JPS62263939A - Manufacture of alloy target material - Google Patents

Manufacture of alloy target material

Info

Publication number
JPS62263939A
JPS62263939A JP10805686A JP10805686A JPS62263939A JP S62263939 A JPS62263939 A JP S62263939A JP 10805686 A JP10805686 A JP 10805686A JP 10805686 A JP10805686 A JP 10805686A JP S62263939 A JPS62263939 A JP S62263939A
Authority
JP
Japan
Prior art keywords
target material
alloy target
rare earth
powder
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10805686A
Other languages
Japanese (ja)
Inventor
Masakazu Ito
正和 伊藤
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10805686A priority Critical patent/JPS62263939A/en
Publication of JPS62263939A publication Critical patent/JPS62263939A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PURPOSE:To manufacture a sheet-like high-grade alloy target material of low oxygen content, by adopting a powder compaction process, a vacuum plasma melting method, and a splat solidification process. CONSTITUTION:In manufacturing an alloy target material for thin film formation consisting of rare earth element-transition metal, a powder of rare earth element is blended with a powder of transition metal so that prescribed alloy composition is reached. The resulting powder mixture is compacted into an electrode for vacuum plasma melting by means of cold isostatic pressing. Then vacuum plasma melting is carried out by the use of this electrode, which is subjected to splat solidification where the molten metal is allowed to fall in drops continuously onto a cooling substrate to undergo solidification into sheet-like state. In this way, a rare earth element-transition metal alloy target material of <=1,000ppm oxygen content can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録用磁性膜をPVD(物理蒸着)の
−手法であるスパッタリングによって基盤上に形成する
ために使用される合金ターゲット材を製造する方法に関
するもので、特に板状の合金ターゲット材を製造するの
に有効な製造法である。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an alloy target material used for forming a magnetic film for magneto-optical recording on a substrate by sputtering, which is a method of PVD (physical vapor deposition). This method is particularly effective for manufacturing plate-shaped alloy target materials.

〔従来の技術〕[Conventional technology]

希土類元素(Tb、Gd、Dy等)−遷移金属よりなる
合金は、近年光磁気メモリー媒体として有望視され、開
発が進められている。光磁気メモリーは、磁性材料に光
によって記録するものであり、薄膜として基盤上に蒸着
される。これらの薄膜は、前記の希土類元素−遷移金属
合金として、例えば、Tb−Fe−Co、Gd−Fe−
Tbのようなものが用いられている。
Alloys made of rare earth elements (Tb, Gd, Dy, etc.) and transition metals have recently been seen as promising as magneto-optical memory media, and are being developed. Magneto-optical memory uses light to record on magnetic materials and is deposited as a thin film onto a substrate. These thin films are made of rare earth element-transition metal alloys such as Tb-Fe-Co, Gd-Fe-
Materials such as Tb are used.

前記の合金系を用いてエポキシ系樹脂等からなる基盤に
スパッタリングにより薄膜を形成するには、真空容器中
に板状のターゲット材を設置し、それに対向して磁性薄
膜を形成しようとする基盤を配置する。1O−2Tor
rのAr分圧下で、高周波(13,768II2)によ
りArを電離させてプラズマを発生させ、Ar”イオン
を合金ターゲット材に衝突させ、希土類元素と遷移金属
をたたき出し、基盤上にデポジットさせ薄膜を形成させ
る。
To form a thin film by sputtering on a substrate made of epoxy resin or the like using the above-mentioned alloy system, a plate-shaped target material is placed in a vacuum container, and the substrate on which the magnetic thin film is to be formed is placed opposite to it. Deploy. 1O-2 Tor
Under an Ar partial pressure of r, Ar is ionized by high frequency (13,768II2) to generate plasma, and the Ar'' ions collide with the alloy target material to knock out rare earth elements and transition metals, which are deposited on the substrate to form a thin film. Let it form.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来より、希土類元素−遷移金属合金ターゲット材は、
合金構成元素の1種類を用いて基盤を作り、その−にに
残りの合金成分よりなる合金チップまたはシー1へを張
り付けて、ターゲット材とする製造法(モザイク法)が
用いられている。さらに、所定の合金成分となるように
配合した原料を真空溶解・鋳造しインゴットを作り、機
械加工により製造される方法が利用されている。しかし
ながら、前記の2つの方法のうち、モザイク法において
は、スパッタリングにより形成した膜が成分的に不均一
になり易く、酸素址も11000pp以上であり、安定
して良好な膜を得ることは困難である。真空溶解法によ
るインゴットの製造では、低酸素の高品位な合金ターゲ
ット材が得られるが、インゴットの偏析に起因する膜の
成分不均一および、希土類元素−遷移金属系の合金は非
常にもろいため、ターゲットの形状を出すための機械加
工が困難である。これらの欠点を解決するために、粉末
冶金による手法が考えられ、T(I P法の応用も試み
られているが、HI P法の場合カプセルの変形によっ
て、合金に割れが発生する。また、カプセル除去等の工
数が増加する。また、希土類元素のような活性元素を含
む合金粉末の処理、すなわち分級やキャンニング等の工
程で酸化したり、汚染される恐れがある。HIPにおい
ては、一度粉末が汚染されると、HI P工程で除去・
無害化することはできない。実際にスパッタリングに供
される合金ターゲラ]・材は、厚さが約3〜51nの程
度の板状のものであり、HIP法によって板状の形状を
得ることは上述の理由により困難である。
Traditionally, rare earth element-transition metal alloy target materials are
A manufacturing method (mosaic method) is used in which a substrate is made using one type of alloy constituent element, and an alloy chip or sheet 1 made of the remaining alloy components is attached to the base to form a target material. Furthermore, a method is used in which raw materials blended to have predetermined alloy components are vacuum melted and cast to form an ingot, and the ingot is manufactured by machining. However, among the above two methods, in the mosaic method, the film formed by sputtering tends to be non-uniform in terms of composition, and the oxygen content is more than 11,000 pp, making it difficult to obtain a stable and good film. be. Manufacturing ingots using the vacuum melting method yields a low-oxygen, high-quality alloy target material, but the composition of the film is non-uniform due to ingot segregation, and rare earth element-transition metal alloys are extremely brittle. Machining to obtain the target shape is difficult. To solve these drawbacks, methods using powder metallurgy have been considered, and attempts have also been made to apply the T(IP method), but in the HIP method, cracks occur in the alloy due to deformation of the capsule. The number of man-hours required for capsule removal, etc. increases.Also, there is a risk of oxidation and contamination during processing of alloy powders containing active elements such as rare earth elements, that is, classification and canning processes.In HIP, once If the powder becomes contaminated, it can be removed and removed during the HIP process.
It cannot be made harmless. The alloy targela material actually used for sputtering is a plate-like material with a thickness of about 3 to 51 nm, and it is difficult to obtain a plate-like shape by the HIP method for the reasons described above.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前述の問題点を解決するためになされたもの
で、粉末成形法と真空プラズマ溶解法およびスプラット
凝固法により板状で低酸素含有量(1000ppm以下
)の高品位な合金ターゲット材を製造する方法を提供す
るものである。すなわち、希土類粉末と遷移金属粉末を
所定の合金組成となるように配合し、不活性ガス雰囲気
下で混合する。
The present invention was made to solve the above-mentioned problems, and produces a plate-shaped high-grade alloy target material with a low oxygen content (1000 ppm or less) using a powder compaction method, a vacuum plasma melting method, and a splat solidification method. The present invention provides a method for manufacturing. That is, rare earth powder and transition metal powder are blended to have a predetermined alloy composition and mixed under an inert gas atmosphere.

これらの原料粉末を得る方法としては、不活性ガス下に
おける機械的粉砕法(クラッシャー、振動ミル、アトラ
イター等)や真空溶解−不活性ガスアトマイズ法が利用
できる。混合方法としては、ボールミルやV型ブレンダ
ー等が使用できる。所定の組成に配合され、混合により
均一となった予合金化されていない粉末を冷間等方圧縮
により真空プラズマ溶解用の電極を成形する。当該電極
を用いて真空プラズマ溶解し、スプラット凝固させる。
As a method for obtaining these raw material powders, a mechanical pulverization method under an inert gas (crusher, vibration mill, attritor, etc.) or a vacuum melting-inert gas atomization method can be used. As a mixing method, a ball mill, a V-type blender, etc. can be used. The non-prealloyed powder, which is blended into a predetermined composition and made uniform by mixing, is molded into an electrode for vacuum plasma melting by cold isostatic compression. The electrode is used for vacuum plasma melting and splat solidification.

スプラット凝固法は、溶滴を連続的に冷却基盤上に落下
させ、薄い板状に凝固させたものを積み重ねて、バルク
材料を得る技術であり、特に板状のものを製造するのに
適した手法である。さらに、冷却基盤形状を変えること
により種々の形状のものが得られる。したがって、本発
明によれば、成分の均一な電極が製造でき、その電極を
用いて真空プラズマ溶解法により高純度化することがで
きる。さらに、スプラット凝固法により板状の合金ター
ゲット材が得られる。
The splat solidification method is a technology that obtains bulk materials by continuously dropping droplets onto a cooling base and stacking the solidified thin plates.It is particularly suitable for manufacturing plate-shaped items. It is a method. Furthermore, various shapes can be obtained by changing the shape of the cooling base. Therefore, according to the present invention, an electrode with uniform components can be manufactured, and the electrode can be used to achieve high purity by vacuum plasma melting. Furthermore, a plate-shaped alloy target material is obtained by the splat solidification method.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき説明する。合金系は、T
b−Fe−Coを用いた。
Hereinafter, the present invention will be explained based on examples. The alloy system is T
b-Fe-Co was used.

Tb粉末を得るために、11φ×1“QのプロンりをA
r雰囲気下でクラッシャーにより粉砕した。
In order to obtain Tb powder, a 11φ x 1"Q prong was
It was crushed by a crusher under an atmosphere of r.

このTb粉末にFe粉末、Go粉末(Arガスアトマイ
ズ粉)を重量で53,0%Tb、 7.0%co、40
.0%Feとなるように配合し、V型ブレンダーを使用
しAr雰囲気下で4Hr混合した。この粉末をラバーケ
ースに充填し、冷間静水圧プレスに装入、成形圧6t/
cd、加圧保持10分間で電極の形状に成形した。
To this Tb powder, Fe powder and Go powder (Ar gas atomized powder) were added by weight to 53.0% Tb, 7.0% co, 40%
.. They were blended so as to have 0% Fe and mixed for 4 hours in an Ar atmosphere using a V-type blender. This powder was filled into a rubber case and charged into a cold isostatic press, with a molding pressure of 6t/
cd, and was molded into an electrode shape by holding pressure for 10 minutes.

本工程で合金化されていない電極が得られた。次に、真
空プラズマ溶解炉に、当該電極を装着し、真空排気を行
なった。1O−4Torr到達後、Ar流量2Q /m
inで(0,6TorrAr圧)、出力20KW−50
KWで真空プラズマ溶解を行なった。電極から直径φ3
〜φ5mの合金化された溶湯が連続的に下部の設置され
たモールドに落下し、スプラット凝固される。モールド
は、250++mφのものを使用し、スプラット凝固体
の厚さ5画、6肛、7wm、8mのものを製造した。
An unalloyed electrode was obtained in this step. Next, the electrode was attached to a vacuum plasma melting furnace, and the furnace was evacuated. After reaching 1O-4Torr, Ar flow rate 2Q/m
in (0.6 TorrAr pressure), output 20KW-50
Vacuum plasma melting was performed at KW. Diameter φ3 from electrode
The alloyed molten metal with a diameter of ~φ5m continuously falls into the mold installed at the bottom and is splat solidified. A mold of 250++ mφ was used to produce splat solidified bodies with a thickness of 5 mm, 6 mm, 7 wm, and 8 m.

表−1 製造した円板状合金ターゲット材は、表面粗度10〜1
5μmに機械研磨により仕−1−げた。表−1に本発明
によって製造した合金ターゲット材の密度と不純物に関
する調査結果をまとめた。表より、本発明によるターゲ
ット材は、密度的には従来法に比較して低いが、不純物
に関しては大幅に改善されていることがわかる。また、
本発明によるターゲットを用いて、スパッタリングによ
り薄膜を基盤」二に形成し、薄膜を調査したところ従来
法と比較して均質で特性の良い膜が得られた。
Table-1 The manufactured disc-shaped alloy target material has a surface roughness of 10 to 1.
Finished by mechanical polishing to 5 μm. Table 1 summarizes the investigation results regarding the density and impurities of the alloy target material manufactured according to the present invention. From the table, it can be seen that although the target material according to the present invention has a lower density than that of the conventional method, impurities are significantly improved. Also,
A thin film was formed on a substrate by sputtering using the target according to the present invention, and when the thin film was investigated, it was found that a film was homogeneous and had better properties compared to conventional methods.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、高純度で板状の=7− 希土類元素−遷移金属合金ターゲラ1へ材が得られ、光
磁気記録用媒体の特性向上に寄与する。
As described above, according to the present invention, a highly purified plate-shaped =7- rare earth element-transition metal alloy target layer 1 can be obtained, contributing to improving the characteristics of a magneto-optical recording medium.

Claims (1)

【特許請求の範囲】[Claims] 希土類元素−遷移金属よりなる薄膜形成用合金ターゲッ
ト材の製造において、希土類元素粉末と遷移金属粉末を
混合する工程、冷間等方圧縮によって電極を成形する工
程および当該電極を真空プラズマ溶解法により溶解・ス
プラット凝固させる工程を有し、酸素含有量1000p
pm以下の希土類元素−遷移金属合金ターゲット材を製
造することを特徴とする合金ターゲット材の製造法。
In the production of an alloy target material for forming thin films made of rare earth elements and transition metals, there are a process of mixing rare earth element powder and transition metal powder, a process of forming an electrode by cold isostatic compression, and a process of melting the electrode by vacuum plasma melting method.・Has a splat solidification process and has an oxygen content of 1000p
1. A method for producing an alloy target material, the method comprising producing a rare earth element-transition metal alloy target material having a particle size of pm or less.
JP10805686A 1986-05-12 1986-05-12 Manufacture of alloy target material Pending JPS62263939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10805686A JPS62263939A (en) 1986-05-12 1986-05-12 Manufacture of alloy target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10805686A JPS62263939A (en) 1986-05-12 1986-05-12 Manufacture of alloy target material

Publications (1)

Publication Number Publication Date
JPS62263939A true JPS62263939A (en) 1987-11-16

Family

ID=14474795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10805686A Pending JPS62263939A (en) 1986-05-12 1986-05-12 Manufacture of alloy target material

Country Status (1)

Country Link
JP (1) JPS62263939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186836A (en) * 1987-01-27 1988-08-02 Mitsubishi Kasei Corp Manufacture of rare earth element-containing alloy of low oxygen content
CN114941080A (en) * 2022-05-25 2022-08-26 宁波江丰电子材料股份有限公司 Preparation method of aluminum-scandium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186836A (en) * 1987-01-27 1988-08-02 Mitsubishi Kasei Corp Manufacture of rare earth element-containing alloy of low oxygen content
CN114941080A (en) * 2022-05-25 2022-08-26 宁波江丰电子材料股份有限公司 Preparation method of aluminum-scandium alloy

Similar Documents

Publication Publication Date Title
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
JP3932143B2 (en) Magnet manufacturing method
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
WO2004024977A1 (en) Iron silicide sputtering target and method for production thereof
KR0129795B1 (en) Target for magneto optical recording media &amp; method for production the same
JPS61139637A (en) Target for sputter and its manufacture
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
JPS642177B2 (en)
JPS60230903A (en) Production of alloy target
JP3525439B2 (en) Target member and method of manufacturing the same
JPH1081962A (en) Production of ge-te-sb target for sputtering
JPS62263939A (en) Manufacture of alloy target material
JPH02107762A (en) Alloy target for magneto-optical recording
JPH07272914A (en) Sintered magnet, and its manufacture
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPS6199640A (en) Manufacture of composite target material
JPH0119448B2 (en)
JP2597380B2 (en) Method for producing rare earth metal-transition metal target alloy powder and method for producing rare earth metal-transition metal target
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JP3997527B2 (en) Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JPH0254760A (en) Manufacture of target
JPH05320896A (en) Alloy target for sputtering and its production
JPS6347344A (en) Production of low oxygen alloy molding
JPH03138365A (en) Target member and its production