JPH1081962A - Production of ge-te-sb target for sputtering - Google Patents

Production of ge-te-sb target for sputtering

Info

Publication number
JPH1081962A
JPH1081962A JP23672796A JP23672796A JPH1081962A JP H1081962 A JPH1081962 A JP H1081962A JP 23672796 A JP23672796 A JP 23672796A JP 23672796 A JP23672796 A JP 23672796A JP H1081962 A JPH1081962 A JP H1081962A
Authority
JP
Japan
Prior art keywords
powder
particle size
sputtering
single phase
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23672796A
Other languages
Japanese (ja)
Inventor
Jiro Nakanishi
次郎 中西
Yuji Takatsuka
裕二 高塚
Toshio Morimoto
敏夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23672796A priority Critical patent/JPH1081962A/en
Publication of JPH1081962A publication Critical patent/JPH1081962A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a Ge-Te-Sb sputtering target for forming thin coating small in abnormal discharge and having a uniform compositional distribution at a low cost by mixing the powder of Ge, Te and Sb having specified particle size at prescribed ratios, filling this powdery mixture into a die and executing sintering at a specified temp. SOLUTION: Ge powder having 1 to 20μm average particle size and Te and Sb powder having 10 to 200μm average particle size are uniformly mixed at prescribed ratios to form into raw material powder. This powdery mixture is filled into a die of graphite and is subjected to pressure sintering at a temp. in which liq. phases are not formed till Ge single phases having the high m.p. are not brought into reaction with Te and Sb as the other elements. The obtd. compacted body is machined and is thereafter fitted to a backing plate. The Ge-Te-Sb series sputtering target forming thin coating free from abnormal discharge and having a uniform compsn. at the time of forming a thin coating layer of a phase changing type disk recording medium by sputtering is produced at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば相変化型
光ディスク記録媒体の薄膜層のスパッタリングに用いら
れるGe−Te−Sb系スパッタリング用ターゲット材
の、低コストな製造方法に関し、特に得られるターゲッ
ト材のスパッタリング時の異常放電が少なく、これを用
いて得られる薄膜の組成分布が均一となるスパッタリン
グ用ターゲット材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-cost manufacturing method of a Ge-Te-Sb-based sputtering target material used for sputtering a thin film layer of a phase-change optical disk recording medium, and particularly to a target material obtained. The present invention relates to a method for producing a sputtering target material in which abnormal discharge during sputtering is small and the composition distribution of a thin film obtained using the same is uniform.

【0002】[0002]

【従来の技術】Teを含む合金は、相変化型光ディスク
の記録媒体薄膜層に好適な素材として実用化されてい
る。この薄膜層は一般にスパッタリング法により製造さ
れている。スパッタリング法に用いられるターゲット
は、円形または角形板状のTe等を含む合金などのター
ゲット材と、それにろう付けされた冷却板(バッキング
プレート)からなる。
2. Description of the Related Art An alloy containing Te has been put to practical use as a material suitable for a recording medium thin film layer of a phase-change optical disk. This thin film layer is generally manufactured by a sputtering method. The target used in the sputtering method includes a circular or square plate-shaped target material such as an alloy containing Te or the like, and a cooling plate (backing plate) brazed thereto.

【0003】従来ターゲット材は、一般的には次のよう
な粉末焼結法により作られていた。まず、減圧雰囲気ま
たは不活性ガス雰囲気中でターゲット材の原料を加熱溶
融し、冷却して合金鋳塊を得る。次に、この合金鋳塊を
粉砕して合金粉末とし、これを黒鉛型に入れて、不活性
ガス中あるいは減圧中で加圧焼結や冷間静水圧プレスに
よって成形体が製造する。
Conventionally, target materials have generally been produced by the following powder sintering method. First, the raw material of the target material is heated and melted in a reduced pressure atmosphere or an inert gas atmosphere, and cooled to obtain an alloy ingot. Next, the alloy ingot is pulverized into an alloy powder, put into a graphite mold, and a compact is manufactured by pressure sintering or cold isostatic pressing in an inert gas or under reduced pressure.

【0004】この成形体をXRDで測定すると、原料に
用いた元素の単相のピークは観察されず、3元系の合金
相のピークが認められる。Te−Ge−Sb系合金の場
合、合金粉末焼結法によって得られた成形体の組織に
は、特定の元素の単相が見られず、2元化合物の混相あ
るいは3元化合物の単相となることがEPMAで確認さ
れる。このように合金粉末を用いたターゲット材の作製
方法を、以下「合金粉末焼結法」という。
When this compact is measured by XRD, a single phase peak of the element used as a raw material is not observed, but a ternary alloy phase peak is recognized. In the case of a Te—Ge—Sb alloy, the structure of the compact obtained by the alloy powder sintering method does not include a single phase of a specific element, and a mixed phase of a binary compound or a single phase of a ternary compound. Is confirmed by EPMA. Such a method of manufacturing a target material using an alloy powder is hereinafter referred to as an “alloy powder sintering method”.

【0005】また、合金粉末を用いない場合は、ターゲ
ット材の各原料をそれぞれ粉砕し、混合して均一な混合
物とした後、この混合物を加圧焼結により非合金状態の
成形体とする。例えば、特開平3−180468号公報
等である。この成形体をXRDで測定すると、原料とし
た元素の単相のピークが観察される。このように、ター
ゲットを構成する単体元素の混合粉末を用いたターゲッ
ト材の作製方法を、以下「混合粉末焼結法」という。
[0005] When no alloy powder is used, each raw material of the target material is ground and mixed to form a uniform mixture, and this mixture is subjected to pressure sintering to form a non-alloy compact. For example, Japanese Unexamined Patent Publication No. 3-180468 and the like. When this compact is measured by XRD, a single-phase peak of the element used as a raw material is observed. Such a method of manufacturing a target material using the mixed powder of the single elements constituting the target is hereinafter referred to as “mixed powder sintering method”.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記合金粉末
焼結法や混合粉末焼結法は、それぞれ以下に述べる欠点
があった。
However, the above-mentioned alloy powder sintering method and mixed powder sintering method have the following disadvantages.

【0007】合金粉末焼結法の場合、TeあるいはTe
を含む合金は酸素を吸着しやすいため、Teを含む合金
粉末の酸素量は原料インゴットの酸素量に比べて著しく
増大する。そのような合金粉末を用いて成形体を作製す
るため、得られる成形体は多量の酸素を含み、その成形
体を用いたターゲットでスパッタリングを行うと、スパ
ッタリング中にターゲット材が割れたり、異常放電が多
く発生してしまう。また、溶解鋳造の工程はターゲット
の製造コストを増加させてしまう。
In the case of the alloy powder sintering method, Te or Te
Since the alloy containing Ti easily adsorbs oxygen, the oxygen content of the alloy powder containing Te is significantly increased as compared with the oxygen content of the raw material ingot. Since a compact is produced using such an alloy powder, the resulting compact contains a large amount of oxygen.If sputtering is performed with a target using the compact, the target material may crack during sputtering or abnormal discharge may occur. Often occur. Further, the melting and casting process increases the production cost of the target.

【0008】混合粉末焼結法の場合、混合粉末焼結法で
得られる成形体の組織中には、先述のように各元素の単
相が存在する。スパッタリングレートの小さい元素と大
きい元素が混在することになるため、スパッタリングレ
ートの小さい元素がターゲット中に残留したり、得られ
た薄膜の組成分布がばらつく等の問題が生じる。
In the case of the mixed powder sintering method, a single phase of each element exists in the structure of the compact obtained by the mixed powder sintering method as described above. Since an element having a small sputtering rate and an element having a large sputtering rate are mixed, there arise problems such as an element having a small sputtering rate remaining in the target and a variation in the composition distribution of the obtained thin film.

【0009】この発明は上記事情に鑑みてなされたもの
で、元素の単相がない組織(以下、「合金相組織」とい
う)をもち、かつ、加圧焼結中に吸着酸素の脱離あるい
は還元が行われるため酸素量の少ない成形体を、溶解鋳
造を経ずにすむ方法であって、低酸素量で均一な合金相
の組織をもつTe−Ge−Sb系合金のターゲット材
を、低コストに製造できる方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and has a structure in which there is no single phase of an element (hereinafter, referred to as "alloy phase structure"). This is a method in which a compact having a small amount of oxygen can be reduced without performing melting casting because the reduction is performed, and a target material of a Te—Ge—Sb alloy having a uniform alloy phase structure with a low oxygen amount can be used. It is an object to provide a method that can be manufactured at low cost.

【0010】[0010]

【課題を解決するための手段】本発明のGe−Te−S
b系スパッタリング用ターゲット材の製造方法は、平均
粒径1〜20μmのGe粉末と、平均粒径10〜200
μmのTe粉末と、平均粒径10〜200μmのSbと
を所定の割合に均一に混合し、この混合粉末を型に充填
して液相が生じるより低い温度でGeが他の元素と反応
してGeの単相がなくなるまで加圧焼結を行うことを特
徴とする。
SUMMARY OF THE INVENTION The Ge-Te-S of the present invention.
The method for producing the b-type sputtering target material includes a Ge powder having an average particle size of 1 to 20 μm and an average particle size of 10 to 200 μm.
μm Te powder and Sb having an average particle size of 10 to 200 μm are uniformly mixed at a predetermined ratio, and this mixed powder is filled in a mold, and Ge reacts with other elements at a lower temperature than a liquid phase is formed. Pressure sintering until the single phase of Ge disappears.

【0011】[0011]

【発明の実施の形態】本発明法は、ターゲット材を構成
する元素のなかで融点の高いGeの粉末を1〜20μm
に調整して、その他のTeおよびSbの原料粉末を10
〜200μmに調整した後に、それら全ての粉末を均一
に混合して原料粉末とする。この原料粉末を黒鉛型に充
填し、液相が生じる温度より低い、好ましくは直下の温
度で、高融点のGeの単相が他の元素と反応してなくな
るまで加圧焼結を行って、得られた成形体を機械加工す
るものである。ターゲット材はバッキングプレートにボ
ンディングされ、スパッタリングに供される。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention is intended to reduce the melting point of Ge powder having a high melting point from 1 to 20 μm among the elements constituting the target material.
And the other raw material powders of Te and Sb were adjusted to 10
After adjusting the thickness to 200 μm, all the powders are uniformly mixed to obtain a raw material powder. This raw material powder is filled in a graphite mold, and pressure sintering is performed at a temperature lower than the temperature at which the liquid phase is generated, preferably directly below, until the single phase of high melting point Ge does not react with other elements, The obtained molded body is machined. The target material is bonded to a backing plate and provided for sputtering.

【0012】ここで、Geの粒径を1〜10μmとした
のは、粒径1μm未満の粉末は体積に対する表面積の割
合が大きいため、表面酸化によって粉末の酸素量が大き
くなってしまうためであり、粒径10μmを超える粉末
は、加圧焼結してもGeが他の元素と完全に反応しきら
ずに単体Ge相として成形体の組織に残留してしまう可
能性があるからである。
Here, the reason why the particle diameter of Ge is set to 1 to 10 μm is that powder having a particle diameter of less than 1 μm has a large ratio of surface area to volume, so that the amount of oxygen in the powder increases due to surface oxidation. This is because, even if powder having a particle size of more than 10 μm is used, Ge may not completely react with other elements even after pressure sintering, and may remain in the structure of the compact as a single Ge phase.

【0013】また、TeおよびSbの粒径を10〜20
0μmとしたのは、粒径10μm未満の粉末は体積に対
する表面積の割合が大きいため、表面酸化によって粉末
の酸素量が大きくなってしまうためであり、粒径200
μmを超える粉末を使用すると成形体の密度が高まりに
くいためである。
Further, the particle diameters of Te and Sb are set to 10-20.
The reason for setting the particle size to 0 μm is that the powder having a particle size of less than 10 μm has a large surface area to volume ratio, so that the amount of oxygen in the powder increases due to surface oxidation.
This is because the use of a powder having a size of more than μm makes it difficult to increase the density of the compact.

【0014】さらに、加圧焼結の温度を液相が生じる温
度より低い温度としたのは液相焼結させないためであ
り、直下の温度とすることで反応をできるだけ短時間に
進行できる。
Further, the pressure sintering is performed at a temperature lower than the temperature at which a liquid phase is formed, in order not to perform liquid phase sintering. By setting the temperature directly below the temperature, the reaction can proceed in as short a time as possible.

【0015】[0015]

【実施例】以下、この発明の実施例について説明する。 (実施例) Te−Ge−Sbターゲットを次のように
製造した。まず、原料のTe、Sbの各インゴットをエ
タノール中でカップミルを用いて1分間粉砕し、篩にか
けて粒径10〜200μmの原料粉末とした。また、原
料のGeインゴットをカップミルを用いて10分間粉砕
し、篩にかけて1〜20μmの原料粉末とした。次にこ
れらの各原料粉末を秤量し、Vブレンダーによって均一
に混合した。この混合粉末を黒鉛型に充填し、プレス圧
200kgf/cm2、最高焼結温度370℃で4時
間、Ar雰囲気で加圧焼結を行った。得られた成形体の
酸素量は800ppmであった。
Embodiments of the present invention will be described below. (Example) A Te-Ge-Sb target was manufactured as follows. First, each of the raw material Te and Sb ingots was ground in ethanol using a cup mill for 1 minute, and sieved to obtain raw material powder having a particle size of 10 to 200 μm. The raw material Ge ingot was pulverized for 10 minutes using a cup mill and sieved to obtain a raw material powder of 1 to 20 μm. Next, these raw material powders were weighed and uniformly mixed by a V blender. This mixed powder was filled in a graphite mold, and was subjected to pressure sintering in an Ar atmosphere at a pressing pressure of 200 kgf / cm 2 and a maximum sintering temperature of 370 ° C. for 4 hours. The obtained molded body had an oxygen content of 800 ppm.

【0016】この成形体の組織をEPMAで観察したと
ころ、組織はGe−Te系、Sb−Te系、及び、Ge
−Sb−Te系の化合物であり、Ge単相、Sb単相、
あるいはTe単相は存在しなかった。また、成形体をX
RDで測定したところ、Ge単相、Sb単相、あるいは
Te単相のピークは見られなかった。これらより、元素
間の反応が進行して、2元系、3元系の化合物が生成し
て単相が消滅したことがわかる。
Observation of the structure of this compact by EPMA revealed that the structure was Ge-Te, Sb-Te, and Ge.
-Sb-Te type compound, Ge single phase, Sb single phase,
Alternatively, there was no Te single phase. Also, the molded body is represented by X
When measured by RD, no peak of the Ge single phase, Sb single phase, or Te single phase was observed. From these, it can be seen that the reaction between the elements progressed to generate a binary or ternary compound, and the single phase disappeared.

【0017】この成形体を用いてスパッタリング評価を
行ったところ、スパッタリング中に異常放電はほとんど
発生せず、得られた薄膜の組成の分布は均一で良好であ
った。
When a sputtering evaluation was performed using this molded body, almost no abnormal discharge occurred during the sputtering, and the composition distribution of the obtained thin film was uniform and favorable.

【0018】(比較例1) Te−Ge−Sbターゲッ
トを合金粉末焼結法で製造した。原料となるTe、G
e、Sbの各インゴットを秤量し、Ar雰囲気中で80
0℃まで加熱し、溶融した後に鋳造し、Te−Ge−S
b系合金とした。
Comparative Example 1 A Te—Ge—Sb target was manufactured by an alloy powder sintering method. Te, G as raw materials
e, each ingot of Sb was weighed, and 80
Heated to 0 ° C and cast after melting, Te-Ge-S
A b-based alloy was used.

【0019】次にその合金をエタノール中でカップミル
を用いて粉砕し、篩にかけて1〜200μmの原料粉末
とした。次にこの原料粉末を黒鉛型に充填し、プレス圧
300kgf/cm2、最高焼結温度500℃で4時
間、Ar雰囲気で加圧焼結を行った。得られた成形体の
酸素量は3500ppmと多かった。
Next, the alloy was pulverized in ethanol using a cup mill and sieved to obtain a raw material powder of 1 to 200 μm. Next, this raw material powder was filled in a graphite mold, and pressure sintering was performed at a pressing pressure of 300 kgf / cm 2 and a maximum sintering temperature of 500 ° C. for 4 hours in an Ar atmosphere. The oxygen content of the obtained molded body was as large as 3500 ppm.

【0020】この成形体の組織をEPMAで観察したと
ころ、組織はGe−Sb−Te系の化合物であり、Ge
単相、Sb単相、あるいはTe単相は見られなかった。
また、成形体をXRDで測定したところ、Ge単相、S
b単相、あるいはTe単相のピークは見られなかった。
When the structure of this molded product was observed by EPMA, the structure was a Ge—Sb—Te-based compound.
No single phase, Sb single phase, or Te single phase was observed.
Further, when the molded body was measured by XRD, it was confirmed that the Ge single phase, S
No peak of b single phase or Te single phase was observed.

【0021】この成形体を用いてスパッタリング評価を
行ったところ、スパッタリング中に異常放電が多く発生
した。得られた薄膜の組成分布は均一で良好であった。
When a sputtering evaluation was performed using this compact, a large amount of abnormal discharge occurred during the sputtering. The composition distribution of the obtained thin film was uniform and good.

【0022】(比較例2) Te−Ge−Sbターゲッ
トを混合粉末焼結法で製造した。まず、原料のTe、G
e、Sbの各インゴットをエタノール中でカップミルを
用いて1分間粉砕し、篩にかけて、粒径10〜200μ
mの原料粉末とした。次にこれらの各原料粉末を秤量
し、均一に混合した。この混合粉末を黒鉛型に充填し、
プレス圧200kgf/cm2、最高焼結温度300℃
で4時間、Ar雰囲気で加圧焼結を行った。得られた成
形体の酸素量は800ppmであった。
Comparative Example 2 A Te—Ge—Sb target was manufactured by a mixed powder sintering method. First, the raw materials Te and G
e, each ingot of Sb was crushed in ethanol for 1 minute using a cup mill, and sieved to a particle size of 10 to 200 μm.
m of the raw material powder. Next, each of these raw material powders was weighed and uniformly mixed. This mixed powder is filled in a graphite mold,
Pressing pressure 200kgf / cm 2 , maximum sintering temperature 300 ° C
For 4 hours in an Ar atmosphere. The obtained molded body had an oxygen content of 800 ppm.

【0023】この成形体の組織をEPMAで観察したと
ころ、組織はGe−Te系、Sb−Te系、及び、Ge
−Sb−Te系の化合物相と、Ge単相、Sb単相、及
び、Te単相の混合相であった。また、成形体をXRD
で測定したところ、Ge単相、Sb単相、及び、Te単
相のピークが観測された。
When the structure of this compact was observed by EPMA, the structure was Ge-Te, Sb-Te, and Ge.
The mixed phase was a -Sb-Te-based compound phase, a Ge single phase, a Sb single phase, and a Te single phase. In addition, XRD
As a result, peaks of a single phase of Ge, a single phase of Sb, and a single phase of Te were observed.

【0024】この成形体を用いてスパッタリング評価を
行ったところ、スパッタリング中の異常放電はほとんど
発生しなかったものの、得られた薄膜の組成の分布がば
らついた。
When the evaluation of sputtering was performed using this molded product, the distribution of the composition of the obtained thin film varied, although almost no abnormal discharge occurred during sputtering.

【0025】[0025]

【発明の効果】本発明によって、合金相組織をもち、か
つ、加圧焼結中に吸着酸素の脱離あるいは還元が行われ
るため酸素量の少ないGe−Te−Sb系スパッタリン
グ用ターゲット材を低コストに製造でき、これを用いて
スパッタリングすると、異常放電が少なく、得られる薄
膜の組成の分布が均一となる。
According to the present invention, a Ge—Te—Sb based sputtering target material having an alloy phase structure and having a small amount of oxygen due to the elimination or reduction of adsorbed oxygen during pressure sintering can be reduced. It can be manufactured at low cost, and when it is sputtered using this, abnormal discharge is reduced and the composition distribution of the obtained thin film becomes uniform.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径1〜20μmのGe粉末と、平
均粒径10〜200μmのTe粉末と、平均粒径10〜
200μmのSbとを所定の割合に均一に混合し、この
混合粉末を型に充填して液相が生じるより低い温度でG
eが他の元素と反応してGeの単相がなくなるまで加圧
焼結を行うことを特徴とするGe−Te−Sb系スパッ
タリング用ターゲット材の製造方法。
1. A Ge powder having an average particle size of 1 to 20 μm, a Te powder having an average particle size of 10 to 200 μm,
200 μm of Sb is uniformly mixed in a predetermined ratio, and this mixed powder is filled in a mold and Gb is mixed at a lower temperature at which a liquid phase is formed.
A method for producing a Ge-Te-Sb-based sputtering target material, wherein pressure sintering is performed until e reacts with another element to eliminate a single phase of Ge.
JP23672796A 1996-09-06 1996-09-06 Production of ge-te-sb target for sputtering Pending JPH1081962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23672796A JPH1081962A (en) 1996-09-06 1996-09-06 Production of ge-te-sb target for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23672796A JPH1081962A (en) 1996-09-06 1996-09-06 Production of ge-te-sb target for sputtering

Publications (1)

Publication Number Publication Date
JPH1081962A true JPH1081962A (en) 1998-03-31

Family

ID=17004898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23672796A Pending JPH1081962A (en) 1996-09-06 1996-09-06 Production of ge-te-sb target for sputtering

Country Status (1)

Country Link
JP (1) JPH1081962A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044260A1 (en) * 2002-11-12 2004-05-27 Nikko Materials Co., Ltd. Sputtering target and powder for production thereof
WO2006059429A1 (en) 2004-11-30 2006-06-08 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTERED SPATTERING TARGET
WO2006077692A1 (en) 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
KR100621070B1 (en) 2004-10-19 2006-09-19 한양대학교 산학협력단 A method of synthesizing a phase-change type materials with a stoichiometric composition
WO2008044626A1 (en) 2006-10-13 2008-04-17 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTER SPUTTERING TARGET
WO2009034775A1 (en) 2007-09-13 2009-03-19 Nippon Mining & Metals Co., Ltd. Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
EP2264216A2 (en) 2004-12-24 2010-12-22 Nippon Mining & Metals Co., Ltd. Process for manufacturing an Sb-Te alloy sintered compact target
JP2012009128A (en) * 2002-02-25 2012-01-12 Jx Nippon Mining & Metals Corp Sputtering target for phase change-type memory, film for phase change memory formed by using the target, and method for manufacturing the target
KR20140097415A (en) 2010-04-26 2014-08-06 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sb-te based alloy sintered compact sputtering target
JP2017025349A (en) * 2015-07-15 2017-02-02 三菱マテリアル株式会社 Te-Ge-BASED SPUTTERING TARGET, AND MANUFACTURING METHOD OF Te-Ge-BASED SPUTTERING TARGET

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009128A (en) * 2002-02-25 2012-01-12 Jx Nippon Mining & Metals Corp Sputtering target for phase change-type memory, film for phase change memory formed by using the target, and method for manufacturing the target
WO2004044260A1 (en) * 2002-11-12 2004-05-27 Nikko Materials Co., Ltd. Sputtering target and powder for production thereof
KR100621070B1 (en) 2004-10-19 2006-09-19 한양대학교 산학협력단 A method of synthesizing a phase-change type materials with a stoichiometric composition
WO2006059429A1 (en) 2004-11-30 2006-06-08 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTERED SPATTERING TARGET
EP2264216A2 (en) 2004-12-24 2010-12-22 Nippon Mining & Metals Co., Ltd. Process for manufacturing an Sb-Te alloy sintered compact target
WO2006077692A1 (en) 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
EP1840240A1 (en) * 2005-01-18 2007-10-03 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
EP1840240A4 (en) * 2005-01-18 2008-07-09 Nippon Mining Co Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
JPWO2008044626A1 (en) * 2006-10-13 2010-02-12 日鉱金属株式会社 Sb-Te based alloy sintered compact sputtering target
WO2008044626A1 (en) 2006-10-13 2008-04-17 Nippon Mining & Metals Co., Ltd. Sb-Te BASE ALLOY SINTER SPUTTERING TARGET
US8882975B2 (en) 2006-10-13 2014-11-11 Jx Nippon Mining & Metals Corporation Sb-Te base alloy sinter sputtering target
WO2009034775A1 (en) 2007-09-13 2009-03-19 Nippon Mining & Metals Co., Ltd. Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
KR20140097415A (en) 2010-04-26 2014-08-06 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sb-te based alloy sintered compact sputtering target
KR20170020541A (en) 2010-04-26 2017-02-22 제이엑스금속주식회사 Sb-te based alloy sintered compact sputtering target
US11846015B2 (en) 2010-04-26 2023-12-19 Jx Metals Corporation Sb—Te-based alloy sintered compact sputtering target
JP2017025349A (en) * 2015-07-15 2017-02-02 三菱マテリアル株式会社 Te-Ge-BASED SPUTTERING TARGET, AND MANUFACTURING METHOD OF Te-Ge-BASED SPUTTERING TARGET

Similar Documents

Publication Publication Date Title
JP4405610B2 (en) Manufacturing method of sputtering target
KR100755724B1 (en) Manufacturing of high density intermetallic sputter targets
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
JPH1081962A (en) Production of ge-te-sb target for sputtering
JP3703648B2 (en) Method for producing Ge-Sb-Te based sputtering target material
JP2001098366A (en) METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL
JPS61139637A (en) Target for sputter and its manufacture
JP2004520481A (en) Physical vapor deposition target and formation method
JP3984849B2 (en) Ge-Bi alloy target for sputtering and method for producing the same
JPH0119447B2 (en)
JP4900992B2 (en) Sputtering target and Ge layer, Ge compound layer, Ge alloy layer and optical disk, electric / electronic component, magnetic component using the sputtering target
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JP3721557B2 (en) Thermoelectric material manufacturing method
JPH05247642A (en) Target member and manufacture therefor
JPH0119448B2 (en)
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JPH0254760A (en) Manufacture of target
US5193605A (en) Techniques for preparation of ingot metallurgical discontinuous composites
JP2001342505A (en) Low melting point target material and its production method
JPH05320896A (en) Alloy target for sputtering and its production
JP2789397B2 (en) High-purity target for producing optical recording film and method for producing the same
JP2725331B2 (en) Target material manufacturing method
JPH0372153B2 (en)
JP2909108B2 (en) Target member and method of manufacturing the same
JPS6328987B2 (en)