JP3997527B2 - Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium - Google Patents

Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium Download PDF

Info

Publication number
JP3997527B2
JP3997527B2 JP2003093647A JP2003093647A JP3997527B2 JP 3997527 B2 JP3997527 B2 JP 3997527B2 JP 2003093647 A JP2003093647 A JP 2003093647A JP 2003093647 A JP2003093647 A JP 2003093647A JP 3997527 B2 JP3997527 B2 JP 3997527B2
Authority
JP
Japan
Prior art keywords
intermetallic compound
target
compound target
film
ordered lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003093647A
Other languages
Japanese (ja)
Other versions
JP2003328118A (en
Inventor
友典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003093647A priority Critical patent/JP3997527B2/en
Publication of JP2003328118A publication Critical patent/JP2003328118A/en
Application granted granted Critical
Publication of JP3997527B2 publication Critical patent/JP3997527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として磁気ディスク装置用などの磁気記録媒体の下地層を形成するために用いられるB2規則格子からなるRu−Al金属間化合物ターゲットの製造方法、Ru−Al金属間化合物ターゲットおよび磁気記録媒体に関するものである。
【0002】
【従来の技術】
従来Co系磁性層は、高密度な磁気記録が可能なように発展してきた。一般に磁性層をエピタキシャル成長させるために、磁性層の下に下地層が形成される。この下地層に対しては、磁性層を健全なエピタキシャル成長させるために、格子定数、結晶配向性、結晶粒度および膜の均一性の改良が行われている。たとえば、従来の下地層としては、Co系磁性層との格子定数の整合性から、純CrおよびCr合金が主流である。
【0003】
最近、B2規則格子金属間化合物の下地膜が提案されている(例えば、特許文献1参照)。上述した特許文献1には、B2規則格子金属間化合物を、Cr下地の代わりに直接磁性膜を形成する下地膜として使用すること、および純Crの下地膜のさらに下地になる膜として使用することが提案されている。特に、純Crのさらに下地となる膜として使用すると、Cr膜の結晶粒をより微細とすることができ、高保磁力の磁気記録媒体が得られることが報告されている。
【0004】
【特許文献1】
欧州特許出願公開第0704839号明細書
【0005】
【発明が解決しようとする課題】
本発明者が上述のB2規則格子金属間化合物の下地層を検討したところ、格子定数がCo系磁性層と近いこと、結晶配向性および膜の微細均一性でCo系磁気記録媒体の下地層に適していることを確認した。このB2規則格子金属間化合物の下地層を作製する方法としては、上述した文献等に記載されるようにRFスパッタリング法などが使用できる。スパッタリング法においては、膜組成の供給源となるターゲットが必要となる。
【0006】
本発明者はB2規則格子金属間化合物の均一な膜を形成するための化合物ターゲットを作製することを検討した。そして、B2規則格子金属間化合物からなるターゲットを溶解法で作製したところ抗折力が低く加工中に破断するといった問題が発生した。B2規則格子金属間化合物の鋳造ターゲットは、ある程度微細なチル晶、粗大でかつ冷却方向に依存する柱状晶、そしてある程度微細な等軸晶が形成され粒径が大きくばらついてしまうことを確認した。結晶粒のばらつきは、パーティクルの発生の原因になるばかりでなく、成膜した時の薄膜の膜厚がばらつく原因になる。こうなると下地膜としてその上面に形成する薄膜をエピタキシャル成長させにくくなり、結果として磁気記録特性を劣化する原因となる。
本発明の目的は、B2規則格子であるRu−Al金属間化合物からなる高抗折力の金属間化合物ターゲットの製造方法、その製造方法によって作製されるターゲットと磁気記録媒体を提供することである。
【0007】
【課題を解決するための手段】
本発明者は、B2規則格子金属間化合物ターゲットの抗折力はターゲットのミクロ組織に大きく依存することを見いだした。そして、鋳造ターゲットで確認された結晶粒の大きなばらつきを防止しする手段として焼結ターゲットとすることが必要であることを見いだした。さらに、この金属間化合物ターゲットとしては、予め反応焼結法によりB2規則格子からなる金属間化合物粉末に調整し、これを焼結したターゲットが、高抗折力を確保できることを見いだし、本発明に到達した。
【0008】
すなわち本発明は、金属Ru粉末と金属Al粉末とを反応焼結法により、実質的にB2規則格子からなるRu−Al金属間化合物とし、次いで該金属間化合物を粉砕したRu−Al金属間化合物粉末を焼結するRu−Al金属間化合物ターゲットの製造方法である。
【0009】
また、本発明は、上記の製造方法で作製した実質的にB2規則格子からなるRu−Al金属間化合物粉末の焼結体でなるRu−Al金属間化合物ターゲットである。上記ターゲットは、相対密度を99%以上であることが好ましい。さらに、平均結晶粒径を200μm以下であることが望ましい。また、上述した条件を満たすことにより、従来にない抗折力を250MPa以上のターゲットを得ることができる。また、ターゲット中の酸素量は6000ppm以下が好ましい。
【0010】
また、本発明は、上述したRu−Al金属間化合物ターゲットで成膜した実質的にB2規則格子からなるRu−Al金属間化合物膜を、Co系磁性膜と非磁性基板の間に形成する下地膜の少なくとも1層とする磁気記録媒体である。
【0011】
【発明の実施の形態】
本発明においては、B2規則格子金属間化合物ターゲットを、反応焼結法を用いて作製した粉末を使用して焼結法で得たことが重要な特徴である。特にRu−AlのB2規則格子金属間化合物は、融点が2000℃を超えるため、焼結用原料粉末作製方法として、溶解法で製造したインゴットを粉砕して焼結原料粉末とする方法は、溶解工程においてスカル溶解等によって炉材との反応を避ける必要があり高価なものとなり、さらに、密度の高いインゴット粉砕するには時間がかかるとともに、不純物が混入する原因となるという問題もある。また、アトマイズ法により焼結原料を作製する方法は、融点が高いために溶湯の温度低下によるノズルの目詰まりやノズルとの反応といった問題がある。
【0012】
そのため、本発明では、溶解工程を必要としない反応焼結法により金属間化合物としたものを粉砕して焼結原料粉末とする。この方法は、例えば、減圧雰囲気もしくは不活性ガス雰囲気のチャンバー内で、Ru粉末とAl粉末の混合粉末をアーク、火花、電流等で着火、あるいはチャンバー内を温度上昇させることにより、混合粉末の反応を誘発することで、RuとAlの化合時の自己発熱を利用して反応焼結させるものである。Ru−Al系の反応焼結法は、自己発熱を利用できるため、高融点でありながら特殊な溶解設備を必要とせず、容易に目的とする組成系の金属間化合物の作製ができるという点で優れた方法である。また、反応焼結法により作製したRu−AlからなるB2規則格子金属間化合物は、隙間の多い多孔質焼結体であるため、粉砕が容易であるという利点もある。本発明のターゲットは、上述した方法で得られた金属間化合物を粉砕して粉末とし、これを焼結することによって得ることができる。
【0013】
また、本発明においては、ターゲットの作製に焼結法を適用することも大きな特徴である。溶解法により金属間化合物ターゲットを得る場合で問題となる結晶粒の粗大化による抗折力の低下を抑えることが可能となるためである。
【0014】
本発明において、相対密度が99%以上とすることにより、密度に依存する抗折力の低下を防止することができる。また、平均結晶粒径を200μm以下と微小なものとすることは、結晶粒の持つ方位の違いよるスパッタリング速度の差を低減でき、均一な膜を得ることにおいて有利である。より好ましくは30μm以下とする。また、微細な結晶粒は、微細な歪みを吸収する結晶粒界を多く有することになり、抗折力を向上するという点でも有利であり、250MPa以上の高い抗折力を得ることができる。ターゲット中の酸素量が6000ppmを超えるとターゲット中の酸化物量が増大しスパッタ中に異常放電やパーティクルといった問題が急激に増大し問題となることがある。さらに、ターゲット中の酸素量が6000ppmを超えると成膜した膜中の第2相の量が増加し整合性の低下等により磁気特性が悪くなる。
【0015】
また、Ru−Al金属間化合物ターゲットで成膜したB2規則格子からなるRu−Al金属間化合物膜を、Co系磁性膜と非磁性基板の間に形成する下地膜の少なくとも1層とすることにより、パーティクルの発生が少なく、膜厚のばらつきも少ない安定な磁気記録媒体の製造を行うことができる。少なくとも1層と規定するのは、B2規則格子薄膜の上に直接Co系磁性膜を形成しても良いが、たとえばB2規則格子薄膜の上にCrやCr合金層といった磁気記録媒体としての保磁力角形比の増加が期待できる薄膜を配置することが可能であることを意味するものである。
【0016】
【実施例】
表1に示す、試料1は所望の組成となるようにそれぞれの単体金属粉末を混合した後、反応焼結法によりB2規則格子金属間化合物とした。ついでボールミルで粉砕し粉末を作製した。各々の粉末を1200℃×100MPa×3hの条件で焼結させて、φ101×4t(mm)のターゲットを作製した。さらに、試料9は所望の組成になるようにスカル溶解法で溶解し、精密鋳造してのφ101のターゲットを作製した。
【0017】
それぞれのターゲットの抗折力、密度およびインターセプト法による体積平均径による平均結晶粒径を表1に示す。また、図1に本発明のターゲットの典型的な組織を示す例として、試料1と同様に製造した100倍の焼結体のミクロ組織を示す。表1および図1を見て明らかなように、本発明によれば、金属間化合物粉末を焼結することにより高密度および微結晶粒であって、高抗折力のターゲットが得られたことがわかる。
【0018】
【表1】

Figure 0003997527
【0019】
試料1および9のターゲットにより成膜した基板上の2μm以上の異物の数を測定した。また、比較例のターゲットにより成膜した基板上の2μm以上の異物の数も測定した。測定した異物の数を表2に示す。ただし、表2の異物の数は、試料1のターゲットにより成膜した基板上の2μm以上の異物の数を100として表している。表2に示すように、本発明のターゲットは、従来のターゲットに比べて異物の発生を抑制できることがわかる。
【0020】
【表2】
Figure 0003997527
【0021】
【発明の効果】
本発明により、高抗折力のB2構造を有するRu−Al金属間化合物ターゲットを提供することができるため、ターゲットの取り扱いが容易になるとともに、異物の発生を低減でき、高品質の磁気記録媒体を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明のターゲットの典型的な組織を示すミクロ組織顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a Ru—Al intermetallic compound target composed of a B2 ordered lattice, which is mainly used for forming an underlayer of a magnetic recording medium for a magnetic disk device, a Ru—Al intermetallic compound target, and magnetic recording. It relates to the medium.
[0002]
[Prior art]
Conventionally, Co-based magnetic layers have been developed to enable high-density magnetic recording. In general, in order to epitaxially grow a magnetic layer, an underlayer is formed under the magnetic layer. For this underlayer, the lattice constant, the crystal orientation, the crystal grain size, and the film uniformity are improved in order to achieve a healthy epitaxial growth of the magnetic layer. For example, as a conventional underlayer, pure Cr and Cr alloy are mainly used because of lattice constant matching with a Co-based magnetic layer.
[0003]
Recently, a base film of a B2 ordered lattice intermetallic compound has been proposed (see, for example, Patent Document 1). In the above-described Patent Document 1, the B2 ordered lattice intermetallic compound is used as a base film that directly forms a magnetic film instead of a Cr base, and is used as a film that further becomes a base of a pure Cr base film. Has been proposed. In particular, it has been reported that when a pure Cr film is used as an underlying film, the crystal grains of the Cr film can be made finer, and a magnetic recording medium having a high coercive force can be obtained.
[0004]
[Patent Document 1]
European Patent Application No. 0704839 Specification
[Problems to be solved by the invention]
When the present inventor studied the underlayer of the above-mentioned B2 ordered lattice intermetallic compound, it was found that the lattice constant is close to that of the Co-based magnetic layer, the crystal orientation and the fine uniformity of the film make the underlying layer of the Co-based magnetic recording medium. Confirmed that it was suitable. As a method for producing the base layer of the B2 ordered lattice intermetallic compound, an RF sputtering method or the like can be used as described in the above-mentioned literature. In the sputtering method, a target serving as a film composition supply source is required.
[0006]
The present inventor has studied to prepare a compound target for forming a uniform film of B2 ordered lattice intermetallic compound. And when the target which consists of a B2 ordered lattice intermetallic compound was produced by the melt | dissolution method, the problem that the bending strength was low and it fractured | ruptured during processing generate | occur | produced. It was confirmed that the casting target of the B2 ordered lattice intermetallic compound formed fine chill crystals to some extent, columnar crystals that were coarse and dependent on the cooling direction, and fine equiaxed crystals to some extent, resulting in large variations in particle size. The variation in crystal grains not only causes generation of particles, but also causes variations in the thickness of the thin film during film formation. In this case, it becomes difficult to epitaxially grow a thin film formed on the upper surface as a base film, resulting in deterioration of magnetic recording characteristics.
An object of the present invention is to provide a method for producing a high bending strength intermetallic compound target made of a Ru-Al intermetallic compound which is a B2 ordered lattice, a target produced by the production method, and a magnetic recording medium. .
[0007]
[Means for Solving the Problems]
The present inventor has found that the bending strength of the B2 ordered lattice intermetallic compound target greatly depends on the microstructure of the target. And it discovered that it was necessary to set it as a sintering target as a means to prevent the big dispersion | variation in the crystal grain confirmed with the casting target. Furthermore, as this intermetallic compound target, it was found that the intermetallic compound powder composed of B2 ordered lattice was prepared in advance by a reactive sintering method, and the sintered target was able to ensure a high bending strength. Reached.
[0008]
That is, the present invention provides a Ru—Al intermetallic compound in which a metal Ru powder and a metal Al powder are made into a Ru—Al intermetallic compound substantially consisting of a B2 ordered lattice by a reactive sintering method, and then the intermetallic compound is pulverized. It is a manufacturing method of the Ru-Al intermetallic compound target which sinters powder.
[0009]
In addition, the present invention is a Ru-Al intermetallic compound target made of a sintered body of Ru-Al intermetallic compound powder substantially made of B2 ordered lattice produced by the above production method. The target preferably has a relative density of 99% or more. Furthermore, the average crystal grain size is desirably 200 μm or less. Moreover, by satisfying the above-described conditions, a target having an unconventional bending strength of 250 MPa or more can be obtained. Moreover, the amount of oxygen in the target is preferably 6000 ppm or less.
[0010]
In the present invention, a Ru—Al intermetallic compound film substantially composed of a B2 ordered lattice formed with the above-described Ru—Al intermetallic compound target is formed between a Co-based magnetic film and a nonmagnetic substrate. A magnetic recording medium having at least one layer of a ground film.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, it is an important feature that a B2 ordered lattice intermetallic compound target is obtained by a sintering method using a powder prepared by a reactive sintering method. In particular, the Ru-Al B2 ordered lattice intermetallic compound has a melting point of over 2000 ° C. Therefore, as a method of preparing a raw material powder for sintering, a method of pulverizing an ingot produced by a melting method to form a sintered raw material powder is In the process, it is necessary to avoid reaction with the furnace material by skull melting or the like, which is expensive, and further, there is a problem that it takes time to pulverize the ingot with high density and causes impurities to be mixed. In addition, the method of producing a sintered raw material by the atomizing method has problems such as clogging of the nozzle due to a decrease in the temperature of the molten metal and reaction with the nozzle because the melting point is high.
[0012]
Therefore, in this invention, what was made into the intermetallic compound by the reactive sintering method which does not require a melt | dissolution process is grind | pulverized, and it is set as sintering raw material powder. In this method, for example, a mixed powder of Ru powder and Al powder is ignited by arc, spark, electric current, etc. in a reduced pressure atmosphere or an inert gas atmosphere, or the temperature of the inside of the chamber is increased, thereby reacting the mixed powder. Is induced to react and sinter using self-heating during the combination of Ru and Al. Since the Ru-Al reaction sintering method can utilize self-heating, it has a high melting point and does not require special melting equipment, and can easily produce an intermetallic compound having a desired composition. It is an excellent method. Further, the B2 ordered lattice intermetallic compound made of Ru—Al produced by the reactive sintering method is a porous sintered body having many gaps, and therefore has an advantage that it can be easily pulverized. The target of the present invention can be obtained by pulverizing the intermetallic compound obtained by the above-described method into a powder and sintering it.
[0013]
Further, in the present invention, it is also a great feature that a sintering method is applied to the production of the target. This is because it is possible to suppress a decrease in bending strength due to coarsening of crystal grains, which is a problem when obtaining an intermetallic compound target by a melting method.
[0014]
In the present invention, when the relative density is 99% or more, it is possible to prevent a decrease in the bending strength depending on the density. Further, making the average crystal grain size as small as 200 μm or less can reduce the difference in sputtering rate due to the difference in orientation of crystal grains, and is advantageous in obtaining a uniform film. More preferably, it is 30 μm or less. Further, fine crystal grains have many crystal grain boundaries that absorb fine strain, which is advantageous in terms of improving the bending strength, and a high bending force of 250 MPa or more can be obtained. If the amount of oxygen in the target exceeds 6000 ppm, the amount of oxide in the target increases, and problems such as abnormal discharge and particles may increase rapidly during sputtering. Furthermore, if the oxygen content in the target exceeds 6000 ppm, the amount of the second phase in the deposited film increases and the magnetic properties deteriorate due to a decrease in consistency.
[0015]
Further, by forming a Ru—Al intermetallic compound film made of B2 ordered lattice formed with a Ru—Al intermetallic compound target as at least one layer of a base film formed between a Co-based magnetic film and a nonmagnetic substrate. Therefore, it is possible to manufacture a stable magnetic recording medium with less generation of particles and less variation in film thickness. The at least one layer may be defined by forming a Co-based magnetic film directly on the B2 ordered lattice thin film. For example, a coercive force as a magnetic recording medium such as a Cr or Cr alloy layer on the B2 ordered lattice thin film. This means that it is possible to arrange a thin film that can be expected to increase the squareness ratio.
[0016]
【Example】
Sample 1 shown in Table 1 was mixed with each single metal powder so as to have a desired composition, and then made into a B2 ordered lattice intermetallic compound by a reactive sintering method. Subsequently, it was pulverized with a ball mill to prepare a powder. Each powder was sintered under conditions of 1200 ° C. × 100 MPa × 3 h to prepare a target of φ101 × 4 t (mm). Further, the sample 9 was melted by a skull melting method so as to have a desired composition, and a target of φ101 was produced by precision casting.
[0017]
Table 1 shows the average crystal grain size of each target according to the bending strength, density, and volume average diameter according to the intercept method. FIG. 1 shows a microstructure of a 100-fold sintered body produced in the same manner as Sample 1, as an example showing a typical structure of the target of the present invention. As is apparent from Table 1 and FIG. 1, according to the present invention, by sintering the intermetallic compound powder, a high-dense and fine crystal grain target having high bending strength was obtained. I understand.
[0018]
[Table 1]
Figure 0003997527
[0019]
The number of foreign matters having a size of 2 μm or more on the substrates formed by the targets of Samples 1 and 9 was measured. In addition, the number of foreign matters of 2 μm or more on the substrate formed with the target of the comparative example was also measured. Table 2 shows the number of foreign substances measured. However, the number of foreign substances in Table 2 represents 100 as the number of foreign substances of 2 μm or more on the substrate formed by the target of Sample 1. As shown in Table 2, it can be seen that the target of the present invention can suppress the generation of foreign matter compared to the conventional target.
[0020]
[Table 2]
Figure 0003997527
[0021]
【The invention's effect】
According to the present invention, a Ru-Al intermetallic compound target having a B2 structure having a high bending strength can be provided, so that the handling of the target can be facilitated and the generation of foreign matters can be reduced. Can be provided.
[Brief description of the drawings]
FIG. 1 is a microstructural micrograph showing a typical structure of a target of the present invention.

Claims (7)

金属Ru粉末と金属Al粉末とを反応焼結法により、実質的にB2規則格子からなるRu−Al金属間化合物とし、次いで該金属間化合物を粉砕したRu−Al金属間化合物粉末を焼結することを特徴とするRu−Al金属間化合物ターゲットの製造方法。A Ru-Al intermetallic compound consisting essentially of a B2 ordered lattice is made into a Ru-Al intermetallic compound by a reaction sintering method, and then Ru-Al intermetallic compound powder obtained by grinding the intermetallic compound is sintered. A method for producing a Ru-Al intermetallic compound target. 請求項1に記載の製造方法で作製した実質的にB2規則格子からなるRu−Al金属間化合物粉末の焼結体でなることを特徴とするRu−Al金属間化合物ターゲット。A Ru-Al intermetallic compound target comprising a sintered body of Ru-Al intermetallic compound powder substantially composed of B2 ordered lattice produced by the production method according to claim 1. 相対密度が99%以上であることを特徴とする請求項2に記載のRu−Al金属間化合物ターゲット。The Ru-Al intermetallic compound target according to claim 2, wherein the relative density is 99% or more. 平均結晶粒径が200μm以下であることを特徴とする請求項2または3に記載のRu−Al金属間化合物ターゲット。The Ru-Al intermetallic compound target according to claim 2 or 3, wherein an average crystal grain size is 200 µm or less. 抗折力が250MPa以上であることを特徴とする請求項2乃至4のいずれかに記載のRu−Al金属間化合物ターゲット。The Ru-Al intermetallic compound target according to any one of claims 2 to 4, wherein a bending strength is 250 MPa or more. ターゲット中の酸素量が6000ppm以下であることを特徴とする請求項2乃至5のいずれかに記載のRu−Al金属間化合物ターゲット。The Ru-Al intermetallic compound target according to any one of claims 2 to 5, wherein the amount of oxygen in the target is 6000 ppm or less. 請求項2乃至6のいずれかに記載のターゲットで成膜した実質的にB2規則格子からなるRu−Al金属間化合物膜を、Co系磁性膜と非磁性基板の間に形成する下地膜の少なくとも1層とすることを特徴とする磁気記録媒体。A Ru—Al intermetallic compound film substantially consisting of a B2 ordered lattice formed by the target according to claim 2 is at least a base film formed between the Co-based magnetic film and the nonmagnetic substrate. A magnetic recording medium having a single layer.
JP2003093647A 2003-03-31 2003-03-31 Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium Expired - Fee Related JP3997527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093647A JP3997527B2 (en) 2003-03-31 2003-03-31 Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093647A JP3997527B2 (en) 2003-03-31 2003-03-31 Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19198398A Division JP2000017433A (en) 1998-07-07 1998-07-07 B2 rule lattice intermetallic compound target and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2003328118A JP2003328118A (en) 2003-11-19
JP3997527B2 true JP3997527B2 (en) 2007-10-24

Family

ID=29707350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093647A Expired - Fee Related JP3997527B2 (en) 2003-03-31 2003-03-31 Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3997527B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898746B1 (en) * 2007-08-17 2009-05-25 희성금속 주식회사 Fabrication method of a high density and single-phased RuAl intermetallic compound by powder metallurgy process
KR100885698B1 (en) * 2007-08-17 2009-02-26 희성금속 주식회사 Fabrication method of single-phased Ru-base intermetallic compound for high temperature
KR101249566B1 (en) * 2009-07-27 2013-04-01 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-Ga SINTERED BODY SPUTTERING TARGET AND METHOD FOR PRODUCING THE TARGET
DE102010060937A1 (en) * 2010-12-01 2012-06-06 Universität des Saarlandes Reactive metallic multilayers and methods for producing reactive metallic multilayers
TWI834072B (en) * 2021-10-22 2024-03-01 光洋應用材料科技股份有限公司 Ru-al alloy target and method of preparing the same

Also Published As

Publication number Publication date
JP2003328118A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
US8430978B2 (en) Sputtering target and method for production thereof
US5460793A (en) Silicide targets for sputtering and method of manufacturing the same
JP2989169B2 (en) Ni-Al intermetallic compound target, method for producing the same, and magnetic recording medium
US9605339B2 (en) Sputtering target for magnetic recording film and process for production thereof
JP3973857B2 (en) Manufacturing method of manganese alloy sputtering target
WO2013136962A1 (en) Magnetic material sputtering target and manufacturing method thereof
JP2004100000A (en) Iron silicate sputtering target and production method therefor
WO2008044626A1 (en) Sb-Te BASE ALLOY SINTER SPUTTERING TARGET
US20130206591A1 (en) Sputtering Target for Magnetic Recording Film and Method for Producing Same
JP2005320627A (en) Co ALLOY TARGET AND ITS PRODUCTION METHOD, SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JPWO2012081668A1 (en) Ferromagnetic sputtering target
EP3211116A1 (en) Magnetic-material sputtering target and method for producing same
JP6734399B2 (en) Magnetic material sputtering target and manufacturing method thereof
JPWO2004001092A1 (en) AlRu sputtering target and manufacturing method thereof
KR0151244B1 (en) Permanent magnet
CN106029943B (en) Sputtering target
JP3997527B2 (en) Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium
JP4634567B2 (en) Method for manufacturing tungsten sputtering target
JP3628575B2 (en) Ni-P alloy sputtering target and method for producing the same
JP3299630B2 (en) Manufacturing method of permanent magnet
CN111183244B (en) Ferromagnetic material sputtering target
JP2000017433A (en) B2 rule lattice intermetallic compound target and magnetic recording medium
JP2000096220A (en) Cobalt-chromium sputtering target and its manufacture
KR20130007676A (en) Sb-te alloy powder for sintering, process for production of the powder, and sintered target
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees