JPS6256543A - Manufacture of sintered compact of rare-earth alloy - Google Patents

Manufacture of sintered compact of rare-earth alloy

Info

Publication number
JPS6256543A
JPS6256543A JP19691285A JP19691285A JPS6256543A JP S6256543 A JPS6256543 A JP S6256543A JP 19691285 A JP19691285 A JP 19691285A JP 19691285 A JP19691285 A JP 19691285A JP S6256543 A JPS6256543 A JP S6256543A
Authority
JP
Japan
Prior art keywords
alloy
rare
rare earth
compacting
earth alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19691285A
Other languages
Japanese (ja)
Inventor
Fumihiko Kusama
草間 文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP19691285A priority Critical patent/JPS6256543A/en
Publication of JPS6256543A publication Critical patent/JPS6256543A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PURPOSE:To easily manufacture a target made of sintered compact or rare-earth alloy free from defects and having high density by refining an alloy having a specific composition consisting of rare earth elements, Fe and Co, crushing the above, charging the resulting powdered alloy into a mold for compacting and then subjecting it to compacting and sintering under specific conditions. CONSTITUTION:The prescribed alloy is refined previously so as to provide a composition consisting of 10-80wt% of one or more among rare earth elements including Y and the balance essentially Fe and/or Co, which is crushed and regulated. Thus-obtained powder is charged into the mold for compacting, which is subjected to compacting and sintering at a temp. ranging from the liquidus temp. of the above alloy to +50 deg.C, at a pressure of >=500kgG/cm<2> and under the condition where the above powder of rare-earth alloy is allowed to exist in a practically inert or vacuum atmosphere. In this way, the high- density sintered compact of rare-earth alloy for targets suitable for sputtering operation can be obtained in a short time without causing the occurrence of cracks, breakage, etc., nor causing any problem in handling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類合金焼結体の製造に係り、より詳細には
、光磁気記録方式における磁気ディスクにおいて記録媒
体として用い得る希土類合金薄膜をスパッタリングによ
って形成する際、スパッタリング装置に装着するターゲ
ツト材(希土類合金焼結体)の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the production of a rare earth alloy sintered body, and more specifically, to the production of a rare earth alloy thin film that can be used as a recording medium in a magnetic disk in a magneto-optical recording system. The present invention relates to a method for manufacturing a target material (rare earth alloy sintered body) to be attached to a sputtering device when forming the target material.

(従来の技術) 一般に、スパッタリングは薄膜形成方法として様々な目
的に用いられており、そのため、スパッタリング装置に
使用するターゲットの材質も各種の金属、合金、セラミ
ックス等にわたって多種多様である。また、ターゲット
の形状、寸法は、一般的には厚さが数μmから十数μm
の平板からなる角形又は円形状である。
(Prior Art) Generally, sputtering is used as a thin film forming method for various purposes, and therefore, the materials of targets used in sputtering devices are diverse, including various metals, alloys, ceramics, etc. In addition, the shape and dimensions of the target are generally from several μm to more than ten μm in thickness.
It has a rectangular or circular shape consisting of a flat plate.

このような材料からターゲットを製造するには、金属又
は合金の場合であれば、母材を鍛造後に圧延し、或いは
母材溶湯を鋳造した後、必要に応じて切削、研磨等の仕
上げ加工を施してターゲットを得るのが一般的である。
To manufacture targets from such materials, in the case of metals or alloys, the base material must be forged and then rolled, or the base metal molten metal must be cast, and then finishing processing such as cutting and polishing is performed as necessary. It is common to obtain the target by applying

また、セラミックスを材料とする場合であれば、粉体を
成形、焼結の後、切削、研磨等で仕上げるのが一般的で
ある。
Furthermore, when ceramics are used as the material, it is common to form the powder, sinter it, and then finish it by cutting, polishing, etc.

ところで、光磁気記録方式における磁気ディスクにおい
ては、記録媒体として希土類合金からなる磁性薄膜が用
いられつつある。この希土類合金薄膜をスパッタリング
で作製する場合、希土類合金をターゲットとして使用す
るのが好適である。
By the way, in magnetic disks using magneto-optical recording systems, magnetic thin films made of rare earth alloys are being used as recording media. When producing this rare earth alloy thin film by sputtering, it is preferable to use a rare earth alloy as a target.

しかし、希土類元素を含有する合金、就中、希土類元素
を10〜80重景%含み、残部がFe及び/又はCOで
ある組成範囲の希土類合金は、鋳造組織が極めて脆弱で
あるため、上記の如き一般の金属材料に適用される加工
方法ではターゲツト板を製造することは困難であった。
However, alloys containing rare earth elements, especially rare earth alloys with a composition range of 10 to 80% rare earth elements, with the balance being Fe and/or CO, have extremely fragile casting structures, so the above-mentioned It is difficult to manufacture target plates using processing methods applied to general metal materials such as metal materials.

そのため、他の製造法として粉末冶金法を適用する試み
があるが、ターゲットとしての成形、焼結体にクラック
が入ったり、欠は落ちが生じたりして特に製造及びハン
ドリングが難しいという問題がある。また、合金として
利用せずに、複数種類の純金属の小片をターゲット部位
に並べて表面積に占める各金属(成分)の割合で調整す
る便法も試みられてはいるが、大きな面積の板状合金タ
ーゲットに匹敵する程の効果は期待できない。
Therefore, attempts have been made to apply the powder metallurgy method as another manufacturing method, but there are problems in that it is particularly difficult to manufacture and handle, as the molding as a target and the sintered body may crack or chip. . In addition, an expedient method has been attempted in which small pieces of multiple types of pure metals are arranged on the target site and adjusted by the ratio of each metal (component) to the surface area, without using it as an alloy. It cannot be expected to have an effect comparable to that of the target.

(発明の目的) 本発明は、上記従来技術の欠点を解消し、粉末冶金法を
適用して上記希土類合金ターゲットを製造するに際し、
クラック、欠は落ち等が発生せず。
(Object of the Invention) The present invention solves the drawbacks of the above-mentioned conventional technology, and when manufacturing the above-mentioned rare earth alloy target by applying a powder metallurgy method,
No cracks, chips or falling off.

製造及びハンドリング上の問題を伴うことなく、スパッ
タリング操作に好適なターグツl−板を得る方法を提供
することを目的とするものである。
It is an object of the present invention to provide a method for obtaining targstone l-plates suitable for sputtering operations without production and handling problems.

(発明の構成) 上記目的を達成するため、本発明では、上記希土類合金
の粉体に対する成形、焼結を特定条件のもとで行うこと
としたものである。
(Structure of the Invention) In order to achieve the above object, in the present invention, the rare earth alloy powder is formed and sintered under specific conditions.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

本発明法に用いる材料は、Yを含む希土類元素(以下、
希土類元素という)の1種又は2種以上の合計が10〜
80重景%含み、残部が実質的にFe及びCOのうちの
1種又は2種からなる組成を有するものである。
The material used in the method of the present invention is a rare earth element containing Y (hereinafter referred to as
The total of one or more types of rare earth elements (referred to as rare earth elements) is 10~
It has a composition of 80% by weight, and the remainder substantially consists of one or two of Fe and CO.

希土類元素としては、ランタン系列元素でLa、Ce、
 Pr、 Nd、 Pm、Sm、Eu、 Gd、 Tb
、 Dy、HOlEr、Tm、Yb及びLuを挙げるこ
とができる。但し、Yを含めるものである。これらの元
素は1種又は2種以上で含有させることができるが、含
有量はスパッタリングにより所望諸特性の磁性薄膜を形
成することができる範囲で、10〜80重量%とする。
Rare earth elements include lanthanum series elements such as La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb
, Dy, HOlEr, Tm, Yb and Lu. However, Y is included. These elements can be contained alone or in combination of two or more, and the content is 10 to 80% by weight within a range that allows formation of a magnetic thin film with desired characteristics by sputtering.

なお、希土類元素は合金又は母合金の態様で使用するの
が好ましい。
Note that the rare earth element is preferably used in the form of an alloy or a master alloy.

上記希土類元素の含有量の残部は、Fe及び/又はGo
からなり、不純物成分は極めて微量に規制する必要があ
る。就中、酸素は希土類元素が活性であることに鑑み、
極力混入しないように留意する。
The remainder of the rare earth element content is Fe and/or Go.
It is necessary to control the impurity components to an extremely small amount. In particular, in view of the fact that rare earth elements are active in oxygen,
Take care to avoid mixing as much as possible.

これらの成分組成の材料は、本発明においては、狙いと
する化学成分を有する希土類合金の1種又は2種以上を
予め溶製した後粉砕するか、或いはベース希土類合金を
予め溶製した後粉砕したものに他の合金成分の純金属粉
の1種又は2種以上を混合するなどにより、成分調整を
行う。勿論、異なる成分組成の希土類合金粉を2種以上
混合することも可能であり、この場合には、ターゲット
としての成分組成の選択が自由にでき、また単なる各成
分の混合よりも得られるスパッタリング薄膜の磁気特性
が良好となる。特に希土類元素は単独の粉体として混合
するよりも合金の態様で利用した方がスパッタリング薄
膜の磁気特性が良好となる。
In the present invention, materials having these compositions are prepared by melting one or more rare earth alloys having the target chemical composition in advance and then pulverizing them, or by melting a base rare earth alloy in advance and then pulverizing them. The composition is adjusted by mixing one or more types of pure metal powder of other alloy components into the powder. Of course, it is also possible to mix two or more types of rare earth alloy powders with different component compositions, and in this case, the component composition as a target can be freely selected, and the sputtering thin film obtained can be made better than by simply mixing each component. The magnetic properties of the material are improved. In particular, the magnetic properties of the sputtered thin film are better when rare earth elements are used in the form of an alloy rather than mixed as a single powder.

次に、本発明法では、成分調整した粉体を成形用の型に
装入し、以下に示す成形、焼結条件で処理する。
Next, in the method of the present invention, the powder whose composition has been adjusted is charged into a mold for molding, and processed under the molding and sintering conditions shown below.

すなわち、成形圧力は焼結力を強くし、焼結しやすくす
るために500 kgG/ cm2以上の値とする。
That is, the molding pressure is set to a value of 500 kgG/cm2 or more in order to increase the sintering force and facilitate sintering.

焼結温度は、完全な液相焼結又は一部液相での焼結を行
わせるために希土類合金の液相点−+50℃の範囲内で
選定する。特に2種類以」二の合金粉を使用する場合、
一方を液相で、他方を固相で焼結させることL9−より
、一部液相焼結も可能となる。
The sintering temperature is selected within the range of −+50° C., the liquidus point of the rare earth alloy, in order to perform complete liquid phase sintering or partial liquid phase sintering. Especially when using two or more types of alloy powder,
By sintering one in a liquid phase and the other in a solid phase L9-, liquid phase sintering is also possible in part.

焼結雰囲気としては、希土類元素が活性である点を考慮
して不活性雰囲気或いは真空雰囲気とするが、真空状態
ははゾ保たれていれば特に支障はない。勿論、」二記温
度での保持時間は完全液相又は一部液相での焼結に適し
た時間を決めることは云うまでもない。
The sintering atmosphere is an inert atmosphere or a vacuum atmosphere considering that rare earth elements are active, but there is no particular problem as long as the vacuum state is maintained. Of course, it goes without saying that the holding time at the above temperature determines the time suitable for sintering in a completely liquid phase or a partially liquid phase.

なお、上記成形、焼結条件はホットプレス(HP)法、
静水圧ホットプレス(HIP)法のいずれの場合にも適
用できることは云うまでもない。I−IP法はHI P
法の場合に比べて圧力、温度の制約が大きく、得られる
焼結体の密度比が小さいということもあるが、使用上差
し支えない強度を確保することはできる。
The above molding and sintering conditions are hot press (HP) method,
It goes without saying that it can be applied to any case of the hydrostatic hot press (HIP) method. I-IP method is HIP
Although pressure and temperature restrictions are greater than in the case of the method, and the density ratio of the obtained sintered body is small, it is possible to ensure sufficient strength for use.

(実施例) ■溶製 水冷鋼ハース及びタングステン電極を有する公知の真空
アーク溶解装置を用い、第1表に示す成分組成の各希土
類合金500gを溶製した。なお。
(Example) 500 g of each rare earth alloy having the composition shown in Table 1 was melted using a known vacuum arc melting apparatus having a water-cooled steel hearth and a tungsten electrode. In addition.

溶解に先立って3 X 10−’Torrに真空引きし
た後、精製高純度Arガスで400 Torrとし、ア
ーク電圧20Vにて溶解した。また原料金属としては、
電解高純度鉄を真空アーク溶屏した純度99.99%の
鉄と、電解高純度コバルトを900℃、H2中で処理後
、真空脱ガス処理して得た純度99.95%のニッケル
と、市販高純度品(純度99.5%)の希土類元素を各
々用いた。
Prior to melting, the sample was evacuated to 3 x 10-' Torr, then the pressure was increased to 400 Torr with purified high-purity Ar gas, and melted at an arc voltage of 20V. In addition, as raw material metals,
Iron with a purity of 99.99% obtained by vacuum arc melting of electrolytic high-purity iron, nickel with a purity of 99.95% obtained by processing electrolytic high-purity cobalt in H2 at 900°C and vacuum degassing treatment, Commercially available high purity rare earth elements (purity 99.5%) were used.

第1表 希土類合金組成(wt%) ■粉砕 真空アーク溶解後の凝固合金を高純度Ar雰囲気下でス
タンプミルにて粉砕した。スタンプミルの仕様は次のと
うりである。
Table 1 Rare earth alloy composition (wt%) ■ Grinding The solidified alloy after vacuum arc melting was ground in a stamp mill in a high-purity Ar atmosphere. The specifications of the stamp mill are as follows.

杵重量・・・3 、8 kg ストローク・・・100mII 落下回数 ・・・20回/分 粉砕物はすべて一150μmとした。Pestle weight...3, 8 kg Stroke...100mII Number of falls: 20 times/min All pulverized materials had a diameter of -150 μm.

■成形 次に、第1表に示した成分組成の希土類合金粉の1種又
は2種を第2表に示す如く混合調整した後、各供試材を
HI P法に用いるカプセルに充填し、約7+nmの層
厚を得た。なお、カプセルは軟鋼型で板厚1.5mm、
内径60+nm、深さ20camの円筒状のもので、蓋
は直径59.8mmでその中央部に外径4IIIIIl
φの真空引き用パイプを取付けたものを準備した。
■Forming Next, after mixing and adjusting one or two types of rare earth alloy powders having the composition shown in Table 1 as shown in Table 2, each sample material was filled into a capsule used in the HIP method. A layer thickness of approximately 7+ nm was obtained. The capsule is a mild steel type with a plate thickness of 1.5 mm.
It is cylindrical with an inner diameter of 60+nm and a depth of 20cam, and the lid has a diameter of 59.8mm and an outer diameter of 4IIIl in the center.
I prepared one with a φ vacuum pipe attached.

粉砕物を充填後、カプセル上に蓋を被せ、真空引き用パ
イプからArガスを流しつ\、蓋とカプセル本体とをT
IG溶接で隙間なく接合し、次いで真空引き用パイプを
真空ポンプに接続し、カプセル全体を120℃に加熱し
つ> 3 X 10−4Torrまで減圧した。所定の
真空に達したところで真空引き用パイプをガスバーナで
焼き切り、カプセルを密封した。
After filling the pulverized material, put the lid on the capsule, flow Ar gas from the vacuum pipe, and connect the lid and the capsule body with T.
The capsules were joined without any gaps by IG welding, and then the vacuum pipe was connected to a vacuum pump, and the entire capsule was heated to 120° C. and the pressure was reduced to >3×10 −4 Torr. When a predetermined vacuum was reached, the vacuum pipe was burned out with a gas burner, and the capsule was sealed.

■焼結 カプセル内に密封した試料は、第2表に示す条件(圧力
、温度レベル、保持時間)の静水圧式ホットプレスにて
加圧、加熱した後、徐減圧、徐冷し、装置より取り出し
た。次いで、カプセルを取り除いた後、得られた焼結体
に研削盤にて面仕」ユげと円周の仕上げを施し、板厚5
.0mm、直径50ma+のターゲツト板とした。
■The sample sealed in the sintered capsule is pressurized and heated in a hydrostatic hot press under the conditions (pressure, temperature level, and holding time) shown in Table 2, then slowly depressurized, slowly cooled, and removed from the device. Ta. Next, after removing the capsule, the obtained sintered body was finished with a surface finish and circumference using a grinder, and the plate thickness was 5.
.. A target plate with a diameter of 0 mm and a diameter of 50 ma+ was used.

なお、各焼結体について密度比(l−気孔率)を調べる
と共に面内クラックの有無、仕上げ加工時の欠は落ちの
有無を調べたにれらの結果を第2表に併記する。
Table 2 also shows the results of examining the density ratio (l-porosity) of each sintered body, as well as the presence or absence of in-plane cracks and the presence or absence of chipping during finishing.

【以下余白] 第2表に示すとうり、いずれの成分組成の供試材も面内
クラックや欠は落ちなどの欠陥もなく、健全で極めて高
密度の焼結体であった。なお、一部の焼結体について抗
折力を測定したが、ターゲットとして用いるうえで充分
な値が得られた。
[Margin below] As shown in Table 2, the test materials of all component compositions had no defects such as in-plane cracks or chips, and were sound and extremely dense sintered bodies. The transverse rupture strength of some of the sintered bodies was measured, and values sufficient for use as targets were obtained.

以上に示した本発明法は、スパッタリングにより得られ
る薄膜の膜特性向上の目的で添加されるその他の元素を
上記希土類合金に添加したターゲット材料についても同
様に適用でき、好結果を得ることができる。
The method of the present invention described above can be similarly applied to target materials in which other elements are added to the rare earth alloy for the purpose of improving the film properties of thin films obtained by sputtering, and good results can be obtained. .

(発明の効果) 、以上詳述したように、本発明によれば、ターゲット材
料の希土類合金を予め溶製したうえで粉砕し、しかも特
定条件のもとで加圧焼結してターゲット用焼結体を得る
ので、製造が容易で特に処理時間が短くて済みハンドリ
ング上の問題がなく、スパッタリング操作に好適な極め
て高密度のターゲットを提供することができる。特にタ
ーゲットの成分組成を任意に選択でき、スパッタリング
薄膜の磁気特性を製造面から向上し得るという利点もあ
る。
(Effects of the Invention) As detailed above, according to the present invention, the rare earth alloy of the target material is melted and pulverized in advance, and then pressure sintered under specific conditions to produce the sintered material for the target. Since a solid body is obtained, it is easy to manufacture, particularly in a short processing time, there are no handling problems, and it is possible to provide an extremely high-density target suitable for sputtering operations. In particular, there is an advantage that the component composition of the target can be selected arbitrarily, and the magnetic properties of the sputtered thin film can be improved from a manufacturing standpoint.

Claims (1)

【特許請求の範囲】[Claims] 希土類元素(但し、Yを含む)の1種又は2種以上の合
計を10〜80重量%含み、残部が実質的にFe及びC
oのうちの1種又は2種からなる組成となるように、予
め所要の合金を溶製した後粉砕し、調整して成形用の型
に装入し、温度が該合金の液相点〜+50℃の範囲、圧
力が500kgG/cm^2以上にて実質的に不活性又
は真空雰囲気中に該希土類合金粉を存在させる条件のも
とで加圧、焼結することを特徴とするスパッタリングタ
ーゲット用の希土類合金焼結体の製造方法。
Contains 10 to 80% by weight of one or more rare earth elements (including Y), with the remainder being substantially Fe and C.
The required alloy is melted and pulverized in advance so that it has a composition consisting of one or two of the following: A sputtering target characterized by pressurizing and sintering the rare earth alloy powder in a substantially inert or vacuum atmosphere at a temperature of +50°C and a pressure of 500 kgG/cm^2 or more. A method for manufacturing a rare earth alloy sintered body for use.
JP19691285A 1985-09-06 1985-09-06 Manufacture of sintered compact of rare-earth alloy Pending JPS6256543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19691285A JPS6256543A (en) 1985-09-06 1985-09-06 Manufacture of sintered compact of rare-earth alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19691285A JPS6256543A (en) 1985-09-06 1985-09-06 Manufacture of sintered compact of rare-earth alloy

Publications (1)

Publication Number Publication Date
JPS6256543A true JPS6256543A (en) 1987-03-12

Family

ID=16365723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19691285A Pending JPS6256543A (en) 1985-09-06 1985-09-06 Manufacture of sintered compact of rare-earth alloy

Country Status (1)

Country Link
JP (1) JPS6256543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308201A1 (en) * 1987-09-17 1989-03-22 Seiko Epson Corporation Method of forming a sputtering target for use in producing a magneto-optic recording medium
US4824481A (en) * 1988-01-11 1989-04-25 Eaastman Kodak Company Sputtering targets for magneto-optic films and a method for making
JPH02205655A (en) * 1989-02-03 1990-08-15 Koji Hayashi Manufacture of high density ferrous sintered body
JP2002098599A (en) * 2000-09-27 2002-04-05 Toyoda Mach Works Ltd Torque sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308201A1 (en) * 1987-09-17 1989-03-22 Seiko Epson Corporation Method of forming a sputtering target for use in producing a magneto-optic recording medium
US4824481A (en) * 1988-01-11 1989-04-25 Eaastman Kodak Company Sputtering targets for magneto-optic films and a method for making
JPH02205655A (en) * 1989-02-03 1990-08-15 Koji Hayashi Manufacture of high density ferrous sintered body
JP2002098599A (en) * 2000-09-27 2002-04-05 Toyoda Mach Works Ltd Torque sensor

Similar Documents

Publication Publication Date Title
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
TW201103999A (en) Method for manufacturing nickel alloy target
JPS642177B2 (en)
JPS63274763A (en) Alloy target for magneto-optical recording
JPS6256543A (en) Manufacture of sintered compact of rare-earth alloy
JPH0119447B2 (en)
JPH02107762A (en) Alloy target for magneto-optical recording
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPH0549730B2 (en)
JPH0119448B2 (en)
JPS6250423A (en) Manufacture of sintered compact of rare-earth alloy
JPS6350469A (en) Manufacture of alloy target for sputtering
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JPH01136969A (en) Manufacture of target for titanium silicide sputtering
JPS62132304A (en) Manufacture of sintered rare earth element magnet
JPS6347344A (en) Production of low oxygen alloy molding
JP2654982B2 (en) Fe-Al-Si alloy and method for producing the same
JP2005307225A (en) Mo TARGET MATERIAL
JP3328921B2 (en) Target for magneto-optical recording media
JPH0119449B2 (en)
JPH04107903A (en) Rare-earth-iron-boron alloy powder for sintered magnet
JPS62263939A (en) Manufacture of alloy target material
JPH01149959A (en) Production of alloy target
JPS63111135A (en) Manufacture of rare earth-transition metal target
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property