JP2001342559A - METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL - Google Patents

METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL

Info

Publication number
JP2001342559A
JP2001342559A JP2000163079A JP2000163079A JP2001342559A JP 2001342559 A JP2001342559 A JP 2001342559A JP 2000163079 A JP2000163079 A JP 2000163079A JP 2000163079 A JP2000163079 A JP 2000163079A JP 2001342559 A JP2001342559 A JP 2001342559A
Authority
JP
Japan
Prior art keywords
powder
die set
alloy
manufacturing
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000163079A
Other languages
Japanese (ja)
Inventor
Masaru Yanagimoto
勝 柳本
Daisuke Kimura
大助 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2000163079A priority Critical patent/JP2001342559A/en
Publication of JP2001342559A publication Critical patent/JP2001342559A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a low melting Te alloy targeting material of high density and low oxygen value in a satisfactory yield. SOLUTION: The method for manufacturing the Te alloy targeting material is characterized by steps of manufacturing the Te alloy powder with a gas atomization method, cold-forming the powder by inserting it in a die set for cold forming, and then sintering the powder compact left in the die set in it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度で酸素値の
低い低融点ターゲット材を歩留り良く得るTe系合金タ
ーゲット材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Te-based alloy target material capable of obtaining a low-melting target material having a high density and a low oxygen value with a good yield.

【0002】[0002]

【従来の技術】従来、Te系合金ターゲット材の製造方
法においては、例えばGe−Sb−Te系ターゲット材
の場合にはGe、Sb、Teを含む原料から所望の成分
に鋳造後粉砕処理をして異形状粉末を作製し、その粉末
をホットプレスなどの手段で高密度化成型するか、粉末
を冷間プレスで成形後焼結する方法、すなわち、従来工
程では鋳塊をジョークラッシャーなどの粗粉砕機で粗粉
砕後、微粉砕機で粒径500μm以下位になるまで粉砕
した後、ホットプレスで高密度化焼結する方法によりボ
ンディングされているのが実状である。
2. Description of the Related Art Conventionally, in a method of manufacturing a Te-based alloy target material, for example, in the case of a Ge-Sb-Te-based target material, a desired component is cast from a raw material containing Ge, Sb, and Te, and then crushed. A method of producing irregularly shaped powders by means of hot pressing or other means to densify the powders, or forming the powders by cold pressing and sintering them. The actual state is that after coarse pulverization by a pulverizer, pulverization by a fine pulverizer until the particle diameter becomes about 500 μm or less, and bonding by high-density sintering by a hot press.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
たような技術では、以下の点で問題があった。すなわ
ち、粉砕処理を施した粉末は、粉砕の際の酸素コントロ
ールが難しく、粉末の酸素値が高くなり結果的に得られ
たターゲット材の酸素も高くなる。酸素を低く抑えるた
めにはガスアトマイズで粉末を作製するのが適している
が、得られた粉末は球状でダイセットによる冷間成形で
は取り出しの際に割れやすく歩留りが悪い。またホット
プレス工程はサイクル時間が長く、工程能力に劣るとい
う欠点がある。
However, the above-described technique has the following problems. That is, in the pulverized powder, it is difficult to control oxygen at the time of pulverization, so that the oxygen value of the powder increases and the oxygen of the resulting target material also increases. In order to keep oxygen low, it is appropriate to prepare powder by gas atomization, but the obtained powder is spherical and is easily cracked at the time of taking out by cold forming using a die set, resulting in poor yield. Further, the hot press process has a drawback that the cycle time is long and the process capability is poor.

【0004】[0004]

【課題を解決するための手段】上述したような問題を解
消するため、発明者らは鋭意開発を進めた結果、低融タ
ーゲット材成分の粉末をガスアトマイズで作製後、その
粉末を冷間プレスで成形して、材料がダイセット中にあ
る状態でダイごと焼結処理した後、ダイからターゲット
材を取り出すことによって高密度で酸素値の低い低融点
ターゲット材を歩留り良く得るTe系合金ターゲット材
の製造方法を提供することにある。その発明の要旨とす
るところは、Te系合金粉末をガスアトマイズ方法によ
り製造した後、該粉末を冷間成形用のダイセット中に挿
入して冷間成形した後、粉末成形体がダイセット中に残
された状態で焼結することを特徴とするTe系合金ター
ゲット材の製造方法にある。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive developments. As a result, a powder of a low-melting target material component is produced by gas atomization, and then the powder is subjected to cold pressing. After forming and sintering the entire die in a state where the material is in the die set, the target material is taken out of the die to obtain a high-density, low-oxygen-value, low-melting-point target material with a good yield with good yield. It is to provide a manufacturing method. The gist of the invention is that after producing a Te-based alloy powder by a gas atomizing method, the powder is inserted into a die set for cold forming and cold-formed, and then the powder compact is placed in the die set. A method for producing a Te-based alloy target material characterized by sintering in a state left.

【0005】[0005]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明において、Ge,Sb,Teを含む原料に
ついて不活性ガスアトマイズ方法により急冷してGe−
Sb−Te系などの低融点合金粉末を製造後、ダイセッ
ト中に挿入して冷間成形した後、粉末成形体がダイセッ
ト中に残された状態で焼結するもので、ガスアトマイズ
された球状粉末を冷間成形後、取り出して焼結するとい
った従来の工程では成形材中の残留応力によって取り出
し途中、特にダイから成形材が出る瞬間に材料にクラッ
クが入るため、成形歩留りが非常に悪かった。また、ホ
ットプレスによる方法ではコストがかかり、工程能力も
限定されていた。本発明によると、ダイの中で残留応力
を除去しながら焼結させるため、通常の方法に比べて高
密度になると共にダイの取り出しの際にもクラックが入
らず、粉破砕を利用したものに比べて酸素値も低い良好
なターゲット材の製造が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, the raw material containing Ge, Sb, and Te is quenched by an inert gas atomizing method to obtain Ge-
After producing a low melting point alloy powder such as Sb-Te system, insert into a die set and cold compact, then sinter the powder compact while remaining in the die set. In the conventional process such as taking out and sintering the powder after cold compacting, the material yield cracks during the removal due to residual stress in the molding material, especially at the moment when the molding material comes out from the die, so the molding yield was very poor . In addition, the hot press method is costly and has a limited process capability. According to the present invention, since sintering is performed while removing the residual stress in the die, the density is higher than that of a normal method and cracks are not generated even when the die is taken out, so that powder crushing is used. As a result, it is possible to produce a favorable target material having a lower oxygen value.

【0006】Te系合金の融点は通常600℃程度であ
ることから、鋳造およびガスアトマイズにおいては、そ
の融点+150〜200℃、すなわち、750〜800
℃程度の温度に溶かして行う。一方、本発明におけるホ
ットプレス温度および焼結温度は共に約600℃〜65
0℃で行う。しかし、ホットプレス工程においてはサイ
クル時間が長くかかるため、この工程能力の改善が望ま
れていることから、本発明においては、冷間成形後粉末
成形体がダイセット中に残された状態で焼結によりサイ
クル時間が短く、しかも工程能力に優れると共にコスト
ダウンが図られるものである。
[0006] Since the melting point of a Te-based alloy is usually about 600 ° C, in casting and gas atomizing, its melting point + 150 to 200 ° C, that is, 750 to 800 ° C.
Dissolve at a temperature of about ° C. On the other hand, the hot press temperature and the sintering temperature in the present invention are both about 600 ° C. to 65 ° C.
Perform at 0 ° C. However, since the cycle time is long in the hot pressing process, it is desired to improve the process capability. Therefore, in the present invention, the powder compact is sintered in a state where the powder compact remains in the die set after the cold compacting. As a result, the cycle time is short, the process capability is excellent, and the cost is reduced.

【0007】さらに、ガスアトマイズにより直接粉末を
製造した場合は、粉砕工程の手間が省け粉砕によって生
ずる表面酸化などの影響が抑えられるため、従来方に比
べて酸素量の低い粉末が得られる。また、ガスアトマイ
ズ粉末は球状のため冷間成形後の形状保持が難しく、冷
間成形後にダイセットから取り出す工程で割れやかけが
発生し、工業的なハンドリングが不可能であった。しか
し、本発明では冷間成形後、ダイセットに成形材を残し
た状態で焼結した後、焼結体を取り出すことにより、こ
の問題はなくターゲット材の製造が可能となる。
Further, when powder is directly produced by gas atomization, the time required for the pulverization step is reduced, and the influence of surface oxidation or the like caused by the pulverization is suppressed, so that a powder having a lower oxygen content than the conventional method can be obtained. Further, since the gas atomized powder has a spherical shape, it is difficult to maintain the shape after cold forming, and cracking or chipping occurs in a step of taking out from a die set after cold forming, so that industrial handling was impossible. However, in the present invention, the target material can be manufactured without such a problem by taking out the sintered body after sintering in a state where the molding material is left in the die set after cold molding.

【0008】[0008]

【実施例】以下、本発明について実施例によって具体的
に説明する。Ge,Sb,Teをそれぞれ、14、2
4、62重量%になるように各インゴットを秤量し、誘
導溶解炉で溶解した後、Arガスアトマイズによって、
平均粒径200μmのアトマイズ粉末を製造した。該粉
末を冷間ダイセット中に充填し、面圧5t/cm2 で冷
間成形した後、上下パンチを外した状態のダイを焼結炉
に入れて630℃×2時間焼結して成形体を得た。ま
た、従来工程の比較材として、アトマイズ粉末を冷間成
形後ダイセットから取り出し、割れやかけの状態を比較
した結果、本発明によるものは歩留り100%であった
のに対し、従来工程で製造したものは約80%に割れや
かけが存在した。
The present invention will be specifically described below with reference to examples. Ge, Sb, and Te are 14, 2
Each ingot was weighed so as to be 4, 62% by weight and melted in an induction melting furnace.
An atomized powder having an average particle size of 200 μm was produced. The powder was filled in a cold die set, cold-formed at a surface pressure of 5 t / cm 2 , and the die with the upper and lower punches removed was placed in a sintering furnace and sintered at 630 ° C. for 2 hours to form. I got a body. In addition, as a comparative material of the conventional process, the atomized powder was taken out of the die set after cold forming, and the cracking and cracking states were compared. As a result, the product according to the present invention had a yield of 100%. About 80% of the samples had cracks and cracks.

【0009】[0009]

【発明の効果】以上述べたように、本発明による低融点
合金粉末をガスアトマイズで製造後、一軸プレスを用い
てダイセット内で円盤状に冷間成形し、その後ダイセッ
トごと焼結炉に入れて焼結することにより、割れやかけ
の問題はなく、ホットプレス工程に比べて生産性が向上
し、しかもアトマイズ粉末を用いることによって高密度
で酸素値の低い低融点ターゲットが非常に歩留り良く得
ることが出来る極めて優れた効果を奏するものである。
As described above, after producing the low melting point alloy powder according to the present invention by gas atomization, it is cold-formed into a disk shape in a die set using a uniaxial press, and then put into a sintering furnace together with the die set. By sintering, there is no problem of cracking or cracking, productivity is improved compared to the hot pressing process, and a high melting point target with a low oxygen value and a high density can be obtained at a high yield by using atomized powder. It has a very excellent effect.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K017 AA04 BA10 BB18 CA01 DA09 EB00 4K018 AA40 DA37 KA29 4K029 DC04 DC09 4M104 BB36 DD40 HH20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K017 AA04 BA10 BB18 CA01 DA09 EB00 4K018 AA40 DA37 KA29 4K029 DC04 DC09 4M104 BB36 DD40 HH20

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Te系合金粉末をガスアトマイズ方法に
より製造した後、該粉末を冷間成形用のダイセット中に
挿入して冷間成形した後、粉末成形体がダイセット中に
残された状態で焼結することを特徴とするTe系合金タ
ーゲット材の製造方法。
After producing a Te-based alloy powder by a gas atomizing method, inserting the powder into a die set for cold compaction and performing cold compaction, the powder compact remains in the die set. A method for producing a Te-based alloy target material, characterized by sintering.
JP2000163079A 2000-05-31 2000-05-31 METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL Withdrawn JP2001342559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000163079A JP2001342559A (en) 2000-05-31 2000-05-31 METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000163079A JP2001342559A (en) 2000-05-31 2000-05-31 METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL

Publications (1)

Publication Number Publication Date
JP2001342559A true JP2001342559A (en) 2001-12-14

Family

ID=18666892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000163079A Withdrawn JP2001342559A (en) 2000-05-31 2000-05-31 METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL

Country Status (1)

Country Link
JP (1) JP2001342559A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077692A1 (en) * 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
JP2007131941A (en) * 2006-05-26 2007-05-31 Mitsubishi Materials Corp Method for producing sputtering target for forming phase change film having reduced generation of particle
US7803209B2 (en) 2004-11-30 2010-09-28 Nippon Mining & Metals Co., Ltd Sb-Te alloy sintered compact sputtering target
US7943021B2 (en) 2004-12-24 2011-05-17 Jx Nippon Mining & Metals Corporation Sb-Te alloy sintered compact target and manufacturing method thereof
US8882975B2 (en) 2006-10-13 2014-11-11 Jx Nippon Mining & Metals Corporation Sb-Te base alloy sinter sputtering target
US9299543B2 (en) 2009-05-27 2016-03-29 Jx Nippon Mining & Metals Corporation Target of sintered compact, and method of producing the sintered compact

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803209B2 (en) 2004-11-30 2010-09-28 Nippon Mining & Metals Co., Ltd Sb-Te alloy sintered compact sputtering target
US7943021B2 (en) 2004-12-24 2011-05-17 Jx Nippon Mining & Metals Corporation Sb-Te alloy sintered compact target and manufacturing method thereof
WO2006077692A1 (en) * 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
US7947106B2 (en) 2005-01-18 2011-05-24 Jx Nippon Mining & Metals Corporation Sb-Te alloy powder for sintering, sintered compact sputtering target obtained by sintering said powder, and manufacturing method of Sb-Te alloy powder for sintering
JP2007131941A (en) * 2006-05-26 2007-05-31 Mitsubishi Materials Corp Method for producing sputtering target for forming phase change film having reduced generation of particle
US8882975B2 (en) 2006-10-13 2014-11-11 Jx Nippon Mining & Metals Corporation Sb-Te base alloy sinter sputtering target
US9299543B2 (en) 2009-05-27 2016-03-29 Jx Nippon Mining & Metals Corporation Target of sintered compact, and method of producing the sintered compact

Similar Documents

Publication Publication Date Title
JP2001123267A (en) METHOD OF MANUFACTURING Ge-Sb-Te SPUTTERING TARGET MATERIAL
CA1233679A (en) Wrought p/m processing for prealloyed powder
JP2001342559A (en) METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL
JP3435223B2 (en) Method for producing sendust-based sintered alloy
JPH09312229A (en) Manufacturing sintered rare earth magnet
JP2001123266A (en) METHOD OF MANUFACTURING Ge-Sb-Te SPUTTERING TARGET MATERIAL
JP2002057020A (en) Method of manufacturing powder for dust core and dust core manufactured thereby
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JP3432905B2 (en) Method for producing sendust-based sintered alloy
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JP2001342505A (en) Low melting point target material and its production method
JPH0436563B2 (en)
JPH0372011A (en) Manufacture of rare earth metal-ion-boron series alloy powder for sintered magnet
JPH0754004A (en) Production of sintered product of head metal powder
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same
JPH0344145B2 (en)
JPS62214602A (en) Manufacture of green compact permanent magnet
JPS6350469A (en) Manufacture of alloy target for sputtering
JPH0681076A (en) Production of betafesi2
JPS63118031A (en) Manufacture of permanent magnet alloy
JPH04298006A (en) Manufacture of fe-si-al alloy sintered soft magnetic substance
JP2002294308A (en) Granulated powder, sintered compact, and their manufacturing method
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
SU884856A1 (en) Method of producing articles from tungstem-free hard alloys
JPH1053833A (en) Production of sintered iron-aluminum-silicon alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807