各種摩耗試験についても同じ傾向を記
録して両者の相関を立証している。一方、本発明実施例
は該基準材よりも基地硬度が遥かに優越し、これに伴っ
て耐摩耗倍数においても明らかに優位に立つという相関
性が成立する。比較例、実施例ともにC,Crを主体に
Ni,Moを添加した亜共晶系の高クロム鋳鉄材である
点で共通し、かつ、Nb,Wなど炭化物強化元素を添加
した試験片もあることから、析出した炭化物の性状自体
にさほどの差があるわけではなく、比較例、実施例の基
地硬度の差がそのまま耐摩耗性の差に直結した点は疑問
の余地が少ない。このことから本発明の要旨であるオー
ステナイト安定元素、特にNによる相変態の長時間側へ
の移行作用が緩冷条件における基地の高硬度形成を誘起
する最大の原動力であるとする発想の正しさを裏付けて
いる。
It can be seen from Table 3 that in Comparative Examples 1 to 6, the matrix hardness is remarkably reduced with respect to the reference material having almost the same composition, and the same tendency is recorded in various wear tests, and both of them are recorded. It proves the correlation. On the other hand, in the examples of the present invention, the matrix hardness is far superior to the reference material, and accordingly, the correlation that the wear resistance multiple is obviously superior is established. Both the comparative example and the example are common in that they are hypoeutectic high chromium cast iron materials mainly containing C and Cr and added with Ni and Mo, and there are also test pieces to which carbide strengthening elements such as Nb and W are added. Therefore, there is not much difference in the properties of the precipitated carbides themselves, and there is little doubt that the difference in matrix hardness between the comparative examples and the examples directly connected to the difference in wear resistance. From this, the correctness of the idea that the austenite stable element, which is the gist of the present invention, in particular, the action of shifting the phase transformation to the long-term side by N is the maximum driving force that induces the formation of high hardness of the matrix under the slow cooling condition is correct. Is backed up.

【0034】表5は石炭粉砕用ロールタイヤの実体につ
いて行った実施試験に供した材料の化学成分、焼入後の
硬度、耐摩耗性を従来適用されてきた汎用材と比較対照
して示したものである。実施例、汎用材共に適用した製
品は最大肉厚200mm、平均肉厚150mm、タイヤ
直径2330mm、製品重量8トンの大型鋳造品であ
り、すでに述べた緩慢な空冷速度で焼割れの発生を防止
しつつ可能な限度において焼入硬化を施したものであ
る。表のように基地硬度は本発明実施例では表層近くの
20mmにおいても、また肉厚中心部付近においてもほ
とんど差がなく、しかもHmV:800以上の高レベル
を記録しているのに対し、汎用材(従来技術)では表層
付近でもHmV:700に届かない水準に過ぎず、さら
に中央部に至りHmV:600に接近するまで落ち込む
ことが直接耐摩耗性の各種試験の結果に連動しており、
試験片だけによる既述の結果と軌を一にする結果によっ
て先の試験片の考察を裏付ける有力な傍証となることは
衆目の一致するところである。
Table 5 shows the chemical composition, hardness after quenching, and abrasion resistance of the materials used in the practical tests conducted on the substance of the roll tire for coal crushing, in comparison with the conventionally used general-purpose materials. It is a thing. The product to which both the example and the general-purpose material are applied is a large cast product having a maximum wall thickness of 200 mm, an average wall thickness of 150 mm, a tire diameter of 2330 mm, and a product weight of 8 tons. While being hardened to the maximum extent possible. As shown in the table, the matrix hardness of the present invention is almost the same even at 20 mm near the surface layer and near the center of the wall thickness, and a high level of HmV: 800 or more is recorded. In the material (conventional technology), even near the surface layer, it does not reach the level of HmV: 700, and it is directly linked to the results of various abrasion resistance tests that reach the center and drop until it approaches HmV: 600.
It is in agreement with the general public that the above-mentioned results of the test piece alone are in line with the above-mentioned results, which is a powerful evidence to support the consideration of the previous test piece.

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【発明の効果】本発明に係る亜共晶高クロム鋳鉄材は、
特に装置や設備の大型化に伴う耐摩耗性部材の大型化に
対応し、肉厚や全重量の増大にも拘わらず部材全体とし
てほぼ均等な硬度と不変の耐摩耗性を維持し、しかも、
その維持するレベルが従来技術の標準品を遥かに超える
高度な水準にあるという理想的な二面性を具えている。
これは従来技術において析出炭化物自体の一層の硬度ア
ップこそが耐摩耗性アップの要諦であると捉えてきたの
に対し、炭化物自体は従来技術と同一レベルにあっても
ベースとなる基地硬度こそが厚肉製品の耐摩耗性を決定
付ける要件であることに着目し、その要件を理想的に実
現するために相変態速度の曲線(S曲線)を長時間側へ
移行させるという画期的な手段を採ったため、従来技術
より格段に優れた耐摩耗性を享受できる効果が得られ
た。高クロム鋳鉄材の耐摩耗性向上の上できわめて独創
性の高い発明として当該技術分野の発展に寄与するもの
と考えられる。
The hypoeutectic high chromium cast iron material according to the present invention is
In particular, it corresponds to the increase in the size of wear-resistant members due to the increase in the size of equipment and facilities, and maintains an almost uniform hardness and unchanged wear resistance as a whole, despite the increase in the wall thickness and total weight, and
It has the ideal duality that the level maintained is far higher than the standard products of the prior art.
This has been understood in the prior art as the key to improving wear resistance is to increase the hardness of the precipitated carbide itself, whereas the carbide itself is the base hardness that is the base even at the same level as the conventional technology. Focusing on the requirement that determines the wear resistance of thick products, an epoch-making means of shifting the curve of the phase transformation rate (S curve) to a long time side in order to ideally realize the requirement. As a result, the effect of being able to enjoy wear resistance far superior to that of the prior art was obtained. It is considered that this invention contributes to the development of the technical field as an invention having a very originality in improving the wear resistance of the high chromium cast iron material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例、比較例の試験結果をまとめた基
地硬度(HmV)と耐摩耗倍数の関係図である。
FIG. 1 is a relational diagram of matrix hardness (HmV) and wear resistance multiple, which summarizes the test results of Examples of the present invention and Comparative Examples.

【図2】本発明の効果確認に使用した加圧摩耗試験機の
略図である。
FIG. 2 is a schematic view of a pressure wear tester used for confirming the effect of the present invention.

【図3】同じく衝撃摩耗試験機の略図である。FIG. 3 is a schematic view of the impact wear tester.

【図4】同じく引掻き摩耗試験機の略図である。FIG. 4 is a schematic view of a scratch abrasion tester.

【符号の説明】[Explanation of symbols]

1 ラバーホィル 2 アーム 3 アーム S 6号珪砂 R 石英斑岩 M 金属シリコン TP 試験片 1 rubber wheel Two arms Three arms S No. 6 silica sand R quartz porphyry M metal silicon TP test piece

フロントページの続き (72)発明者 新宮 良明 大阪市西区北堀江1丁目12番19号 株式 会社栗本鐵工所内 (56)参考文献 特開 昭59−129720(JP,A) 特開 平2−115343(JP,A) 特開 平6−240403(JP,A) 特開 平8−291358(JP,A) 特表 平8−510298(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 37/08 C22C 33/08 Front page continuation (72) Inventor Yoshiaki Shingu 1-12-19 Kitahori, Nishi-ku, Osaka City Kurimoto Iron Works Co., Ltd. (56) Reference JP 59-129720 (JP, A) JP 2-115343 (JP, A) JP-A-6-240403 (JP, A) JP-A-8-291358 (JP, A) Special Table 8-510298 (JP, A) (58) Fields investigated (Int. Cl. 7) , DB name) C22C 37/08 C22C 33/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:2.80〜3.50%、Si:0.
30〜1.20%、Mn:0.70〜1.80%、C
r:15.0〜30.0%、Mo:2.00〜4.00
%、Ni:0.70〜2.00%、N:0.20〜0.
40%(何れも重量%)および不可避的不純物、残りF
eよりなる亜共晶系高クロム鋳鉄において、γ−Fe中
へ固溶したNがベイナイト変態完了時間を長くすること
により最大肉厚が200mmに及ぶ大型鋳造品において
も肉厚中央部、表層部を問わず基地硬度がマイクロビッ
カース硬さ(HmV)800以上で、肉厚断面の全域
に亘ってその基地硬度が変らないことを特徴とする最
肉厚200mmに及ぶ大型製品に適合した亜共晶系高ク
ロム鋳鉄材。
1. C: 2.80 to 3.50%, Si: 0.
30 to 1.20%, Mn: 0.70 to 1.80%, C
r: 15.0-30.0%, Mo: 2.00-4.00
%, Ni: 0.70 to 2.00%, N: 0.20 to 0.
40% (all by weight) and inevitable impurities, balance F
In hypoeutectic system high chromium cast iron consisting of e, the thickness center portion also in及department large-castings maximum wall thickness to 200mm by N was dissolved into gamma-Fe to increase the bainite transformation completion time, in the base hardness irrespective of the surface layer portion micro-Vickers hardness (HmV) is more than 800, over the entire thickness sectional large-products department及its maximum thickness 200mm you characterized in that the base hardness unchanged Hypoeutectic high-chromium cast iron material suitable for.
【請求項2】 請求項1において亜共晶系高クロム鋳鉄
の前記基本成分に加え、さらにW、V、Nb、Ti、B
の炭化物形成元素から選んだ1または2以上の成分を合
計で0.20〜1.00重量%の範囲で添加し、析出、
晶出した炭化物硬度を高めたことを特徴とする最大肉厚
200mmに及ぶ大型製品に適合した亜共晶系高クロム
鋳鉄材。
2. In addition to the basic components of hypoeutectic high chromium cast iron as set forth in claim 1, W, V, Nb, Ti and B are further added.
1 or 2 or more components selected from the above carbide forming elements are added in a range of 0.20 to 1.00% by weight in total, and precipitation,
Hypoeutectic based high chromium cast iron material which is adapted to large-scale product department及to the maximum wall thickness of 200mm you said that there was high because the carbide hardness that crystallized out.
【請求項3】 C:2.80〜3.50%、Si:0.
30〜1.20%、Mn:0.70〜1.80%、C
r:15.0〜30.0%、Mo:2.00〜4.00
%、Ni:0.70〜2.00%、N:0.20〜0.
40%(何れも重量%)および不可避的不純物、残りF
eよりなる亜共晶系高クロム鋳鉄の溶湯を鋳造し、鋳放
し手入れを完了後、最大肉厚200mmに及ぶ大型製品
でも焼割れを防止する限度の緩慢な速度で冷却し、Nの
オーステナイト安定化作用によって相変態を長時間側へ
移行して前記冷却速度でも基地の焼入性を維持し、肉厚
の中央部と表層部とが共に等しく高硬度を確保して少な
くともマイクロビッカース硬さ(HmV)が800以上
の高硬度基地を形成し、該基地全体に分散析出、晶出し
た超高硬度炭化物と相まって、耐磨耗組織を肉厚断面の
全域に亘って形成することを特徴とする最大肉厚200
mmに及ぶ大型製品に適合した亜共晶系高クロム鋳鉄材
の製造方法。
3. C: 2.80 to 3.50%, Si: 0.
30 to 1.20%, Mn: 0.70 to 1.80%, C
r: 15.0-30.0%, Mo: 2.00-4.00
%, Ni: 0.70 to 2.00%, N: 0.20 to 0.
40% (all by weight) and inevitable impurities, balance F
casting a hypoeutectic system high chromium cast iron melt consisting e, after cast complete care, also cooled at a slower rate limit to prevent quenching cracks in及department large-products to the maximum wall thickness 200 mm, the N The austenite stabilizing effect shifts the phase transformation to the long-term side to maintain the hardenability of the matrix even at the cooling rate, ensuring that both the central portion and the surface layer portion of the wall thickness have high hardness and at least a micro Vickers hardness. Characterized by forming a high hardness matrix having a hardness (HmV) of 800 or more, and forming an abrasion resistant structure over the entire area of the thick section in combination with the ultra-high hardness carbide dispersed and precipitated and crystallized throughout the matrix. The maximum wall thickness you 200
department manufacturing method of hypoeutectic based high chromium cast iron conforming to large-scale products mm.
【請求項4】 請求項3において亜共晶系高クロム鋳鉄
の前記基本成分に加え、さらにW、V、Nb、Ti、B
の炭化物形成元素から選んだ1または2以上の成分を合
計で0.20〜1.00重量%の範囲で添加し、析出、
晶出した炭化物硬度を高めたことを特徴とする最大肉厚
200mmに及ぶ大型製品に適合した亜共晶系高クロム
鋳鉄材の製造方法。
4. In addition to the basic components of hypoeutectic high chromium cast iron according to claim 3, W, V, Nb, Ti and B are further added.
1 or 2 or more components selected from the above carbide forming elements are added in a range of 0.20 to 1.00% by weight in total, and precipitation,
Hypoeutectic system manufacturing method of the high chromium cast iron adapted及department in large-scale products maximum thickness 200mm you characterized that there was high because the carbide hardness crystallized out.
JP16227899A 1999-06-09 1999-06-09 Hypoeutectic high chromium cast iron material particularly suitable for large products and method for producing the same Expired - Lifetime JP3496577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16227899A JP3496577B2 (en) 1999-06-09 1999-06-09 Hypoeutectic high chromium cast iron material particularly suitable for large products and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16227899A JP3496577B2 (en) 1999-06-09 1999-06-09 Hypoeutectic high chromium cast iron material particularly suitable for large products and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000345280A JP2000345280A (en) 2000-12-12
JP3496577B2 true JP3496577B2 (en) 2004-02-16

Family

ID=15751445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16227899A Expired - Lifetime JP3496577B2 (en) 1999-06-09 1999-06-09 Hypoeutectic high chromium cast iron material particularly suitable for large products and method for producing the same

Country Status (1)

Country Link
JP (1) JP3496577B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753365B2 (en) * 2010-10-29 2015-07-22 株式会社アーステクニカ High chrome cast iron
CN103589962B (en) * 2013-11-05 2016-06-15 中联重科股份有限公司 Composite wear-resistant material obtained by casting method and preparation method thereof
CN106011360A (en) * 2016-07-01 2016-10-12 宁国市开源电力耐磨材料有限公司 Smelting technology of high-strength low-stress gray pig iron
CN106011603A (en) * 2016-07-01 2016-10-12 宁国市开源电力耐磨材料有限公司 Smelting technology of high-strength vermicular graphite cast iron
US12084732B2 (en) * 2022-03-29 2024-09-10 Townley Foundry & Machine Co., Inc. Hypereutectic white iron alloy comprising chromium, boron and nitrogen and cryogenically hardened articles made therefrom
CN115287527B (en) * 2022-08-19 2023-04-25 沈阳盛世五寰科技有限公司 High-performance hypereutectic high-chromium cast iron without rare earth modifier and preparation method thereof

Also Published As

Publication number Publication date
JP2000345280A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
CN100453681C (en) High boron wear-resisting casting steel and preparation process thereof
AU2013302197B2 (en) Method for producing molten steel having high wear resistance and steel having said characteristics
US6171222B1 (en) Rolls for metal shaping
CN102242314B (en) Multiple alloy toughened and wear-resistant middle-manganese steel and preparation technology thereof
KR100619841B1 (en) High elasticity and high strength steel in the composition of high silicon with low alloy for the purpose of impact resistance and abrasion resistance and manufacturing method of the same steel
CN104451405B (en) Austenite wear-resistant steel with impact and wear resistance and hot rolled plate manufacturing method
CN112695253B (en) Carbide-containing high-strength high-toughness bainite wear-resistant steel and preparation method thereof
WO2019186906A1 (en) Austenitic abrasion-resistant steel sheet
CN109913751A (en) High-strength tenacity Bainite wear-resisting steel and preparation method thereof suitable for large-scale semi-autogenous mill liner plate
KR20210134702A (en) Hot working die steel, its heat treatment method and hot working die
JPH06322482A (en) High toughness high-speed steel member and its production
Okechukwu et al. Prominence of Hadfield steel in mining and minerals industries: A review
JP3545963B2 (en) High toughness super wear resistant cast steel and method for producing the same
CN1276113C (en) High boron foundry iron base anti-wear alloy and its heat treatment method
CN111534763A (en) Wear-resistant alloy steel and preparation method thereof
JP3496577B2 (en) Hypoeutectic high chromium cast iron material particularly suitable for large products and method for producing the same
CN104120333A (en) Wear-resistant cast iron material, preparation method thereof and helical blade guard plate made from wear-resistant cast iron material
Bedolla-Jacuinde Niobium in cast irons
JP3950519B2 (en) High toughness super wear resistant steel and method for producing the same
CN114058945B (en) High-strength bainite wear-resistant steel plate and production method thereof
JP2000328199A (en) Wear resistant material
CN105506256A (en) Method for preparing high-hardness wear-resistant cast iron hammerhead
KR20070067328A (en) High elasticity and high strength steel in the composition of high silicon with low alloy for the purpose of impact resistance and abrasion resistance and manufacturing method of the same steel
KR100524587B1 (en) Fe-cr based alloy cast iron with excellent abrasion and impact resistance and manufacturing method thereof
JP2002346613A (en) Composite roll for hot rolling and hot rolling method using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3496577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term