JPH07272914A - Sintered magnet, and its manufacture - Google Patents

Sintered magnet, and its manufacture

Info

Publication number
JPH07272914A
JPH07272914A JP6087861A JP8786194A JPH07272914A JP H07272914 A JPH07272914 A JP H07272914A JP 6087861 A JP6087861 A JP 6087861A JP 8786194 A JP8786194 A JP 8786194A JP H07272914 A JPH07272914 A JP H07272914A
Authority
JP
Japan
Prior art keywords
sintered magnet
master alloy
magnet
sintering
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6087861A
Other languages
Japanese (ja)
Inventor
Akira Fukuno
亮 福野
Hideki Nakamura
英樹 中村
Koichi Nishizawa
剛一 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP6087861A priority Critical patent/JPH07272914A/en
Priority to US08/364,756 priority patent/US5641363A/en
Publication of JPH07272914A publication Critical patent/JPH07272914A/en
Priority to US08/824,008 priority patent/US5834663A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide an R-T-B sintered magnet (R is a rare earth element, and T is Fe, or Fe and Co) high in coercive force and also high in residual magnetic density, and provide an inexpensive thin magnet by obviating the polishing processing after sintering by suppressing the dimensional change at sintering when manufacturing such R-T-B sintered magnet. CONSTITUTION:A mixture between powder of mother alloy for main phase, which has a phase substantially composed of R2T14B, and alloy for grain boundary phase, which contains R by 70-97wt.% and the rest of which is substantially Fe and/or Co, is heat-treated so that the mother alloy for grain boundary phase may fuse, and then, is crashed and molded and sintered. Moreover, it is sintered so that the final density may be 7.2g/cm<3> or over, with molded item density being 5.5g/cm<3> or over, whereby it is made into a magnet which contains more than 2vol.% closed voids.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類焼結磁石とその
製造方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth sintered magnet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】高性能を有する希土類磁石としては、粉
末冶金法によるSm−Co系磁石でエネルギー積32M
GOeのものが量産されている。また、近年Nd2 Fe
14B磁石等のR−T−B系磁石(Rは希土類元素、Tは
Fe、またはFeおよびCo)が開発され、特開昭59
−46008号公報には焼結磁石が開示されている。R
−T−B系磁石は、Sm−Co系磁石に比べ原料が安価
である。R−T−B系焼結磁石の製造には、従来のSm
−Co系の粉末冶金プロセス(溶解→母合金鋳造→イン
ゴット粗粉砕→微粉砕→成形→焼結→磁石)を適用する
ことができる。
2. Description of the Related Art As a rare earth magnet having high performance, an Sm-Co type magnet manufactured by powder metallurgy has an energy product of 32M.
GOe's are in mass production. In recent years, Nd 2 Fe
R-T-B magnets such as 14B magnets (R is a rare earth element, T is Fe, or Fe and Co) have been developed, and are disclosed in Japanese Patent Laid-Open No.
Japanese Patent No. 46008 discloses a sintered magnet. R
The raw material of the -TB magnet is cheaper than that of the Sm-Co magnet. For manufacturing the R-T-B system sintered magnet, the conventional Sm is used.
A Co-based powder metallurgy process (melting → master alloy casting → ingot coarse grinding → fine grinding → molding → sintering → magnet) can be applied.

【0003】Nd2 Fe14B系焼結磁石の保磁力が結晶
粒界のNdリッチ相の存在に依存していることは、様々
な論文などにおいて詳しく報告されている。したがっ
て、Nd2 Fe14B相から構成される結晶粒をNdリッ
チ相が均一に被覆するように焼結すること、すなわち、
焼結磁石中においてNdリッチ相を均一に分散させるこ
とが重要となる。磁石中においてNdリッチ相を均一に
分散させるためには、2合金法を用いることが好まし
い。2合金法では、Nd2 Fe14Bを中心とする主相用
粉末とNdリッチな粒界相用粉末との混合物を成形し、
焼結する(特開昭63−93841号公報、特開昭63
−278208号公報、特開平5−21219号公報
等)。粒界相用粉末は焼結時に溶融し、Nd2 Fe14
主相に対して濡れ性の極めて良好な液相となって流動
し、主相用粉末の周囲を被覆して磁石の粒界相となり、
保磁力を向上させる。
It has been reported in detail in various papers that the coercive force of Nd 2 Fe 14 B system sintered magnet depends on the existence of Nd-rich phase at the grain boundary. Therefore, sintering the crystal grains composed of the Nd 2 Fe 14 B phase so that the Nd rich phase is uniformly coated, that is,
It is important to uniformly disperse the Nd-rich phase in the sintered magnet. In order to uniformly disperse the Nd-rich phase in the magnet, it is preferable to use the two-alloy method. In the two-alloy method, a mixture of a powder for the main phase centered on Nd 2 Fe 14 B and a powder for the Nd-rich grain boundary phase is molded,
Sintering (JP-A-63-93841, JP-A-63
-278208, JP-A-5-21219, etc.). The powder for the grain boundary phase melts at the time of sintering and becomes Nd 2 Fe 14 B
It flows as a liquid phase with extremely good wettability with respect to the main phase, covering the periphery of the powder for the main phase and becoming the grain boundary phase of the magnet,
Improve coercive force.

【0004】しかし、このような2合金法を用いて製造
された焼結磁石を観察すると、結晶粒がNdリッチ相に
ほぼ完全に取り囲まれているとは言えない。したがっ
て、Nd2 Fe14B系焼結磁石の組織構造を改善するこ
とにより、さらに保磁力を向上させることが可能である
と考えられる。
However, when observing the sintered magnet manufactured by using such a two-alloy method, it cannot be said that the crystal grains are almost completely surrounded by the Nd-rich phase. Therefore, it is considered possible to further improve the coercive force by improving the texture structure of the Nd 2 Fe 14 B system sintered magnet.

【0005】ところで、R−T−B系磁石では、焼結磁
石の他に、磁石粉末を樹脂バインダや金属バインダで結
合したボンディッド磁石も実用化されている。ボンディ
ッド磁石は、成形の際の寸法がほぼ維持されるため、寸
法精度が高く、製造後に形状加工を必要としない。しか
し、工業化されているR−T−B系のボンディッド磁石
は、単ロール法等の急冷法により製造した微細結晶から
なる多結晶粒子を用いているので、磁場中成形などによ
る異方性化は困難である。R−T−B系焼結磁石の粉砕
粉は、粉砕による歪や酸化などにより保磁力が激減して
いるため、ボンディッド磁石の原料粉として用いること
はできない。なお、R−T−B系合金インゴットの粉砕
粉を水素と反応させて、希土類水素化物とTのほう化物
とTとに分解し、所定温度で脱水素することにより、個
々の粒子内で結晶方位の揃った微細結晶を析出させる提
案もなされている。この方法で得られた多結晶粒子は磁
場配向が可能であり、微細結晶により高保磁力が得られ
るが、水素を用いるため工程が複雑となるので、実用化
されていない。
By the way, in the RTB magnets, in addition to the sintered magnet, a bonded magnet in which magnet powder is bonded with a resin binder or a metal binder has been put into practical use. Since the dimensions of the bonded magnet are almost maintained during molding, the dimensional accuracy is high and no shape processing is required after manufacturing. However, since the industrialized RTB-based bonded magnet uses polycrystalline particles made of fine crystals produced by a quenching method such as a single roll method, anisotropy due to molding in a magnetic field does not occur. Have difficulty. The crushed powder of the RTB sintered magnet cannot be used as the raw material powder of the bonded magnet because the coercive force is drastically reduced due to the distortion and the oxidation due to the crushing. In addition, the crushed powder of the R-T-B type alloy ingot is reacted with hydrogen to decompose it into a rare earth hydride, a boride of T, and T, and dehydrogenate at a predetermined temperature to crystallize in individual particles. Proposals have also been made to deposit fine crystals with uniform orientation. The polycrystalline particles obtained by this method can be oriented in a magnetic field, and high coercive force can be obtained by fine crystals. However, since hydrogen is used, the process becomes complicated, and thus it has not been put to practical use.

【0006】一方、R−T−B系焼結磁石では、実質的
に単結晶粒子からなる粉末を磁場中で成形するため、容
易に異方性磁石が得られ、しかもバインダを用いないた
め、高特性が得られる。しかし、焼結法では、成形体が
焼結反応時に著しく収縮し、その収縮が不均一であるた
め、成形体の寸法精度の維持が難しい。この収縮は、成
形体中の粒子の配向度や密度のばらつきなどにより異な
る。異方性焼結磁石では、磁化容易軸方向とそれに垂直
な方向とで収縮率が異なり、例えば、成形体の密度が
4.3g/cm3 のとき、磁化容易軸方向で22%程度、そ
れに垂直な方向で15%程度となり、焼結後の密度は
7.55g/cm3 に達する。
On the other hand, in the R-T-B system sintered magnet, since powder consisting essentially of single crystal particles is molded in a magnetic field, an anisotropic magnet can be easily obtained, and a binder is not used. High characteristics can be obtained. However, in the sintering method, the molded body significantly shrinks during the sintering reaction, and the shrinkage is non-uniform, so that it is difficult to maintain the dimensional accuracy of the molded body. This shrinkage varies depending on the degree of orientation of particles in the molded body, variations in density, and the like. In an anisotropic sintered magnet, the contraction rate differs between the direction of easy magnetization and the direction perpendicular to it. For example, when the density of the molded body is 4.3 g / cm 3 , about 22% in the direction of easy magnetization, and It becomes about 15% in the vertical direction, and the density after sintering reaches 7.55 g / cm 3 .

【0007】異方性焼結磁石におけるこのような寸法変
化は、リング状磁石や板状磁石で薄肉のものの場合に特
に問題となる。薄肉磁石において収縮率が不均一になる
と、反りが発生するからである。そこで、製品化に際し
ては、このような寸法変化を修正するために焼結体を研
削加工する。しかし、研削加工には以下に述べるような
問題がある。
Such a dimensional change in the anisotropic sintered magnet is particularly problematic when the ring-shaped magnet or the plate-shaped magnet is thin. This is because if the shrinkage ratio of the thin magnet becomes uneven, warpage occurs. Therefore, when commercialized, the sintered body is ground to correct such dimensional changes. However, the grinding process has the following problems.

【0008】 研削加工時の焼結体の材料損失量が大
きくなる。例えば、厚さ1mmの薄肉板状の磁石を作製す
る際に1mmの反りが発生する場合、まず、厚さ3mm程度
の焼結体を製造し、これの上下面を研削する必要がある
ので、材料の2/3が損失となる。このような損失を避
けるために、厚肉の1個の母材から複数の薄肉板状磁石
を厚さ1mmに切り出す場合でも、研削用カッターの歯幅
が0.6mmであると約40%もの損失が生じてしまう。
また、薄肉の焼結体は機械的強度が小さいので、加工時
の衝撃や取り扱いの際に欠けや割れが発生しやすく、歩
留りが低くなってしまう。
The amount of material loss of the sintered body during grinding becomes large. For example, if a warp of 1 mm occurs when manufacturing a thin plate magnet with a thickness of 1 mm, it is necessary to first manufacture a sintered body with a thickness of about 3 mm and then grind the upper and lower surfaces of the sintered body. 2/3 of the material is lost. In order to avoid such a loss, even when cutting multiple thin plate magnets to a thickness of 1 mm from a single thick base material, if the tooth width of the grinding cutter is 0.6 mm, it will be about 40%. There will be a loss.
Further, since the thin-walled sintered body has low mechanical strength, chipping or cracking is likely to occur at the time of processing impact or handling, resulting in low yield.

【0009】 磁気特性が低下する。前述したよう
に、Nd2 Fe14B系焼結磁石の保磁力は、結晶粒界の
Ndリッチ相の存在に依存している。この系の焼結磁石
を加工する際には、応力により加工面に近い領域の結晶
粒界にクラック等が生じ、加工面から0.1〜0.2mm
の深さまでの領域で保磁力が失われてしまう。加工面近
傍における磁石特性の消失は、厚肉の磁石では無視し得
るものであっても薄肉磁石では影響が大きく、磁石全体
としての磁気特性劣化が明白になってしまう。なお、加
工により保磁力が消失した領域を酸エッチングにより除
去することも可能であるが、焼結体の損失量がさらに増
大し、製造コストも増加してしまう。
Magnetic properties are degraded. As described above, the coercive force of the Nd 2 Fe 14 B-based sintered magnet depends on the existence of the Nd-rich phase at the crystal grain boundary. When processing a sintered magnet of this system, cracks are generated in the crystal grain boundaries in the region close to the processed surface due to stress, and 0.1 to 0.2 mm from the processed surface.
The coercive force is lost in the region up to the depth of. The loss of the magnet characteristics in the vicinity of the machined surface is negligible for the thick magnet, but has a large effect for the thin magnet, and the deterioration of the magnetic characteristics of the entire magnet becomes apparent. Although it is possible to remove the region where the coercive force disappears by processing by acid etching, the amount of loss of the sintered body further increases and the manufacturing cost also increases.

【0010】このような事情から、長手方向長さ/厚さ
が10以上に達する薄肉異方性磁石では、通常、Sm−
Co系ボンディッド磁石が用いられており、コスト高が
問題となっている。R−T−B系の薄肉焼結磁石も存在
するが、寸法調整のための加工が必須であり、しかも加
工の際の材料歩留りが20〜30%となるため、やはり
コスト高となってしまっている。
Under these circumstances, a thin anisotropic magnet having a longitudinal length / thickness of 10 or more is usually Sm-
Co-based bonded magnets are used, and high cost is a problem. Although there are RTB-based thin-walled sintered magnets, processing for size adjustment is indispensable, and the material yield at the time of processing is 20 to 30%, which also increases the cost. ing.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、保磁
力が高く、残留磁束密度も高いR−T−B系焼結磁石を
提供することであり、また、他の目的は、このようなR
−T−B系焼結磁石を製造する際に、焼結時の寸法変化
を抑えることにより焼結後の研削加工を不要として、安
価な薄肉磁石を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an RTB sintered magnet having a high coercive force and a high residual magnetic flux density. Na R
An object of the present invention is to provide an inexpensive thin-walled magnet by suppressing a dimensional change at the time of sintering when manufacturing a -T-B system sintered magnet, thereby eliminating the need for grinding after sintering.

【0012】[0012]

【課題を解決するための手段】このような目的は、下記
(1)〜(16)の本発明により達成される。 (1)R(Rは、Yを含む希土類元素の少なくとも1種
である)、T(Tは、Fe、またはFeおよびCoであ
る)およびBを含有する焼結磁石を製造する方法であっ
て、実質的にR214Bから構成される相を有する主相
用母合金の粉末と、Rを70〜97重量%含み、残部が
実質的にFeおよび/またはCoである粒界相用母合金
との混合物に、粒界相用母合金が溶融するように熱処理
を施した後、解砕して成形し、焼結することを特徴とす
る焼結磁石の製造方法。 (2)混合物中における粒界相用母合金の比率を2〜1
5重量%とする上記(1)の焼結磁石の製造方法。 (3)熱処理前に、主相用母合金の粉末を着磁する上記
(1)または(2)の焼結磁石の製造方法。 (4)粒界相用母合金のRの50%以上をNdが占める
上記(1)〜(3)のいずれかの焼結磁石の製造方法。 (5)粒界相用母合金を液体急冷法により製造する上記
(1)〜(4)のいずれかの焼結磁石の製造方法。 (6)主相用母合金の結晶粒の長軸/短軸の平均値が3
以下であるか、主相用母合金の粉末を構成する粒子の長
軸/短軸の平均値が3以下である上記(1)〜(5)の
いずれかの焼結磁石の製造方法。 (7)主相用母合金の粉末の平均粒子径が20μm 以上
である上記(1)〜(6)のいずれかの焼結磁石の製造
方法。 (8)焼結温度が900〜1100℃である上記(1)
〜(7)のいずれかの焼結磁石の製造方法。 (9)真空中で焼結を行なう上記(1)〜(8)のいず
れかの焼結磁石の製造方法。 (10)密度5.5g/cm3 以上の成形体を、密度変化が
0.2g/cm3 以上となるように焼結する工程を有する上
記(1)〜(9)のいずれかの焼結磁石の製造方法。 (11)抗折強度が0.3kgf/mm2 以上である成形体を
焼結する上記(10)の焼結磁石の製造方法。 (12)8t/cm2 以上の圧力で成形を行なう上記(10)
または(11)の焼結磁石の製造方法。 (13)上記(1)〜(12)のいずれかの方法により製
造された焼結磁石であって、閉空孔を2体積%以上含む
ことを特徴とする焼結磁石。 (14)密度が7.2g/cm3 以下である上記(13)の焼
結磁石。 (15)開空孔の比率が2体積%以下である上記(13)
または(14)の焼結磁石。 (16)Rを27〜40重量%、Bを0.5〜4.5重
量%含有し、残部が実質的にTである上記(13)〜(1
5)のいずれかの焼結磁石。
The above object is achieved by the present invention described in (1) to (16) below. (1) A method for producing a sintered magnet containing R (R is at least one kind of rare earth element including Y), T (T is Fe, or Fe and Co) and B. , A powder of a master alloy for a main phase having a phase substantially composed of R 2 T 14 B, and a grain boundary phase containing 70 to 97% by weight of R and the balance being substantially Fe and / or Co A method for producing a sintered magnet, which comprises subjecting a mixture with a master alloy to a heat treatment so that the master alloy for the grain boundary phase is melted, then crushing, shaping and sintering. (2) The ratio of the grain boundary phase master alloy in the mixture is 2-1.
The method for producing a sintered magnet according to (1) above, wherein the content is 5% by weight. (3) The method for producing a sintered magnet according to the above (1) or (2), wherein the main phase master alloy powder is magnetized before the heat treatment. (4) The method for producing a sintered magnet according to any one of the above (1) to (3), wherein Nd occupies 50% or more of R of the grain boundary phase master alloy. (5) The method for producing a sintered magnet according to any one of the above (1) to (4), wherein the grain boundary phase master alloy is produced by a liquid quenching method. (6) Average value of major axis / minor axis of crystal grains of master alloy for main phase is 3
The method for producing a sintered magnet according to any one of the above (1) to (5), wherein the average value of the major axis / minor axis of the particles constituting the main phase master alloy powder is 3 or less. (7) The method for producing a sintered magnet according to any one of the above (1) to (6), wherein the main phase master alloy powder has an average particle size of 20 μm or more. (8) The above (1) in which the sintering temperature is 900 to 1100 ° C.
~ The method for manufacturing a sintered magnet according to any one of (7). (9) The method for manufacturing a sintered magnet according to any one of (1) to (8), wherein sintering is performed in a vacuum. (10) Sintering according to any one of the above (1) to (9), which has a step of sintering a molded body having a density of 5.5 g / cm 3 or more so that the density change becomes 0.2 g / cm 3 or more. Magnet manufacturing method. (11) The method for producing a sintered magnet according to the above (10), in which a molded body having a bending strength of 0.3 kgf / mm 2 or more is sintered. (12) Molding at a pressure of 8 t / cm 2 or more (10)
Alternatively, the manufacturing method of the sintered magnet according to (11). (13) A sintered magnet manufactured by the method according to any one of (1) to (12) above, which contains 2% by volume or more of closed pores. (14) The sintered magnet according to (13) above, which has a density of 7.2 g / cm 3 or less. (15) The above (13), wherein the ratio of open pores is 2% by volume or less.
Or (14) sintered magnet. (16) The above (13) to (1) which contains 27 to 40% by weight of R, 0.5 to 4.5% by weight of B, and the balance is substantially T.
5) One of the sintered magnets.

【0013】[0013]

【作用および効果】上述した従来の2合金法では、焼結
時にRリッチ粉末を溶融させてR214B系粉末の周囲
を被覆し、高保磁力を得ようとしている。しかし、この
方法では磁性をもつR214B粉末と非磁性のRリッチ
粉末との混合物を磁場中で成形するため、成形体中でR
リッチ粉末が偏在してしまう。このような成形体を焼結
した磁石では、内部の密度および保磁力が不均一となる
ため、形状変形が生じると共に磁石特性が低くなってし
まう。また、磁性粉末と非磁性粉末との混合物に磁界を
印加するので、磁性粉末の配向が妨げられ、また、成形
体の密度も低くなってしまう。
In the conventional two-alloy method described above, the R-rich powder is melted at the time of sintering to coat the periphery of the R 2 T 14 B-based powder to obtain a high coercive force. However, according to this method, a mixture of magnetic R 2 T 14 B powder and non-magnetic R rich powder is molded in a magnetic field.
Rich powder is unevenly distributed. In a magnet obtained by sintering such a compact, the internal density and coercive force become non-uniform, resulting in shape deformation and poor magnet characteristics. Moreover, since a magnetic field is applied to the mixture of the magnetic powder and the non-magnetic powder, the orientation of the magnetic powder is hindered, and the density of the molded body becomes low.

【0014】また、従来の2合金法では、圧縮成形され
た成形体中においてRリッチ粉末を溶融させているた
め、液相化したRリッチ合金の流動が妨げられて、磁石
中のRリッチ相の均一分散が不十分となる。
Further, in the conventional two-alloy method, since the R-rich powder is melted in the compression-molded compact, the flow of the liquid-phase R-rich alloy is hindered, and the R-rich phase in the magnet is impaired. The uniform dispersion of is insufficient.

【0015】一方、2合金法ではない通常の粉末冶金法
で高保磁力のR214B系焼結磁石を製造するために
は、R含有量の多い母合金を用いるが、R含有量が多い
と焼結が進んで収縮率が高くなってしまう。なお、R2
14B系焼結磁石のRとしては、通常、Ndを用いる
が、Ndの一部をDyで置換することにより主相の異方
性磁界が向上するので、高保磁力が得られる。しかし、
DyはNdに比べ高価である。
On the other hand, in order to produce a high coercive force R 2 T 14 B system sintered magnet by a usual powder metallurgy method other than the two-alloy method, a master alloy having a high R content is used, but the R content is high. If it is too large, the sintering proceeds and the shrinkage rate becomes high. In addition, R 2
Nd is usually used as R of the T 14 B system sintered magnet, but by replacing a part of Nd with Dy, the anisotropic magnetic field of the main phase is improved, and thus a high coercive force can be obtained. But,
Dy is more expensive than Nd.

【0016】これに対し本発明では、R214B相を有
する主相用母合金の粉末と、Rを所定量含むRリッチな
粒界相用母合金との混合物に、粒界相用母合金が溶融す
るように熱処理を施す。粒界相用母合金は、Nd89Fe
11(重量比)を中心とする低融点組成を有する。熱処理
により、粒界相用母合金は主相用母合金の粉末に対して
濡れ性の極めて良好な液相となって流動し、主相用母合
金の粉末の周囲を被覆する。
On the other hand, in the present invention, the mixture of the powder of the master alloy for the main phase having the R 2 T 14 B phase and the R-rich grain boundary phase master alloy containing a predetermined amount of R is used for the grain boundary phase. Heat treatment is applied to melt the mother alloy. The grain boundary phase master alloy is Nd 89 Fe
It has a low melting point composition centered on 11 (weight ratio). By the heat treatment, the master alloy for the grain boundary phase flows into a liquid phase having extremely good wettability with respect to the powder of the master alloy for the main phase, and flows to coat the periphery of the powder of the master alloy for the main phase.

【0017】このように本発明では、加圧成形する前に
粒界相用母合金を溶融するため、液相化した粒界相用母
合金の流動も容易となり、焼結後の磁石中においてRリ
ッチ相が偏ることもない。Rリッチ相が偏らないため、
磁石全体のR含有量が少ない場合でも高保磁力が得られ
るので、残留磁束密度を高くすることもできる。また、
成形圧力が同じであっても、2合金法を用いた場合より
も高密度の成形体が得られる。また、磁場中成形による
配向性も2合金法より良好となる。
As described above, according to the present invention, since the grain boundary phase master alloy is melted before pressure forming, the liquid phase grain boundary phase master alloy can easily flow, and in the magnet after sintering. The R-rich phase is not biased. Since the R rich phase is not biased,
Since a high coercive force can be obtained even when the R content of the entire magnet is small, the residual magnetic flux density can be increased. Also,
Even if the molding pressure is the same, a denser molded body can be obtained than when the two-alloy method is used. In addition, the orientation by forming in a magnetic field is better than that of the two-alloy method.

【0018】冷却後には、主相用母合金粒子はRリッチ
相により互いに結合されているが、この結合は極めて弱
いものなので、容易に解砕できる。解砕後、主相用母合
金粒子の周囲はRリッチ相によりほぼ均一に被覆されて
いる。
After cooling, the main phase master alloy particles are bonded to each other by the R-rich phase, but this bonding is extremely weak and can be easily crushed. After crushing, the periphery of the main phase mother alloy particles is almost uniformly covered with the R-rich phase.

【0019】Nd2 Fe14B系焼結磁石製造用の通常の
成形体は、空孔がないと仮定したときの密度(理論密
度:約7.6g/cm3 )の55%程度の密度(約4.2g/
cm3 )であり、45%程度の空孔を含んでいる。そし
て、焼結により理論密度の99%程度まで緻密化させる
ので、体積収縮率が大きくなってしまう。前述したよう
に、磁場配向された成形体では焼結の際の収縮が不均一
となるため、平行度や真円度の良好な焼結体が得られな
い。
A normal compact for producing a Nd 2 Fe 14 B system sintered magnet has a density (theoretical density: about 7.6 g / cm 3 ) of about 55% of the density (theoretical density: about 7.6 g / cm 3 ). 4.2g /
cm 3 ) and contains about 45% of holes. Then, since it is densified to about 99% of the theoretical density by sintering, the volumetric shrinkage rate becomes large. As described above, in the case of a magnetic field-oriented compact, the shrinkage during sintering becomes non-uniform, so a sintered compact with good parallelism and roundness cannot be obtained.

【0020】これに対し本発明の好ましい態様では、主
相用母合金の粉末の平均径を比較的大径とし、かつ、成
形圧力を従来よりも大きくすることによって、焼結の進
みにくい、すなわち焼結工程における収縮率の小さい成
形体を製造し、これを完全に焼結させないで磁石化す
る。具体的には、成形体密度を5.5g/cm3 以上と高く
し、かつ、磁石密度が7.2g/cm3 以下となるように焼
結する。これにより、焼結時の収縮率が著しく小さくな
る。大径の主相用母合金粉末を含む高密度成形体中で
は、Rリッチの液相を介した粒子移動が困難なので、焼
結工程における保持温度が高温(例えば従来の完全焼結
温度領域)であっても、完全焼結する前に焼結反応が進
行しなくなる。このため、低密度の焼結体が広い温度範
囲で安定して得られることになり、焼結工程の管理が極
めて容易となる。また、大径の粒子は凝集しにくいた
め、取り扱いが容易となり、特に成形時に金型への充填
が容易となる。
On the other hand, in a preferred embodiment of the present invention, by making the average diameter of the powder of the master alloy for the main phase relatively large and making the molding pressure higher than before, it is difficult to proceed with sintering, that is, A compact having a small shrinkage rate in the sintering step is produced, and the compact is magnetized without being completely sintered. Specifically, the compact density is increased to 5.5 g / cm 3 or more, and the magnet density is sintered to 7.2 g / cm 3 or less. As a result, the shrinkage rate during sintering is significantly reduced. In a high-density compact containing a large diameter master alloy powder for the main phase, it is difficult to move particles through the R-rich liquid phase, so the holding temperature in the sintering process is high (for example, the conventional complete sintering temperature range). However, the sintering reaction does not proceed before complete sintering. Therefore, a low-density sintered body can be stably obtained over a wide temperature range, and the management of the sintering process becomes extremely easy. Further, since particles having a large diameter do not easily agglomerate, they are easy to handle and particularly easy to fill in a mold during molding.

【0021】このようにして焼結の際の収縮率を小さく
抑えることにより、リング状や板状の薄肉異方性磁石を
製造する場合でも、形状を修正するための加工が不要と
なり、低コスト化および生産性向上が実現する。また、
高密度成形体は抗折強度が高いので、取り扱いが容易と
なり、成形工程と焼結工程との間での割れや欠けの発生
が少なくなる。
By thus suppressing the shrinkage ratio during sintering to a small value, even when manufacturing a ring-shaped or plate-shaped thin-walled anisotropic magnet, processing for correcting the shape is not required, resulting in low cost. Realization and productivity improvement. Also,
Since the high-density molded body has a high bending strength, it is easy to handle, and cracks and chips are less likely to occur between the molding step and the sintering step.

【0022】このようにして製造された収縮率の小さい
焼結磁石中には、通常、閉空孔が2体積%以上存在す
る。閉空孔は磁石外部へ連通していないため、磁石の腐
食を招くことがない。なお、このような焼結磁石の表面
付近には開空孔も存在するが、焼結工程の少なくとも一
部を真空中または減圧雰囲気下で行なえば、液相化した
粒界相用母合金が開空孔の外部への連通路を塞ぐため、
開空孔の割合が減って耐食性が向上する。
In the thus-produced sintered magnet having a small shrinkage ratio, usually 2% by volume or more of closed pores are present. Since the closed holes do not communicate with the outside of the magnet, the magnet is not corroded. Although there are open pores near the surface of such a sintered magnet, if at least a part of the sintering step is performed in a vacuum or under a reduced pressure atmosphere, a liquid phase grain boundary phase master alloy will be obtained. To block the communication path to the outside of the open hole,
The proportion of open pores is reduced and corrosion resistance is improved.

【0023】本発明により製造される低収縮率の焼結磁
石の磁気特性は、R−T−B系高密度焼結磁石よりは低
くなるが、Sm−Co系のボンディッド磁石{(BH)max
=約15MGOe}よりは高くすることができる。R−T−
B系磁石はSm−Co系磁石に比べ原料が安価である。
したがって、本発明により製造される低収縮率の焼結磁
石は、従来、薄肉磁石に用いられてきたSm−Co系ボ
ンディッド磁石の代替品として好適である。
The magnetic properties of the low-shrinkage sintered magnet manufactured according to the present invention are lower than those of the RTB-based high-density sintered magnet, but the Sm-Co-based bonded magnet {(BH) max.
= About 15 MGOe}. R-T-
B-based magnets are cheaper in raw material than Sm-Co-based magnets.
Therefore, the low-shrinkage sintered magnet manufactured according to the present invention is suitable as a substitute for the Sm—Co based bonded magnet that has been conventionally used for a thin magnet.

【0024】ところで、特開平3−80508号公報に
は、RFeB系磁石を粉末冶金法により製造する方法に
おいて、磁石粉をプレス成形した後、400〜900℃
の温度範囲でポーラスな焼結体とし、それを溶融合金N
x Fe1-x (x=0.65〜0.85)に一定時間浸
漬する方法が開示されている。この方法は、磁場配向に
よる熱収縮の異方性に起因する焼結後の変形を抑えるこ
とを目的とするものである。この方法では、焼結体にR
リッチ溶融合金を染み込ませるので、本発明により得ら
れる効果が実現するとは考えられない。しかも、同公報
の実施例で用いているNd2 Fe14B磁石粉末は約10
μm と小径であり、同公報には、成形圧力、成形体の密
度、低温焼結後のポーラスな焼結体の密度は記載されて
いない。
By the way, in Japanese Patent Laid-Open No. 3-80508, in a method for producing an RFeB magnet by a powder metallurgy method, 400 to 900 ° C. after press molding of magnet powder.
It is made into a porous sintered body in the temperature range of
d x Fe 1-x (x = 0.65~0.85) a method of immersing a predetermined time is disclosed. This method is intended to suppress the deformation after sintering due to the anisotropy of thermal contraction due to the magnetic field orientation. In this method, R
Since the rich molten alloy is impregnated, the effect obtained by the present invention is not considered to be realized. Moreover, the Nd 2 Fe 14 B magnet powder used in the examples of the publication is about 10
The diameter is as small as μm, and the publication does not describe the forming pressure, the density of the formed body, and the density of the porous sintered body after low temperature sintering.

【0025】[0025]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
Specific Structure The specific structure of the present invention will be described in detail below.

【0026】本発明では、実質的にR214Bから構成
される相を有する主相用母合金の粉末と、Rを70〜9
7重量%含み、残部が実質的にFeおよび/またはCo
である粒界相用母合金との混合物に、粒界相用母合金が
溶融するように熱処理を施した後、解砕して成形し、焼
結する。
In the present invention, the powder of the main phase master alloy having a phase substantially composed of R 2 T 14 B and R of 70 to 9 are used.
7% by weight, the balance being substantially Fe and / or Co
The mixture with the grain boundary phase master alloy is subjected to heat treatment so that the grain boundary phase master alloy is melted, then crushed, shaped, and sintered.

【0027】<主相用母合金>主相用母合金の組成は、
目的とする磁石組成に応じ、粒界相用母合金の組成とそ
の混合比率とを考慮して適宜決定すればよいが、通常、
Rを26〜35重量%、Bを0.5〜3.5重量%含有
し、残部が実質的にTであることが好ましい。
<Main phase master alloy> The composition of the main phase master alloy is
Depending on the intended magnet composition, it may be appropriately determined in consideration of the composition of the grain boundary phase master alloy and its mixing ratio, but usually,
It is preferable that the content of R is 26 to 35% by weight, the content of B is 0.5 to 3.5% by weight, and the balance is substantially T.

【0028】Rは、Yを含む希土類元素の少なくとも1
種、すなわち、Y、ランタニドおよびアクチニドであ
る。Rとしては、Nd、Pr、Tbのうち少なくとも1
種、特にNdが好ましく、さらにDyを含むことが好ま
しい。また、La、Ce、Gd、Er、Ho、Eu、P
m、Tm、Yb、Yのうち1種以上を含んでもよい。希
土類元素の原料としては、ミッシュメタル等の混合物を
用いることもできる。R含有量が少なすぎると鉄に富む
相が析出して高保磁力が得られなくなり、R含有量が多
すぎると高残留磁束密度が得られなくなる。
R is at least 1 of rare earth elements including Y
Species: Y, lanthanide and actinide. R is at least 1 of Nd, Pr and Tb
Species, especially Nd, are preferred, and it is further preferred to include Dy. Also, La, Ce, Gd, Er, Ho, Eu, P
One or more of m, Tm, Yb and Y may be included. A mixture of misch metal or the like can be used as the raw material of the rare earth element. If the R content is too low, a phase rich in iron precipitates and high coercive force cannot be obtained, and if the R content is too high, high residual magnetic flux density cannot be obtained.

【0029】R214B系磁石では、Rリッチ相が液相
となって流動することにより焼結反応が進行するが、本
発明では、Rリッチの粒界相用母合金を使用し、また、
収縮率を低くするために焼結反応の進行を抑えることが
好ましいので、主相用母合金のR含有量は少なくするこ
とが好ましい。
In the R 2 T 14 B-based magnet, the R-rich phase becomes a liquid phase and flows to cause the sintering reaction to proceed. In the present invention, however, an R-rich grain boundary phase master alloy is used. Also,
Since it is preferable to suppress the progress of the sintering reaction in order to reduce the shrinkage rate, it is preferable to reduce the R content in the main phase master alloy.

【0030】Tは、Fe、またはFeおよびCoであ
る。T中のCo量は30重量%以下とすることが好まし
い。
T is Fe, or Fe and Co. The amount of Co in T is preferably 30% by weight or less.

【0031】B含有量が少なすぎると高保磁力が得られ
なくなり、B含有量が多すぎると高残留磁束密度が得ら
れなくなる。
If the B content is too small, a high coercive force cannot be obtained, and if the B content is too large, a high residual magnetic flux density cannot be obtained.

【0032】保磁力を改善するために、Al、Cr、M
n、Mg、Si、Cu、C、Nb、Sn、W、V、Z
r、Ti、Moなどの元素を添加してもよいが、添加量
が6重量%を超えると残留磁束密度の低下が問題とな
る。
In order to improve the coercive force, Al, Cr, M
n, Mg, Si, Cu, C, Nb, Sn, W, V, Z
Elements such as r, Ti, and Mo may be added, but if the addition amount exceeds 6% by weight, the reduction of the residual magnetic flux density becomes a problem.

【0033】主相用母合金は、通常、実質的にR214
Bから構成される相を含む結晶粒と、Rリッチな粒界相
とを有する。主相用母合金の粉末の平均結晶粒径は特に
限定されない。本発明では、磁場配向により異方性化す
るので、後述する粒子径としたときに単結晶粒子となる
ような結晶粒径であることが好ましいが、多結晶粒子で
あっても粒子内で結晶粒が配向していればよいので、平
均結晶粒径は、例えば3〜600μm 程度の広い範囲か
ら選択することができる。
The master alloy for the main phase is usually substantially R 2 T 14
It has a crystal grain containing a phase composed of B and an R-rich grain boundary phase. The average crystal grain size of the main phase master alloy powder is not particularly limited. In the present invention, since it is anisotropy by magnetic field orientation, it is preferable that the crystal grain size is such that it becomes a single crystal grain when the grain size described later is used, but even if it is a polycrystalline grain, it is crystallized within the grain. As long as the grains are oriented, the average crystal grain size can be selected from a wide range of, for example, about 3 to 600 μm.

【0034】主相用母合金の粉末の平均粒子径は特に限
定されず、焼結後の磁石の結晶粒径が所望の値となるよ
うに決定すればよく、例えば5〜500μm 程度から適
宜選択すればよい。ただし、焼結時の収縮率を低くする
ためには、好ましくは20μm 以上、より好ましくは5
0〜350μm とする。平均粒子径が小さすぎると、前
述した粒子大径化による効果が不十分となる。一方、平
均粒子径が大きすぎると、薄肉の成形体中では磁場配向
が困難となる。なお、主相用母合金粉末の平均粒子径
は、粒子1個あたりの平均投影面積を算出し、これを円
に換算したときの直径とする。粒子の投影面積の測定方
法は特に限定されない。例えば、粉末の分散液を、粒子
同士が重ならないようにガラス板上に塗布して写真を撮
影し、この写真から粒子の投影面積を求めることができ
る。この他、前記塗布物を光ビームで走査して反射率変
化を検出することにより、粒子の投影面積を求めること
もできる。
The average particle size of the main phase master alloy powder is not particularly limited, and may be determined so that the crystal grain size of the magnet after sintering will be a desired value, for example, appropriately selected from about 5 to 500 μm. do it. However, in order to reduce the shrinkage rate during sintering, it is preferably 20 μm or more, more preferably 5 μm or more.
0 to 350 μm. If the average particle size is too small, the above-described effect of increasing the particle size becomes insufficient. On the other hand, if the average particle size is too large, it becomes difficult to orient the magnetic field in a thin molded body. The average particle diameter of the main phase master alloy powder is the diameter when an average projected area per particle is calculated and converted into a circle. The method for measuring the projected area of the particles is not particularly limited. For example, a powder dispersion can be applied onto a glass plate so that the particles do not overlap with each other, a photograph is taken, and the projected area of the particles can be determined from this photograph. In addition, the projected area of the particles can be obtained by scanning the coated object with a light beam and detecting the change in reflectance.

【0035】主相用母合金の粉末の製造方法は特に限定
されず、鋳造合金を水素吸蔵粉砕などにより粉末化する
方法や、還元拡散法等のいずれを用いてもよく、焼結磁
石を粉砕して粉末化してもよい。磁場配向により異方性
化された焼結磁石を粉砕した粉末、あるいはこのような
焼結磁石の削り屑などでは、配向された小径の結晶粒か
らなる大径の多結晶粒子を得ることができるので、高残
留磁束密度かつ高保磁力の磁石が得られる。また、還元
拡散法や鋳造法でも、製造条件を制御することにより、
磁化容易軸の揃いが良好な多結晶粒子が得られる。
The method for producing the powder of the master alloy for the main phase is not particularly limited, and any method such as a method of pulverizing the cast alloy by hydrogen occlusion pulverization or a reduction diffusion method may be used, and the sintered magnet is pulverized. You may make it into a powder. With a powder obtained by crushing a sintered magnet anisotropy by magnetic field orientation, or shavings of such a sintered magnet, large-sized polycrystalline particles composed of oriented small-sized crystal grains can be obtained. Therefore, a magnet having a high residual magnetic flux density and a high coercive force can be obtained. In addition, even in the reduction diffusion method and casting method, by controlling the manufacturing conditions,
Polycrystalline particles with good alignment of easy magnetization axes can be obtained.

【0036】主相用母合金粉末が単結晶粒子を主体とす
る場合、粒子形状は等軸形状に近いことが好ましい。ま
た、主相用母合金粉末が多結晶粒子を主体とする場合、
粒子内の結晶粒の形状は等軸形状に近いことが好まし
い。これら各場合において等軸形状に近いとは、粒子ま
たは結晶粒の長軸/短軸の平均値が、好ましくは3以
下、より好ましくは2.5以下であることを意味する。
単結晶粒子は、等軸形状に近いほど単位体積あたりの表
面積の比率が小さくなるので、磁石製造工程で受ける粒
子表面付近のダメージの影響が少なくなり、高特性の磁
石が得られる。また、多結晶粒子では、等軸形状に近い
結晶粒を有する場合に良好な磁気特性が得られる。
When the main phase master alloy powder is mainly composed of single crystal particles, the particle shape is preferably close to an equiaxed shape. When the main phase master alloy powder is mainly composed of polycrystalline particles,
The shape of the crystal grains in the particles is preferably close to the equiaxial shape. In each of these cases, "close to equiaxed shape" means that the average value of the major axis / minor axis of the particles or crystal grains is preferably 3 or less, more preferably 2.5 or less.
Since the single crystal particles have a smaller surface area ratio per unit volume as they are closer to the equiaxial shape, the influence of damage near the particle surface in the magnet manufacturing process is reduced, and a magnet with high characteristics can be obtained. In addition, in the case of polycrystalline particles, good magnetic properties can be obtained when they have crystal grains that are close to equiaxed.

【0037】<粒界相用母合金>粒界相用母合金は、R
を70〜97重量%、好ましくは75〜92重量%含
み、残部が実質的にFeおよび/またはCoである。粒
界相用母合金に含まれるRとしてはNdが好ましく、R
中の50%以上をNdが占めることがより好ましく、R
として実質的にNdだけを用いることがさらに好まし
い。R中のNd量が少なく、また、R量が少ないと、粒
界相用母合金の融点が低くならず、閉空孔が形成されに
くくなる。Nd89Fe11(重量比)共晶合金の融点は6
40℃、Nd81Co19(重量比)共晶合金の融点は56
6℃であるが、Dy88Fe12(重量比)共晶合金の融点
は890℃である。本発明で用いる粒界相用母合金は、
Bを含まない。粒界相用母合金中のBは、磁石特性の向
上に寄与せず、また、粒界相用母合金の融点の低下にも
寄与しない。
<Master Alloy for Grain Boundary Phase> The master alloy for grain boundary phase is R
Of 70 to 97% by weight, preferably 75 to 92% by weight, and the balance being substantially Fe and / or Co. R contained in the grain boundary phase master alloy is preferably Nd, and
More preferably, Nd occupies 50% or more of the
It is more preferable to use substantially only Nd. When the amount of Nd in R is small and the amount of R is small, the melting point of the grain boundary phase master alloy does not decrease, and closed voids are less likely to be formed. The melting point of Nd 89 Fe 11 (weight ratio) eutectic alloy is 6
40 ° C., Nd 81 Co 19 (weight ratio) eutectic alloy has a melting point of 56.
Although it is 6 ° C, the melting point of the Dy 88 Fe 12 (weight ratio) eutectic alloy is 890 ° C. The grain boundary phase master alloy used in the present invention is
Does not include B. B in the grain boundary phase master alloy does not contribute to the improvement of the magnet characteristics and does not contribute to the decrease of the melting point of the grain boundary phase master alloy.

【0038】粒界相用母合金には、R、Fe、Coの
他、Al、Cu、Ga、Ni、Sn、Cr、V、Ti、
Mo等の少なくとも1種を添加してもよい。ただし、粒
界相用母合金中におけるこれらの元素の合計含有量は、
20重量%以下であることが好ましい。これらの元素
は、非磁性化合物を形成して残留磁束密度を低下させる
からである。AlおよびCuは、保磁力と耐食性とを向
上させる効果を示す。
For the grain boundary phase master alloy, in addition to R, Fe and Co, Al, Cu, Ga, Ni, Sn, Cr, V, Ti,
You may add at least 1 sort (s), such as Mo. However, the total content of these elements in the grain boundary phase master alloy,
It is preferably 20% by weight or less. This is because these elements form a non-magnetic compound and reduce the residual magnetic flux density. Al and Cu exhibit the effect of improving coercive force and corrosion resistance.

【0039】粒界相用母合金の製造方法は特に限定され
ないが、好ましくは液体急冷法を用いる。液体急冷法と
しては、合金溶湯を冷却基体に接触させて冷却する方
法、例えば単ロール法、双ロール法、回転ディスク法等
などが好ましく、ガスアトマイズ法を用いてもよい。合
金溶湯の冷却は、窒素やAr等の非酸化性雰囲気中ある
いは真空中で行なう。冷却速度が遅い場合、上記した組
成の粒界相用母合金は、主としてNdとFe2 Ndとに
相分離してしまう。これらの融点は1000℃以上と高
く、また、Ndは極めて酸化されやすい。液体急冷法に
より製造された粒界相用母合金は、アモルファス相また
は微結晶相を有する。
The method for producing the grain boundary phase master alloy is not particularly limited, but the liquid quenching method is preferably used. As the liquid quenching method, a method of bringing the molten alloy into contact with a cooling substrate to cool it, for example, a single roll method, a twin roll method, a rotating disk method, or the like is preferable, and a gas atomizing method may be used. The molten alloy is cooled in a non-oxidizing atmosphere such as nitrogen or Ar or in vacuum. When the cooling rate is slow, the master alloy for the grain boundary phase having the above-mentioned composition mainly undergoes phase separation into Nd and Fe 2 Nd. Their melting points are as high as 1000 ° C. or higher, and Nd is extremely susceptible to oxidation. The grain boundary phase master alloy produced by the liquid quenching method has an amorphous phase or a microcrystalline phase.

【0040】熱処理により溶融した粒界相用母合金は、
主相用母合金粒子に対して濡れ性が極めて良好であり、
迅速に主相用母合金粒子の周囲を被覆するため、溶融前
の粒界相用母合金の形状および寸法は特に限定されな
い。ただし、粒界相用母合金を微細な粉末にまで粉砕す
る場合、酸化が避けられず、粉砕の際に形成された酸化
物は磁石中に残留して磁石特性の低下を招くので、平均
粒子径は50μm 以上であることが好ましい。一方、粒
界相用母合金が大きなバルク状であると、主相用母合金
粒子を被覆するために移動ないし拡散する距離が大きく
なってしまうので、最大径は10mm以下であることが好
ましい。
The master alloy for grain boundary phase melted by heat treatment is
Very good wettability with respect to main phase mother alloy particles,
The shape and dimensions of the grain boundary phase master alloy before melting are not particularly limited in order to rapidly coat the periphery of the main phase master alloy particles. However, when the grain boundary phase master alloy is pulverized to a fine powder, oxidation is unavoidable, and the oxide formed during the pulverization remains in the magnet, causing deterioration of the magnetic properties. The diameter is preferably 50 μm or more. On the other hand, if the grain boundary phase master alloy is in a large bulk shape, the distance for moving or diffusing to cover the main phase master alloy particles increases, so the maximum diameter is preferably 10 mm or less.

【0041】<混合および熱処理>主相用母合金の粉末
と粒界相用母合金との混合物を製造する方法は、特に限
定されない。通常は、両者をVミキサー等により混合す
るが、主相用母合金の粉末上に、粒界相用母合金の粉末
や、その粗粉、その破砕片等を載せるだけでもよい。
<Mixing and Heat Treatment> The method for producing a mixture of the main phase master alloy powder and the grain boundary phase master alloy is not particularly limited. Usually, both are mixed by a V mixer or the like, but it is also possible to place the powder of the master alloy for the main phase, the coarse powder of the master alloy for the grain boundary phase, and the crushed pieces thereof on the powder of the master alloy for the main phase.

【0042】混合物中における粒界相用母合金の比率
は、好ましくは2〜15重量%、より好ましくは3〜1
1重量%とする。この比率が低すぎると、本発明の効果
が不十分となり、この比率が高すぎると残留磁束密度の
高い磁石を得ることが難しくなる。
The ratio of the grain boundary phase master alloy in the mixture is preferably 2 to 15% by weight, more preferably 3 to 1%.
1% by weight. If this ratio is too low, the effect of the present invention will be insufficient, and if this ratio is too high, it will be difficult to obtain a magnet having a high residual magnetic flux density.

【0043】このようにして得られた混合物に、熱処理
を施す。熱処理条件は特に限定されず、粒界相用母合金
の粉末が溶融する温度であって、かつ主相用母合金の粉
末が焼結しないか、あるいは焼結が進みすぎない温度で
あればよい。焼結が進みすぎると、熱処理後の解砕が困
難ないし不可能となり、磁場中成形による異方性化が困
難となる。具体的には、処理温度は、好ましくは600
〜1000℃、より好ましくは650〜950℃であ
る。処理温度が高すぎると主相用母合金の粉末の焼結が
問題となる。一方、処理温度が低すぎると、処理時の粒
界相用母合金の流動性が低くなるので、処理後の主相用
母合金の粉末中におけるRリッチ相の分散が不十分とな
ってしまう。なお、粒界相用母合金は、その融点におい
てほぼ瞬時に溶融して主相用母合金粒子を被覆するが、
両母合金間での元素の拡散を十分に行なうために、好ま
しくは10分間以上、より好ましくは30分間以上、融
点以上の温度に保持する。
The mixture thus obtained is heat-treated. The heat treatment conditions are not particularly limited, as long as it is a temperature at which the powder of the grain boundary phase master alloy is melted, and the temperature of the main phase master alloy powder does not sinter or the sintering does not proceed excessively. . If the sintering proceeds too much, it becomes difficult or impossible to disintegrate after heat treatment, and it becomes difficult to anisotropy by molding in a magnetic field. Specifically, the processing temperature is preferably 600
-1000 degreeC, More preferably, it is 650-950 degreeC. If the treatment temperature is too high, sintering of the main phase master alloy powder becomes a problem. On the other hand, if the treatment temperature is too low, the fluidity of the grain boundary phase master alloy at the time of treatment becomes low, so that the dispersion of the R-rich phase in the powder of the main phase master alloy after the treatment becomes insufficient. . The grain boundary phase master alloy is melted almost instantaneously at its melting point to coat the main phase master alloy particles,
In order to sufficiently diffuse the elements between both mother alloys, the temperature is preferably maintained for 10 minutes or longer, more preferably 30 minutes or longer, and the melting point or higher.

【0044】混合物は、熱処理前に加圧成形されておら
ず、かつ、熱処理時に加圧されていなければよい。熱処
理の際に混合物を保持する容器は、熱処理により混合物
と反応しない材質、例えば、ステンレスやMo等の高融
点金属から構成すればよい。
It is sufficient that the mixture is not pressure-molded before the heat treatment and is not pressed during the heat treatment. The container holding the mixture during the heat treatment may be made of a material that does not react with the mixture during the heat treatment, for example, a refractory metal such as stainless steel or Mo.

【0045】冷却後には、主相用母合金の粒子は、凝固
した粒界相用母合金により互いに結合されているため、
解砕を行ない、成形用の磁石粉末とする。
After cooling, the particles of the main phase master alloy are bonded to each other by the solidified grain boundary phase master alloy,
Pulverize to obtain magnet powder for molding.

【0046】なお、熱処理前に、主相用母合金の粉末を
着磁することが好ましい。主相用母合金粉末のうち平均
粒子径よりも小さな微粒子は、熱処理後の解砕処理によ
り分離することが難しいので、解砕処理後もRリッチ相
により大径粒子に結合したままであり、見掛け上、多結
晶体化している。このようにして形成された多結晶体中
では、各粒子の磁化容易軸が揃っていないので、磁場中
で成形したときの配向度が不十分となる。しかし、粒界
相用母合金が主相用母合金粉末中に分散して凝固する前
に、主相用母合金の粉末を着磁しておけば、熱処理の際
に小径粒子は磁化容易軸方向が大径粒子とほぼ揃った状
態で多結晶体中に取り込まれる。このような理由から、
主相用母合金の粉末の着磁は、その温度がキュリー温度
未満であるときに行なう。主相用母合金の粉末を着磁す
るときの磁界強度は、通常、5 kOe以上とすることが好
ましい。
Before the heat treatment, it is preferable to magnetize the main phase master alloy powder. Since the fine particles smaller than the average particle diameter in the main phase master alloy powder are difficult to separate by the crushing treatment after the heat treatment, they remain bonded to the large-sized particles by the R-rich phase even after the crushing treatment, Apparently it has become polycrystalline. In the polycrystalline body formed in this way, the easy axes of magnetization of the grains are not aligned, so that the degree of orientation when molded in a magnetic field becomes insufficient. However, if the main phase master alloy powder is magnetized before the grain boundary phase master alloy is dispersed and solidified in the main phase master alloy powder, the small-diameter particles can be easily magnetized during the heat treatment. It is taken into the polycrystal in a state in which the direction is almost aligned with that of the large-diameter particles. For this reason,
The main phase master alloy powder is magnetized when the temperature is lower than the Curie temperature. The magnetic field strength when magnetizing the main phase master alloy powder is usually preferably 5 kOe or more.

【0047】<成形>成形工程では、磁石粉末を磁場中
で成形する。成形体密度は特に限定されないが、焼結時
の収縮率を小さくするためには、成形体密度を好ましく
は5.5g/cm3 以上、より好ましくは6.0g/cm3 以上
とする。密度の小さい成形体では、十分な磁石特性を得
ようとすると焼結時の収縮率が大きくなってしまい、焼
結時の収縮率を小さくすると磁石特性が不十分となって
しまう。成形体の密度の上限は特にないが、6.4g/cm
3 を超える密度とすることは困難である。例えば、成形
時に20t/cm2 以上の超高圧が必要になるため成形装置
や金型が高価になり、また、成形体の形状が単純なもの
に制限されてしまう。成形体密度を向上させるためには
多量の有機潤滑剤の利用も有効であるが、焼結前に有機
潤滑剤を完全に除去することが困難であり、磁石中の残
留炭素が磁石特性を低下させてしまう。なお、成形体の
密度は、マイクロメータなどにより測定した成形体の寸
法から算出することができる。
<Molding> In the molding step, magnet powder is molded in a magnetic field. The density of the molded body is not particularly limited, but in order to reduce the shrinkage rate during sintering, the density of the molded body is preferably 5.5 g / cm 3 or more, more preferably 6.0 g / cm 3 or more. In the case of a compact having a low density, if sufficient magnet characteristics are to be obtained, the shrinkage rate at the time of sintering becomes large, and if the shrinkage rate at the time of sintering is made small, the magnet characteristics become insufficient. There is no particular upper limit to the density of the molded product, but 6.4 g / cm
It is difficult to achieve a density of more than 3 . For example, since an ultrahigh pressure of 20 t / cm 2 or more is required at the time of molding, the molding apparatus and the mold are expensive, and the shape of the molded body is limited to a simple shape. It is effective to use a large amount of organic lubricant to improve the compact density, but it is difficult to completely remove the organic lubricant before sintering, and residual carbon in the magnet deteriorates the magnet characteristics. I will let you. The density of the molded product can be calculated from the dimensions of the molded product measured with a micrometer or the like.

【0048】このように高い密度の成形体は、抗折強度
が0.3kgf/mm2 以上、さらには0.5kgf/cm2 以上と
なるので、取り扱いが容易となり、割れや欠けの発生が
少なくなる。
The molded article having such a high density has a flexural strength of 0.3 kgf / mm 2 or more, and further 0.5 kgf / cm 2 or more, so that it is easy to handle, and cracks and chips are less likely to occur. Become.

【0049】成形圧力は特に限定されず、所望の密度の
成形体が得られるように適宜決定すればよいが、上述し
た高密度の成形体を得るためには、好ましくは8t/cm2
以上、より好ましくは12t/cm2 以上とする。成形時の
磁場強度は、通常、10 kOe以上、好ましくは15 kOe
以上とする。
The molding pressure is not particularly limited and may be appropriately determined so as to obtain a molded product having a desired density, but in order to obtain the above-mentioned high-density molded product, it is preferably 8 t / cm 2.
Or more, more preferably 12 t / cm 2 or more. The magnetic field strength during molding is usually 10 kOe or more, preferably 15 kOe.
That is all.

【0050】成形時に印加する磁界は、直流磁界であっ
てもパルス磁界であってもよく、これらを併用してもよ
い。本発明は、圧力印加方向と磁界印加方向とがほぼ直
交するいわゆる横磁場成形法にも、圧力印加方向と磁界
印加方向とがほぼ平行であるいわゆる縦磁場成形法にも
適用することができる。
The magnetic field applied during molding may be a DC magnetic field or a pulsed magnetic field, or they may be used in combination. The present invention can be applied to a so-called transverse magnetic field forming method in which a pressure applying direction and a magnetic field applying direction are substantially orthogonal to each other, and a so-called longitudinal magnetic field forming method in which a pressure applying direction and a magnetic field applying direction are substantially parallel to each other.

【0051】<焼結>上記のようにして得られた成形体
は、焼結されて磁石化される。
<Sintering> The molded body obtained as described above is sintered and magnetized.

【0052】焼結は、焼結体の密度から成形体の密度を
減じた値(焼結時の密度変化量)が0.2g/cm3 以上と
なるような条件で行なうことが好ましい。焼結工程での
密度変化が小さすぎる場合、焼結が不十分であり、磁石
特性および機械的強度が不十分となる。収縮率を小さく
するためには、上記した高密度成形体を用い、かつ、密
度変化量を好ましくは1.5g/cm3 以下、より好ましく
は1.2g/cm3 以下とする。
Sintering is preferably carried out under conditions such that the value obtained by subtracting the density of the molded body from the density of the sintered body (the amount of change in density during sintering) is 0.2 g / cm 3 or more. If the density change in the sintering step is too small, the sintering will be insufficient and the magnet characteristics and mechanical strength will be insufficient. In order to reduce the shrinkage rate, the above-mentioned high-density molded body is used, and the density change amount is preferably 1.5 g / cm 3 or less, more preferably 1.2 g / cm 3 or less.

【0053】焼結時の各種条件に特に制限はなく、焼結
時の密度変化などが所望の値となるように適宜選択すれ
ばよい。焼結温度は、粒界相用母合金の溶融温度以上で
あればよいが、上述した比較的大径の粉末を用いた高密
度成形体では、焼結が進みにくいために従来のいわゆる
半焼結の場合より焼結温度を高くしても、収縮率を低く
抑えることができる。具体的には、900〜1100℃
で0.5〜10時間熱処理を施して焼結し、その後、急
冷することが好ましい。なお、焼結雰囲気は、真空中ま
たはArガス等の不活性ガス雰囲気であることが好まし
く、前述したように開空孔の比率を減らすことができる
点で、真空中または減圧した不活性ガス雰囲気での焼結
がより好ましい。なお、焼結工程の一部だけを真空また
は減圧雰囲気とする構成としてもよい。
There are no particular restrictions on various conditions during sintering, and it may be appropriately selected so that the density change during sintering has a desired value. The sintering temperature may be equal to or higher than the melting temperature of the grain boundary phase master alloy, but in the high-density compact using the above-mentioned powder having a relatively large diameter, it is difficult to proceed with the sintering, which is the conventional so-called semi-sintering. Even if the sintering temperature is higher than in the above case, the shrinkage ratio can be suppressed to be low. Specifically, 900 to 1100 ° C
It is preferable to heat-treat for 0.5 to 10 hours to sinter and then quench. The sintering atmosphere is preferably a vacuum or an inert gas atmosphere such as Ar gas, and as described above, it is possible to reduce the ratio of open pores, and thus the vacuum or reduced pressure inert gas atmosphere. Is more preferable. It should be noted that only part of the sintering process may be in a vacuum or reduced pressure atmosphere.

【0054】焼結後、保磁力向上のために時効処理を必
要に応じて施す。
After sintering, an aging treatment is carried out as necessary to improve the coercive force.

【0055】<焼結磁石>このようにして製造される焼
結磁石の組成は、主相用母合金および粒界相用母合金そ
れぞれの組成と、これらの母合金の混合比率によって決
まるが、好ましい磁石組成は、Rを27〜40重量%、
Bを0.5〜4.5重量%含有し、残部が実質的にTで
あるものである。
<Sintered Magnet> The composition of the sintered magnet thus manufactured is determined by the composition of each of the main phase master alloy and the grain boundary phase master alloy, and the mixing ratio of these master alloys. A preferred magnet composition is 27 to 40 wt% R,
The content of B is 0.5 to 4.5% by weight, and the balance is substantially T.

【0056】焼結磁石中には、これらの元素の他、不可
避的不純物あるいは微量添加物として、例えば炭素や酸
素が含有されていてもよい。
In addition to these elements, the sintered magnet may contain unavoidable impurities or trace additives such as carbon and oxygen.

【0057】焼結磁石は、実質的に正方晶型の結晶構造
の主相を有し、結晶粒界には、R214BよりもR比率
の高いRリッチ相が存在する。磁石の結晶粒径は、主相
用母合金の結晶粒径、主相用母合金粉末の粒子径、焼結
条件等に応じたものとなる。
The sintered magnet has a main phase having a substantially tetragonal crystal structure, and an R-rich phase having a higher R ratio than R 2 T 14 B exists in the crystal grain boundaries. The crystal grain size of the magnet depends on the crystal grain size of the main phase master alloy, the grain size of the main phase master alloy powder, the sintering conditions, and the like.

【0058】焼結時の収縮を低く抑えた場合には、焼結
磁石中に閉空孔が含まれる。閉空孔とは、磁石表面に連
通していない空孔である。磁石全体に対する閉空孔の比
率は、好ましくは2体積%以上、より好ましくは2.5
〜10体積%である。閉空孔が少なすぎる磁石は、焼結
時に大きく収縮しており、成形体の良好な寸法精度が維
持されていない。閉空孔の多すぎる磁石は、磁石特性が
不十分であり、強度も不足する。磁石中における閉空孔
の合計容積率および後述する開空孔の合計容積率は、以
下のようにして算出することができる。
When the shrinkage during sintering is suppressed to a low level, closed pores are included in the sintered magnet. The closed holes are holes that do not communicate with the magnet surface. The ratio of closed holes to the entire magnet is preferably 2% by volume or more, more preferably 2.5.
10 to 10% by volume. A magnet with too few closed holes contracts greatly during sintering, and good dimensional accuracy of the molded body is not maintained. A magnet having too many closed holes has insufficient magnet characteristics and insufficient strength. The total volume ratio of the closed holes in the magnet and the total volume ratio of the open holes described later can be calculated as follows.

【0059】開空孔合計容積率K 式I K=(WW −W)/V 閉空孔合計容積率H 式II H=1−K−W/(V・ρ) ただし、上記各式において、 V:サンプル形状から求めた体積、 W:サンプル重量、 WW :サンプルを水中に浸漬し、100Torr以下まで減
圧して30秒間保持した後、取り出し、サンプル表面の
水をふき取った後のサンプル重量、 ρ:磁石の理論密度 である。
Open hole total volume ratio K Formula I K = (WW- W ) / V Closed hole total volume ratio H Formula II H = 1-K-W / (V · ρ) V: volume calculated from the sample geometry, W: sample weight, W W: sample was immersed in water, after holding for 30 seconds and evacuated to 100 Torr, taking out, the sample weight after wiping off water on the sample surface, ρ: theoretical density of magnet.

【0060】本発明の焼結磁石の密度は、7.2g/cm3
以下であることが好ましい。200μm 程度の大径の粒
子からなる粉末を高圧で成形すれば、成形体の密度を
6.4g/cm3 程度と高くすることができるが、このよう
な成形体では焼成の際の粒子移動が困難であるため、高
温で焼成しても7.2g/cm3 を超える密度とすることは
困難である。逆に、小径の粒子を用いて低密度の成形体
とした場合に7.2g/cm3 を超える密度となるまで焼成
すると、焼結が進みすぎて収縮率が大きくなってしま
う。焼結磁石の密度がこの範囲であっても、磁石表面に
連通する開空孔が多い場合には、磁石の耐食性が極端に
低下するため好ましくない。開空孔の比率は、2体積%
以下であることが好ましい。開空孔の比率は、前述した
方法により求めることができる。
The density of the sintered magnet of the present invention is 7.2 g / cm 3
The following is preferable. If a powder composed of large particles of about 200 μm is molded under high pressure, the density of the molded body can be increased to about 6.4 g / cm 3, but with such a molded body, the particle movement during firing is Since it is difficult, it is difficult to obtain a density of more than 7.2 g / cm 3 even if it is fired at a high temperature. On the other hand, when a compact having a low density is formed by using small-diameter particles, if firing is performed until the density exceeds 7.2 g / cm 3 , the sintering proceeds excessively and the shrinkage rate increases. Even if the density of the sintered magnet is in this range, if there are many open holes communicating with the surface of the magnet, the corrosion resistance of the magnet is extremely reduced, which is not preferable. The ratio of open pores is 2% by volume
The following is preferable. The ratio of open holes can be determined by the method described above.

【0061】<その他>磁石の耐食性を向上させるため
には、開空孔を塞ぐことが好ましい。このためには、例
えば、有機溶剤に樹脂を溶解した溶液中に磁石を浸漬し
た後、乾燥させる処理を施せばよい。なお、このような
処理の後、樹脂の電着塗装や無電解めっき等により、通
常の防食被覆を設けてもよい。
<Others> In order to improve the corrosion resistance of the magnet, it is preferable to close the open holes. For this purpose, for example, the magnet may be dipped in a solution in which a resin is dissolved in an organic solvent and then dried. After such a treatment, a usual anticorrosion coating may be provided by electrodeposition coating of resin, electroless plating, or the like.

【0062】本発明は、後述するような薄肉のリング状
や板状の磁石の製造に好適であり、特に厚さが3mm以下
である薄肉磁石の製造に本発明は適する。なお、磁石厚
さが0.5mm未満となると、成形が困難となる傾向があ
る。
The present invention is suitable for manufacturing a thin-walled ring-shaped or plate-shaped magnet as described later, and particularly for manufacturing a thin-walled magnet having a thickness of 3 mm or less. If the magnet thickness is less than 0.5 mm, molding tends to be difficult.

【0063】<寸法偏差>本発明では、寸法偏差の極め
て小さい焼結磁石が得られるので、焼結後、研削等によ
る形状加工をせずに製品化することができる。
<Dimensional Deviation> According to the present invention, since a sintered magnet having an extremely small dimensional deviation can be obtained, it can be manufactured as a product without performing shape processing such as grinding after sintering.

【0064】すなわち、本発明によれば、平行部を有
し、平行部の最大長さをその平均厚さで除した値が10
以上である薄肉焼結磁石において、平行部の厚さ偏差を
1.5%以下とすることができ、1%以下とすることも
容易であり、最大長さ/平均厚さが15以上である薄肉
磁石についても厚さ偏差をこのような範囲に収めること
が可能である。平行部とは、対向する平行な2面で挟ま
れたブロックであり、平行部を有する磁石とは、例え
ば、板状磁石や円盤状磁石、リング状磁石である。平行
部の厚さ偏差とは、平行部の厚さの最大値と最小値との
差を平行部の最大長さで除した値である。平行部の厚さ
偏差は、平行部の反りや厚さの不均一性の指標となる値
であり、上記のような寸法比の薄肉焼結磁石の場合、反
りや厚さの不均一さが大きくなるので、従来、一般に厚
さ偏差が2.5%以上となっている。
That is, according to the present invention, there is a parallel portion, and the value obtained by dividing the maximum length of the parallel portion by the average thickness is 10
In the thin-walled sintered magnet as described above, the thickness deviation of the parallel portion can be 1.5% or less, and can easily be 1% or less, and the maximum length / average thickness is 15 or more. The thickness deviation of a thin magnet can be kept within such a range. The parallel part is a block sandwiched by two parallel surfaces facing each other, and the magnet having the parallel part is, for example, a plate magnet, a disk magnet, or a ring magnet. The thickness deviation of the parallel part is a value obtained by dividing the difference between the maximum value and the minimum value of the thickness of the parallel part by the maximum length of the parallel part. The thickness deviation of the parallel part is a value that is an index of the warp of the parallel part and the nonuniformity of the thickness, and in the case of the thin-walled sintered magnet having the above dimensional ratio, the warpage and the nonuniformity of the thickness are Since it becomes large, the thickness deviation is generally 2.5% or more.

【0065】また、本発明によれば、円筒部を有し、円
筒部の平均外径をその平均肉厚で除した値が10以上で
ある薄肉磁石において、円筒部の外径偏差および/また
は内径偏差を1.5%以下とすることができ、1%以下
とすることも容易であり、平均外径/平均肉厚が15以
上である薄肉磁石についても外径偏差および/または内
径偏差をこのような範囲に収めることが可能である。円
筒部とは、外周面を有するか、外周面および内周面を有
する円筒状ブロックであり、円筒部を有する磁石とは、
例えばリング状磁石や円盤状磁石であるが、この場合の
外径偏差および内径偏差は、外周面および内周面を有す
る円筒部を対象とする。円筒部の外径偏差とは、円筒部
の外径の最大値と最小値との差を平均外径で除した値で
あり、内径偏差とは、円筒部の内径の最大値と最小値と
の差を平均内径で除した値である。円筒部の外径偏差お
よび内径偏差は、円筒部の反りや歪、肉厚の不均一性の
指標となる値であり、上記のような寸法比の薄肉焼結磁
石の場合、反りや歪、肉厚の不均一さが大きくなるの
で、従来、一般に外径偏差および内径偏差が3%以上と
なっている。
Further, according to the present invention, in the thin-walled magnet having the cylindrical portion and the value obtained by dividing the average outer diameter of the cylindrical portion by the average wall thickness is 10 or more, the outer diameter deviation of the cylindrical portion and / or The inner diameter deviation can be 1.5% or less, and it is easy to set it to 1% or less. Even for a thin magnet having an average outer diameter / average wall thickness of 15 or more, the outer diameter deviation and / or the inner diameter deviation can be reduced. It is possible to fit within such a range. The cylindrical portion is a cylindrical block having an outer peripheral surface or an outer peripheral surface and an inner peripheral surface, and the magnet having the cylindrical portion is
For example, a ring-shaped magnet or a disc-shaped magnet, the outer diameter deviation and the inner diameter deviation in this case target a cylindrical portion having an outer peripheral surface and an inner peripheral surface. The outer diameter deviation of the cylindrical portion is a value obtained by dividing the difference between the maximum value and the minimum value of the outer diameter of the cylindrical portion by the average outer diameter, and the inner diameter deviation is the maximum value and the minimum value of the inner diameter of the cylindrical portion. Is the value obtained by dividing the difference of by the average inner diameter. The outer diameter deviation and the inner diameter deviation of the cylindrical portion are values that are an index of the warp and strain of the cylindrical portion and the nonuniformity of the wall thickness, and in the case of the thin-walled sintered magnet having the above dimensional ratio, the warp and strain, Since the unevenness of the wall thickness becomes large, conventionally, the outer diameter deviation and the inner diameter deviation are generally 3% or more.

【0066】なお、円盤状磁石など、外周面だけを有す
る円筒部をもち、平均外径/平均厚さが10以上、さら
には15以上である薄肉焼結磁石においても、円筒部の
外径偏差を1.5%以下とすることができ、1%以下と
することも容易である。
Even in a thin-walled sintered magnet having a cylindrical portion having only an outer peripheral surface such as a disc magnet and having an average outer diameter / average thickness of 10 or more, further 15 or more, the deviation of the outer diameter of the cylindrical portion. Can be 1.5% or less, and can easily be 1% or less.

【0067】本明細書において、平行部の厚さ偏差は以
下のようにして測定する。まず、被測定物を、その平行
部を構成する一方の面が定盤と接するように、定盤上に
載置する。そして、平行部を構成する他方の面の定盤表
面からの高さを、20箇所で測定する。次に、前記他方
の面が定盤表面と接するように、被測定物を裏返して定
盤上に載置し、同様にして20箇所で高さを測定する。
測定位置は、測定対象の面をほぼ均等に20に分割し、
各領域内のほぼ中央の点とする。得られたすべての測定
値から、最大値(Tmax )と最小値(Tmin )との差
(Tmax −Tmin)を求める。この差を、前記平行部を
構成する各面の長さ(長手方向長さ)のうちの最大値L
で除した値{(Tmax −Tmin )/L}を、厚さ偏差と
する。互いに平行な面を2組以上有する薄肉磁石の厚さ
偏差は、両主面を前記一方の面および前記他方の面とし
たときに大きな値となる。なお、薄肉磁石の説明におけ
る平均厚さには、上記のようにして得られたすべての測
定値の平均を用いればよい。
In the present specification, the thickness deviation of the parallel portion is measured as follows. First, the object to be measured is placed on the surface plate such that one surface forming the parallel portion is in contact with the surface plate. Then, the height from the surface plate surface of the other surface forming the parallel portion is measured at 20 points. Next, the object to be measured is turned over and placed on the surface plate so that the other surface is in contact with the surface of the surface plate, and the height is measured at 20 points in the same manner.
The measurement position divides the surface to be measured into 20 evenly,
It is set at the center point in each area. The difference (Tmax-Tmin) between the maximum value (Tmax) and the minimum value (Tmin) is determined from all the obtained measured values. This difference is the maximum value L of the lengths (lengths in the longitudinal direction) of the surfaces forming the parallel portion.
The value obtained by dividing by {(Tmax-Tmin) / L} is taken as the thickness deviation. The thickness deviation of a thin-walled magnet having two or more pairs of mutually parallel surfaces has a large value when both main surfaces are the one surface and the other surface. The average thickness in the description of the thin magnet may be the average of all the measured values obtained as described above.

【0068】円筒部の外径偏差および内径偏差は以下の
ようにして求める。まず、円筒部の外径または内径を、
円筒部の軸方向に連続して測定し、最大値と最小値とを
求める。このとき、円筒部の軸方向両端部の0.1mmの
範囲の測定値は除外する。次に、前記円筒部をその軸を
中心にして15°回転させた後、同様な測定を行なう。
このようにして、15°間隔で周方向180°にわたっ
て測定を合計12回繰り返す。12の最大値のうち最大
のものをφmax 、12の最小値のうち最小のものをφmi
n とし、φmax −φmin を求める。次に、12の最大値
の平均と12の最小値の平均との平均値φ0 を求め、φ
0 を平均外径または平均内径とする。そして、{(φma
x −φmin )/φ0 }を、外径偏差または内径偏差とす
る。なお、薄肉磁石の寸法比の説明における平均外径、
平均内径には、上記φ0 を用いればよく、平均肉厚に
は、(平均外径−平均内径)/2を用いればよい。
The outer diameter deviation and the inner diameter deviation of the cylindrical portion are obtained as follows. First, the outer diameter or inner diameter of the cylindrical part,
The maximum value and the minimum value are obtained by continuously measuring in the axial direction of the cylindrical portion. At this time, the measured values in the range of 0.1 mm at both axial ends of the cylindrical portion are excluded. Next, after rotating the cylindrical portion by 15 ° about its axis, the same measurement is performed.
In this way, the measurement is repeated 12 times in total in the circumferential direction of 180 ° at 15 ° intervals. The maximum of the 12 maximums is φmax, and the minimum of the 12 minimums is φmi.
Let n be the value of φmax-φmin. Next, the average value φ 0 of the average of 12 maximum values and the average of 12 minimum values is calculated, and φ
0 is the average outer diameter or the average inner diameter. And {(φma
x −φ min) / φ 0 } is the outer diameter deviation or the inner diameter deviation. The average outer diameter in the explanation of the dimension ratio of the thin magnet,
The above-mentioned φ 0 may be used for the average inner diameter, and (average outer diameter−average inner diameter) / 2 may be used for the average wall thickness.

【0069】なお、寸法偏差の測定には、光学式などの
非接触式の測定器を用いてもよく、接触式3次元測定器
や、マイクロメータ、内周マイクロメータなどの接触式
の測定器を用いてもよい。
A non-contact type measuring device such as an optical type may be used to measure the dimensional deviation, and a contact type three-dimensional measuring device or a contact type measuring device such as a micrometer or an inner circumference micrometer may be used. May be used.

【0070】[0070]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES The present invention will be described in more detail below by showing specific examples of the present invention.

【0071】<実施例1>表1に示す焼結磁石を、本発
明法、2合金法および通常の焼結法(表1には1合金法
と表示してある)により作製した。
<Example 1> The sintered magnets shown in Table 1 were produced by the method of the present invention, the two-alloy method and the ordinary sintering method (indicated as "one-alloy method" in Table 1).

【0072】本発明法 まず、主相用母合金のインゴットを、鋳造により製造し
た。インゴットの組成を表1に示す。なお、組成の残部
はFeである。これらの合金インゴットは、平均結晶粒
径約300μm であり、結晶粒の長軸/短軸の平均値
は、いずれも2.5以下であった。各合金インゴット
を、水素吸蔵・脱ガス反応による体積の膨張・収縮を利
用して粗粉砕した後、ディスクミルにより粉砕し、表1
に示す平均粒子径の粉末とした。粉末の平均粒子径は、
粉末の塗膜の光学顕微鏡写真から前述した方法により求
めた。粉末を構成する粒子の長軸/短軸の平均値は、い
ずれも2.5以下であった。
Method of the Present Invention First, an ingot of a master alloy for main phase was produced by casting. The composition of the ingot is shown in Table 1. The balance of the composition is Fe. These alloy ingots had an average crystal grain size of about 300 μm, and the average values of the major axis / minor axis of the crystal grains were 2.5 or less. Each alloy ingot was roughly crushed by utilizing the expansion / contraction of the volume due to hydrogen absorption / degassing reaction, and then crushed by a disc mill,
A powder having an average particle size shown in The average particle size of the powder is
It was determined from the optical micrograph of the powder coating by the method described above. The average value of the major axis / minor axis of the particles constituting the powder was 2.5 or less.

【0073】次に、合金溶湯をAr雰囲気中で単ロール
法により冷却し、表1に示す組成の粒界相用母合金を製
造した。なお、表1に示す組成の残部はFeである。冷
却ロールにはCuロールを用いた。粒界相用母合金は厚
さ0.15mmの薄帯状であり、X線回折の結果、アモル
ファス状態であることが確認された。各粒界相用母合金
を、スタンプミルを用いて2mm角以下に粉砕した。
Next, the molten alloy was cooled in an Ar atmosphere by the single roll method to produce a grain boundary phase master alloy having the composition shown in Table 1. The balance of the composition shown in Table 1 is Fe. A Cu roll was used as the cooling roll. The master alloy for grain boundary phase was in the form of a ribbon having a thickness of 0.15 mm, and as a result of X-ray diffraction, it was confirmed to be in an amorphous state. Each grain boundary phase master alloy was crushed into 2 mm square or less using a stamp mill.

【0074】次いで、主相用母合金粉末と粒界相用母合
金とをVミキサーにより混合し、混合物に10 kOeの磁
界を印加して主相用母合金粉末を着磁した。粒界相用母
合金の添加量(混合物中の粒界相用母合金の比率)を、
表1に示す。
Next, the main phase master alloy powder and the grain boundary phase master alloy were mixed by a V mixer, and a magnetic field of 10 kOe was applied to the mixture to magnetize the main phase master alloy powder. The addition amount of the grain boundary phase master alloy (ratio of the grain boundary phase master alloy in the mixture)
It shows in Table 1.

【0075】各混合物をそれぞれMoボートに入れ、真
空中において800℃で30分間の熱処理を施した。表
1に示す粒界相用母合金は、すべてが800℃までに溶
融した。
Each mixture was placed in a Mo boat and heat-treated at 800 ° C. for 30 minutes in vacuum. All of the grain boundary phase master alloys shown in Table 1 were melted up to 800 ° C.

【0076】熱処理後、粒界相用母合金がバインダとな
って結合された主相用母合金粉末を解砕し、約500μ
m 以下の粒子からなる解砕粉とした。
After the heat treatment, the main phase master alloy powder bonded with the grain boundary phase master alloy as a binder was crushed to about 500 μm.
A crushed powder composed of particles of m or less was used.

【0077】各解砕粉を磁場中で成形し、直径20mm、
厚さ1.5mmの円盤状成形体を得た。磁界強度は8 kOe
とし、磁化容易軸が成形体の厚さ方向となるように磁界
を印加した。成形圧力および成形体密度を、表1に示
す。
Each crushed powder was molded in a magnetic field and had a diameter of 20 mm,
A disk-shaped molded body having a thickness of 1.5 mm was obtained. Magnetic field strength is 8 kOe
The magnetic field was applied so that the axis of easy magnetization was in the thickness direction of the molded body. The molding pressure and the density of the molded body are shown in Table 1.

【0078】次いで、各成形体を真空中で焼結した後、
急冷した。焼結温度およびその温度に保持した時間を、
表1に示す。焼結後、Ar雰囲気中において650℃で
1時間時効処理を施して、円盤状の焼結磁石サンプルと
した。各焼結磁石サンプルの密度、焼結時の密度変化
量、残留磁束密度(Br)、保磁力(Hcj)を、表1
に示す。なお、BrおよびHcjの測定には、直径15
mm、厚さ10mmの成形体を焼結して作製した磁気特性測
定用サンプルを用いた。磁気特性測定用サンプルの製造
条件は、成形体寸法以外は表1に示す各サンプルとそれ
ぞれ同一とした。また、各サンプルの開空孔の合計容積
率および閉空孔の合計容積率を、前述した方法により算
出した。これらの算出に際しては、磁石の理論密度を
7.55g/cm3 とした。結果を表1に示す。
Next, after sintering each compact in a vacuum,
Quenched. The sintering temperature and the time kept at that temperature,
It shows in Table 1. After sintering, aging treatment was performed at 650 ° C. for 1 hour in Ar atmosphere to obtain a disc-shaped sintered magnet sample. Table 1 shows the density of each sintered magnet sample, the density change amount during sintering, the residual magnetic flux density (Br), and the coercive force (Hcj).
Shown in. For the measurement of Br and Hcj, diameter 15
A sample for measuring magnetic properties, which was produced by sintering a compact having a thickness of 10 mm and a thickness of 10 mm, was used. The manufacturing conditions of the samples for measuring magnetic properties were the same as those of the samples shown in Table 1 except for the size of the molded body. Further, the total volume ratio of open pores and the total volume ratio of closed pores of each sample were calculated by the method described above. In calculating these, the theoretical density of the magnet was 7.55 g / cm 3 . The results are shown in Table 1.

【0079】2合金法 粒界相用母合金は上記と同様にして製造し、これをピン
ミルにより粉末化し、フルイにより分級した。粒子径の
下限を規制する開きの小さいフルイ(残留フルイ)に
は、開きが38μm 以上のものを用い、粒子径の上限を
規制する開きの大きいフルイ(通過フルイ)には、開き
が355μm 以下のものを用いた。これらについても上
記と同様な測定を行なった。結果を表1に示す。
A two-alloy method grain boundary phase master alloy was produced in the same manner as described above, powdered with a pin mill, and classified with a sieve. For the sieve with a small aperture (residual sieve) that regulates the lower limit of the particle diameter, use a sieve with an aperture of 38 μm or more. I used one. The same measurement as above was performed for these. The results are shown in Table 1.

【0080】1合金法 粒界相用母合金を用いず、1種類の母合金だけを用いて
焼結磁石を作製した。これらについても上記と同様な測
定を行なった。結果を表1に示す。
1 Alloy Method A sintered magnet was produced using only one type of master alloy without using the grain boundary phase master alloy. The same measurement as above was performed for these. The results are shown in Table 1.

【0081】[0081]

【表1】 [Table 1]

【0082】表1に示される結果から、本発明の効果が
明らかである。
From the results shown in Table 1, the effect of the present invention is clear.

【0083】サンプルNo. 1〜3は、R含有量がほぼ同
じである。サンプルNo. 2とサンプルNo. 3とは、小径
の主相用母合金粉末を用いて比較的密度の低い成形体と
し、これを焼結して高密度の磁石としたものであるが、
1合金法によるサンプルNo.3に比べ、本発明によるサ
ンプルNo. 2では保磁力が著しく高くなっている。ま
た、大径の主相用母合金粉末を用いて比較的密度の高い
成形体とし、焼結の際の密度増加を抑えたサンプルNo.
1でも、保磁力がサンプルNo. 3よりも著しく高くなっ
ている。
Sample Nos. 1 to 3 have almost the same R content. Sample No. 2 and Sample No. 3 are formed into a compact having a relatively low density by using a mother alloy powder for a main phase having a small diameter, and are sintered to obtain a high density magnet.
Sample No. 2 according to the present invention has a significantly higher coercive force than Sample No. 3 according to the 1 alloy method. In addition, a sample No. that has a relatively high density compact using a large-diameter main phase master alloy powder and suppresses an increase in density during sintering.
Even with No. 1, the coercive force is significantly higher than that of Sample No. 3.

【0084】サンプルNo. 4と5とは、R含有量がほぼ
同じであるが、本発明によるサンプルNo. 4は、2合金
法によるサンプルNo. 5よりも保磁力が高い。しかも、
粒界相用母合金の使用量はサンプルNo. 4のほうが少な
く、残留磁束密度が高くなっている。
The sample Nos. 4 and 5 have almost the same R content, but the sample No. 4 according to the present invention has a higher coercive force than the sample No. 5 according to the two-alloy method. Moreover,
Sample No. 4 used less amount of the grain boundary phase master alloy, and the residual magnetic flux density was higher.

【0085】サンプルNo. 2以外の本発明によるサンプ
ルは低密度磁石であり、主相用母合金粉末として平均粒
子径の大きなものを用いて高密度成形体を作製し、これ
を焼結したものである。これらには閉空孔が多量に含ま
れており、焼結の際の収縮が少なかったことがわかる。
しかも、これらのサンプルでは開空孔量が少ないので、
耐食性が良好である。これに対し、1合金法によるサン
プルNo. 8は、同様に高密度成形体を焼結した低密度磁
石であり、全空孔量は本発明サンプルと同等であるが、
焼結時のRリッチ相の流動が不十分であったためか、開
空孔の比率が高くなってしまっており、保磁力も本発明
によるサンプルに比べ著しく低い。また、2合金法によ
るサンプルは、開空孔量は少ないが、保磁力が本発明に
よるサンプルよりも低い。
The samples according to the present invention other than the sample No. 2 are low-density magnets, and a high-density compact was prepared by using a master alloy powder for the main phase having a large average particle diameter, and sintered. Is. It can be seen that these contained a large amount of closed pores, and the shrinkage during sintering was small.
Moreover, since the amount of open pores is small in these samples,
Good corrosion resistance. On the other hand, Sample No. 8 by the 1-alloy method is a low-density magnet obtained by sintering a high-density compact in the same manner, and the total amount of holes is the same as that of the sample of the present invention.
The ratio of open pores is high, probably because the flow of the R-rich phase during sintering was insufficient, and the coercive force is significantly lower than that of the sample according to the present invention. Further, the sample by the two-alloy method has a small amount of open pores, but the coercive force is lower than that of the sample by the present invention.

【0086】サンプルNo. 9および10では、AlやC
uを含む粒界相用母合金を用いているため、高保磁力が
得られている。2合金法によるサンプルNo. 11でも、
粒界相用母合金がCuを含むために比較的高い保磁力が
得られているが、サンプルNo. 9および10よりも保磁
力が低く、しかも、Cuを含まない粒界相用母合金を用
いたサンプルNo. 6よりも保磁力が低い。
In sample Nos. 9 and 10, Al and C were used.
Since a grain boundary phase master alloy containing u is used, high coercive force is obtained. Even in sample No. 11 by the two-alloy method,
A relatively high coercive force is obtained because the grain boundary phase master alloy contains Cu, but a coercive force lower than that of Sample Nos. 9 and 10 and a grain boundary phase master alloy containing no Cu are obtained. Coercive force is lower than the sample No. 6 used.

【0087】次に、JIS1級定盤を用いて、前述した
方法により各サンプルの厚さ偏差を求めた。この結果、
サンプルNo. 2を除き、本発明によるサンプルでは、厚
さ偏差が0.9%以下と著しく小さく、焼結時の不均一
な収縮による反りが極めて少なかった。厚さ1.5mmの
薄肉磁石においてこのように厚さ偏差が小さければ、研
削加工による寸法修正をせずに製品化することが可能で
ある。しかも、表1に示されるように、本発明によるサ
ンプルでは十分な磁石特性が得られている。なお、厚さ
偏差の算出に際しては、平行部の最大長さとして磁石の
直径を用いた。
Next, using a JIS class 1 surface plate, the thickness deviation of each sample was determined by the method described above. As a result,
With the exception of Sample No. 2, the samples according to the present invention had a significantly small thickness deviation of 0.9% or less, and the warpage due to uneven shrinkage during sintering was extremely small. If the thickness deviation of the thin magnet having a thickness of 1.5 mm is small as described above, it is possible to commercialize the thin magnet without modifying the dimensions by grinding. Moreover, as shown in Table 1, the samples according to the present invention have obtained sufficient magnet characteristics. When calculating the thickness deviation, the diameter of the magnet was used as the maximum length of the parallel portion.

【0088】これに対し、サンプルNo. 3では、粒子径
の小さな母合金の粉末を用いて形成した低密度の成形体
を焼結したため、焼結が進みすぎて閉空孔が少なくなっ
ており、厚さ偏差が3%以上と大きく、焼結時の不均一
な収縮により大きな反りが発生していることがわかっ
た。厚さ偏差がこのように大きいと、製品化は不可能で
ある。
On the other hand, in sample No. 3, since the low-density compact formed by using the powder of the mother alloy having a small particle size was sintered, the sintering proceeded too much and the number of closed voids decreased. It was found that the thickness deviation was as large as 3% or more, and a large warp was generated due to uneven contraction during sintering. With such a large thickness deviation, commercialization is impossible.

【0089】なお、密度が5.5g/cm3 以上の成形体
は、0.45kgf/mm2 以上の十分に高い抗折強度を示し
た。
The molded product having a density of 5.5 g / cm 3 or more exhibited a sufficiently high bending strength of 0.45 kgf / mm 2 or more.

【0090】以上の実施例の結果から、本発明の効果が
明らかである。
From the results of the above examples, the effects of the present invention are clear.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/02 G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01F 41/02 G

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 R(Rは、Yを含む希土類元素の少なく
とも1種である)、T(Tは、Fe、またはFeおよび
Coである)およびBを含有する焼結磁石を製造する方
法であって、 実質的にR214Bから構成される相を有する主相用母
合金の粉末と、Rを70〜97重量%含み、残部が実質
的にFeおよび/またはCoである粒界相用母合金との
混合物に、粒界相用母合金が溶融するように熱処理を施
した後、解砕して成形し、焼結することを特徴とする焼
結磁石の製造方法。
1. A method for producing a sintered magnet containing R (R is at least one rare earth element including Y), T (T is Fe, or Fe and Co) and B. And a powder of the master alloy for the main phase having a phase substantially composed of R 2 T 14 B, and a grain boundary containing 70 to 97% by weight of R and the balance being substantially Fe and / or Co. A method for producing a sintered magnet, which comprises subjecting a mixture with a phase master alloy to a heat treatment so that the grain boundary phase master alloy is melted, then crushing, shaping and sintering.
【請求項2】 混合物中における粒界相用母合金の比率
を2〜15重量%とする請求項1の焼結磁石の製造方
法。
2. The method for producing a sintered magnet according to claim 1, wherein the proportion of the grain boundary phase master alloy in the mixture is 2 to 15% by weight.
【請求項3】 熱処理前に、主相用母合金の粉末を着磁
する請求項1または2の焼結磁石の製造方法。
3. The method for producing a sintered magnet according to claim 1, wherein the main phase master alloy powder is magnetized before the heat treatment.
【請求項4】 粒界相用母合金のRの50%以上をNd
が占める請求項1〜3のいずれかの焼結磁石の製造方
法。
4. 50% or more of R in the grain boundary phase master alloy is Nd
The method for manufacturing a sintered magnet according to claim 1, wherein
【請求項5】 粒界相用母合金を液体急冷法により製造
する請求項1〜4のいずれかの焼結磁石の製造方法。
5. The method for producing a sintered magnet according to claim 1, wherein the master alloy for grain boundary phase is produced by a liquid quenching method.
【請求項6】 主相用母合金の結晶粒の長軸/短軸の平
均値が3以下であるか、主相用母合金の粉末を構成する
粒子の長軸/短軸の平均値が3以下である請求項1〜5
のいずれかの焼結磁石の製造方法。
6. The major axis / minor axis average value of crystal grains of the main phase master alloy is 3 or less, or the major axis / minor axis average value of particles constituting the main phase master alloy powder is It is 3 or less, Claims 1-5
1. A method for manufacturing a sintered magnet according to any one of 1.
【請求項7】 主相用母合金の粉末の平均粒子径が20
μm 以上である請求項1〜6のいずれかの焼結磁石の製
造方法。
7. The average particle size of the main phase master alloy powder is 20.
The method for producing a sintered magnet according to any one of claims 1 to 6, wherein the sintered magnet has a diameter of at least μm.
【請求項8】 焼結温度が900〜1100℃である請
求項1〜7のいずれかの焼結磁石の製造方法。
8. The method for producing a sintered magnet according to claim 1, wherein the sintering temperature is 900 to 1100 ° C.
【請求項9】 真空中で焼結を行なう請求項1〜8のい
ずれかの焼結磁石の製造方法。
9. The method for producing a sintered magnet according to claim 1, wherein sintering is performed in a vacuum.
【請求項10】 密度5.5g/cm3 以上の成形体を、密
度変化が0.2g/cm3 以上となるように焼結する工程を
有する請求項1〜9のいずれかの焼結磁石の製造方法。
10. The sintered magnet according to claim 1, further comprising a step of sintering a molded body having a density of 5.5 g / cm 3 or more so that a change in density is 0.2 g / cm 3 or more. Manufacturing method.
【請求項11】 抗折強度が0.3kgf/mm2 以上である
成形体を焼結する請求項10の焼結磁石の製造方法。
11. The method for producing a sintered magnet according to claim 10, wherein a molded body having a bending strength of 0.3 kgf / mm 2 or more is sintered.
【請求項12】 8t/cm2 以上の圧力で成形を行なう請
求項10または11の焼結磁石の製造方法。
12. The method for producing a sintered magnet according to claim 10, wherein the molding is performed at a pressure of 8 t / cm 2 or more.
【請求項13】 請求項1〜12のいずれかの方法によ
り製造された焼結磁石であって、 閉空孔を2体積%以上含むことを特徴とする焼結磁石。
13. A sintered magnet manufactured by the method according to any one of claims 1 to 12, wherein the sintered magnet contains 2% by volume or more of closed pores.
【請求項14】 密度が7.2g/cm3 以下である請求項
13の焼結磁石。
14. The sintered magnet according to claim 13, which has a density of 7.2 g / cm 3 or less.
【請求項15】 開空孔の比率が2体積%以下である請
求項13または14の焼結磁石。
15. The sintered magnet according to claim 13, wherein the ratio of open pores is 2% by volume or less.
【請求項16】 Rを27〜40重量%、Bを0.5〜
4.5重量%含有し、残部が実質的にTである請求項1
3〜15のいずれかの焼結磁石。
16. R of 27 to 40% by weight and B of 0.5 to
4. The content of 4.5% by weight, the balance being substantially T.
The sintered magnet according to any one of 3 to 15.
JP6087861A 1993-12-27 1994-03-31 Sintered magnet, and its manufacture Withdrawn JPH07272914A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6087861A JPH07272914A (en) 1994-03-31 1994-03-31 Sintered magnet, and its manufacture
US08/364,756 US5641363A (en) 1993-12-27 1994-12-27 Sintered magnet and method for making
US08/824,008 US5834663A (en) 1993-12-27 1997-03-25 Sintered magnet and method for making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6087861A JPH07272914A (en) 1994-03-31 1994-03-31 Sintered magnet, and its manufacture

Publications (1)

Publication Number Publication Date
JPH07272914A true JPH07272914A (en) 1995-10-20

Family

ID=13926674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6087861A Withdrawn JPH07272914A (en) 1993-12-27 1994-03-31 Sintered magnet, and its manufacture

Country Status (1)

Country Link
JP (1) JPH07272914A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263242A (en) * 2008-08-04 2008-10-30 Inter Metallics Kk Method and apparatus for manufacturing magnetically anisotropic rare earth sintered magnet
JP2008294470A (en) * 2008-08-04 2008-12-04 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET
JP2008294469A (en) * 2008-08-04 2008-12-04 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET, AND MOLD FOR MANUFACTURING NdFeB-BASED SINTERED MAGNET
WO2010113371A1 (en) * 2009-03-31 2010-10-07 昭和電工株式会社 Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP2012049492A (en) * 2010-07-30 2012-03-08 Hitachi Metals Ltd Method for manufacturing rare earth permanent magnet
JPWO2011070827A1 (en) * 2009-12-09 2013-04-22 愛知製鋼株式会社 Rare earth anisotropic magnet and manufacturing method thereof
JP5472320B2 (en) * 2009-12-09 2014-04-16 愛知製鋼株式会社 Rare earth anisotropic magnet powder, method for producing the same, and bonded magnet
WO2015002280A1 (en) * 2013-07-03 2015-01-08 Tdk株式会社 R-t-b-based sintered magnet
WO2015020180A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b sintered magnet, and rotating machine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294470A (en) * 2008-08-04 2008-12-04 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET
JP2008294469A (en) * 2008-08-04 2008-12-04 Inter Metallics Kk METHOD OF MANUFACTURING NdFeB-BASED SINTERED MAGNET, AND MOLD FOR MANUFACTURING NdFeB-BASED SINTERED MAGNET
JP2008263242A (en) * 2008-08-04 2008-10-30 Inter Metallics Kk Method and apparatus for manufacturing magnetically anisotropic rare earth sintered magnet
WO2010113371A1 (en) * 2009-03-31 2010-10-07 昭和電工株式会社 Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP2011021269A (en) * 2009-03-31 2011-02-03 Showa Denko Kk Alloy material for r-t-b-based rare-earth permanent magnet, method for manufacturing r-t-b-based rare-earth permanent magnet, and motor
US9640319B2 (en) 2009-12-09 2017-05-02 Aichi Steel Corporation Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet
JPWO2011070827A1 (en) * 2009-12-09 2013-04-22 愛知製鋼株式会社 Rare earth anisotropic magnet and manufacturing method thereof
JP5472320B2 (en) * 2009-12-09 2014-04-16 愛知製鋼株式会社 Rare earth anisotropic magnet powder, method for producing the same, and bonded magnet
US10607755B2 (en) 2009-12-09 2020-03-31 Aichi Steel Corporation Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet
JP2012049492A (en) * 2010-07-30 2012-03-08 Hitachi Metals Ltd Method for manufacturing rare earth permanent magnet
WO2015002280A1 (en) * 2013-07-03 2015-01-08 Tdk株式会社 R-t-b-based sintered magnet
JPWO2015002280A1 (en) * 2013-07-03 2017-02-23 Tdk株式会社 R-T-B sintered magnet
US10096410B2 (en) 2013-07-03 2018-10-09 Tdk Corporation R-T-B based sintered magnet
JPWO2015020180A1 (en) * 2013-08-09 2017-03-02 Tdk株式会社 R-T-B system sintered magnet and rotating machine
CN105474333A (en) * 2013-08-09 2016-04-06 Tdk株式会社 R-T-B sintered magnet, and rotating machine
CN105474333B (en) * 2013-08-09 2018-01-02 Tdk株式会社 R T B system's sintered magnets and electric rotating machine
US10256015B2 (en) 2013-08-09 2019-04-09 Tdk Corporation R-t-b based sintered magnet and rotating machine
WO2015020180A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b sintered magnet, and rotating machine

Similar Documents

Publication Publication Date Title
US5641363A (en) Sintered magnet and method for making
EP1970916B1 (en) R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
US7431070B2 (en) Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
EP2899726B1 (en) R-fe-b rare earth sintered magnet
EP1780736B1 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
US5597425A (en) Rare earth cast alloy permanent magnets and methods of preparation
EP2128290A1 (en) R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
CN109585110B (en) Alloy for R-T-B sintered magnet and R-T-B sintered magnet
JP3405806B2 (en) Magnet and manufacturing method thereof
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
EP0195219B2 (en) Quenched permanent magnetic material
US11915861B2 (en) Method for manufacturing rare earth permanent magnet
JPH07272914A (en) Sintered magnet, and its manufacture
US6136099A (en) Rare earth-iron series permanent magnets and method of preparation
WO2003020993A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JPH07201545A (en) Sintered magnet and its manufacture thereof
US10991492B2 (en) R-T-B based permanent magnet
JPH07130522A (en) Manufacture of permanent magnet
JPH07201623A (en) Sintered magnet and its production
JPH07109504A (en) Production of raw powder for anisotropic bond magnet
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JPH07201622A (en) Sintered magnet and its production
JP2002083728A (en) Method of manufacturing rare earth permanent magnet
JPH06224016A (en) Manufacture of rare earth element permanent magnet
JPH07115010A (en) Manufacture of anisotropic bond magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605