JPH0344145B2 - - Google Patents

Info

Publication number
JPH0344145B2
JPH0344145B2 JP23992383A JP23992383A JPH0344145B2 JP H0344145 B2 JPH0344145 B2 JP H0344145B2 JP 23992383 A JP23992383 A JP 23992383A JP 23992383 A JP23992383 A JP 23992383A JP H0344145 B2 JPH0344145 B2 JP H0344145B2
Authority
JP
Japan
Prior art keywords
pressure
tellurium
sintering
powder
target plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23992383A
Other languages
Japanese (ja)
Other versions
JPS60131963A (en
Inventor
Eiji Ito
Hideo Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP23992383A priority Critical patent/JPS60131963A/en
Publication of JPS60131963A publication Critical patent/JPS60131963A/en
Publication of JPH0344145B2 publication Critical patent/JPH0344145B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、スパツタリング用ターゲツト板に
関する。 電子工業、電気工業等の分野で用いられるBi,
Se、Te、Sb、In、Sn等の金属または半金属ある
いはこれらの合金の薄膜は、一般に真空蒸着法ま
たはスパツタリング法によつて基板上へ形成され
る。ところで、上記スパツタリングに用いられる
テルルもしくはテルル合金等のターゲツト板は、
従来前記金属等を真空中や不活性ガス中で溶融
し、鋳型に鋳造する鋳造法や前記金属等の粉末を
押型で高い成形圧下で加圧成形後、加熱して焼結
する、コールドプレス法で製造されている。 しかし、鋳造法では、上記金属等の蒸気圧が高
いため製造中、蒸発量が多く歩留りが低下する問
題、及び、これら蒸気は有毒なので、除害や安全
上に問題がある。また、鋳造した金属等は、ガラ
ス質のため製造時の冷却やスパツタリング時の発
熱に伴つて割れやガス発生が生じ易い問題があ
る。 さらに、コールドプレス法は、高密度焼結体を
得るには高い成形圧が必要であり圧縮性の悪い粉
体に対しては押型より取り出す際に圧縮割れやス
プリングバツグによつて割れる危険性が高い。そ
して、蒸気圧の高い金属等を焼結させるには、表
面積が大きいので蒸発ロスが多いなどの問題があ
る。 この発明は、以上の点に鑑みてなされたもので
あつて、すなわちテルル粉末あるいはテルル合金
粉末を加圧下で成形焼結し、密度比を70〜90%に
調整することにより強い曲げ強さを有して割れに
くいテルルもしくはテルル合金よりなるスパツタ
リング用ターゲツト板を提供するものである。 ここで、密度比とは、金属の真比重に対する焼
結体の見掛密度の百方比をいう。 加圧成形および焼結は通常行われる粉末冶金的
方法で良いが、比較的低い成形圧で粉体を加圧成
形したのちに、加圧下で焼結する方が一般に好結
果が得られる。 加圧下焼結のためには、圧縮焼結法あるいはホ
ツトプレス法があるが、粉体を充填した押型を加
熱する際の熱膨脹や熱歪みを利用して加圧下焼結
を実施する方法も簡便な方法である。 焼結温度は原料の融点の0.75〜0.95倍、好まし
くは0.9倍がよく、テルルターゲツト板製造の際
の焼結温度は340〜430℃、好ましくは410℃とす
る。 焼結時の雰囲気は水素あるいはアルゴン雰囲気
とすることが望ましい。 以下、実施例に基づいてこの発明を説明する。 市販されているテルルシヨツトを−60meshで
あり、かつ−325meshの比率が40%程度となるよ
うに粉砕したテルル粉末を、所定の形状たとえば
薄肉厚の円盤状に成形圧力10〜500Kg/cm2好まし
くは150〜250Kg/cm2において加圧成形したのち、
加圧下で焼結することにより密度比70〜90%の焼
結体とした。密度比を70〜90%とする理由は、密
度比70%以下では曲げ強さが弱く、90%以上では
気孔が少なくなるのでクラツクが発生し易く、且
つ気孔が閉鎖されたものとなり通気孔とならない
のでスパツタリング時に割れやガスが発生しやす
くなるからである。本発明に係るターゲツト板
は、強い曲げ強さを有し、割れにくいものとなつ
ているので、スパツタリング時に急熱されても割
れやガスの発生がなく、ターゲツト板として良好
な性状を有している。 次に、本発明に係るスパツタリング用ターゲツ
トと、高圧圧縮成形常圧焼結したターゲツト板の
物性値の測定比較を表−1に示す。 本発明に係るターゲツト板においては、押型に
装填された粉末を158Kg/cm2の成形圧で圧縮成形
したのち、水素雰囲気中で410℃において加圧焼
結することによつて製造した。一方、従来法によ
る高圧圧縮成形常圧焼結ターゲツト板において
は、粉末を500Kg/cm2の成形圧で常温において圧
縮して成形体を製造し、水素雰囲気中で410℃に
おいて常圧下で焼結した。 なお、焼結する粉末としては、両者とも−
60meshでかつ−325mhshの比率が40%程度とな
るように粉砕されたテルルの粉末を使用した。ま
た、物性値のうち、曲げ強さは、炭素協会規格
JCAS−10−1968−44に従つて測定し、密度比は
JISZ2500−319に準じ測定を行ない評価を行なつ
た。
The present invention relates to a target plate for sputtering. Bi used in fields such as electronic industry and electrical industry,
A thin film of a metal or semimetal such as Se, Te, Sb, In, Sn, or an alloy thereof is generally formed on a substrate by a vacuum evaporation method or a sputtering method. By the way, the target plate made of tellurium or tellurium alloy used in the above sputtering is
Conventionally, there is a casting method in which the metal, etc. is melted in a vacuum or in an inert gas and cast into a mold, and a cold press method, in which the powder of the metal, etc. is pressure-formed in a mold under high molding pressure, and then heated and sintered. Manufactured in However, in the casting method, since the vapor pressure of the above-mentioned metals is high, the amount of evaporation during production is large, resulting in a decrease in yield.Also, since these vapors are toxic, there are problems in terms of abatement and safety. Furthermore, since cast metals are glassy, they tend to crack or generate gas when cooled during production or generated during sputtering. Furthermore, the cold press method requires high compacting pressure to obtain a high-density sintered body, and there is a risk that powders with poor compressibility may break due to compression cracks or spring bags when removed from the mold. expensive. When sintering metals with high vapor pressure, there are problems such as a large amount of evaporation loss due to the large surface area. This invention has been made in view of the above points. Specifically, tellurium powder or tellurium alloy powder is molded and sintered under pressure, and the density ratio is adjusted to 70 to 90%, thereby achieving strong bending strength. To provide a target plate for sputtering made of tellurium or a tellurium alloy, which is hard to break. Here, the density ratio refers to the 100/100 ratio of the apparent density of the sintered body to the true specific gravity of the metal. Pressure forming and sintering may be carried out by conventional powder metallurgical methods, but better results are generally obtained by press forming the powder at a relatively low compacting pressure and then sintering under pressure. There are compression sintering methods and hot press methods for sintering under pressure, but a simple method of performing sintering under pressure is one that utilizes thermal expansion and thermal distortion when heating a mold filled with powder. It's a method. The sintering temperature is preferably 0.75 to 0.95 times, preferably 0.9 times, the melting point of the raw material, and the sintering temperature during production of the tellurium target plate is 340 to 430°C, preferably 410°C. The atmosphere during sintering is preferably a hydrogen or argon atmosphere. The present invention will be explained below based on examples. Tellurium powder obtained by pulverizing a commercially available tellurium shot so that the mesh size is -60mesh and the ratio of -325mesh is about 40% is molded into a predetermined shape, such as a thin disk shape, under a pressure of 10 to 500 kg/ cm2 , preferably. After pressure forming at 150-250Kg/ cm2 ,
By sintering under pressure, a sintered body with a density ratio of 70 to 90% was obtained. The reason why the density ratio is set to 70-90% is that if the density ratio is less than 70%, the bending strength will be weak, and if it is more than 90%, the number of pores will decrease, making cracks more likely to occur. This is because cracks and gas are likely to be generated during sputtering. The target plate according to the present invention has strong bending strength and is not easily cracked, so even if it is rapidly heated during sputtering, it does not crack or generate gas, and has good properties as a target plate. There is. Next, Table 1 shows a comparison of the measured physical properties of the sputtering target according to the present invention and a target plate formed by high-pressure compression molding and pressureless sintering. The target plate according to the present invention was produced by compression molding the powder loaded into a mold at a molding pressure of 158 kg/cm 2 and then pressure sintering it at 410° C. in a hydrogen atmosphere. On the other hand, in the conventional method of high-pressure compression molding and pressureless sintering target plates, the powder is compressed at room temperature with a compacting pressure of 500 kg/cm 2 to produce a compact, which is then sintered at 410°C under normal pressure in a hydrogen atmosphere. did. In addition, the powder to be sintered is -
Tellurium powder was used which was pulverized to have a mesh size of 60mesh and a -325mhsh ratio of approximately 40%. In addition, among the physical property values, bending strength is based on the Carbon Society standards.
Measured according to JCAS-10-1968-44, density ratio is
Measurements and evaluations were made in accordance with JISZ2500-319.

【表】 表−1から判るように、この発明に係るターゲ
ツト板は、従来の方法により焼結したターゲツト
板に比べて、成形圧で1/3と低いにもかかわら
ず曲げ強さは20倍以上となつており、かつ密度比
においても同等以上の値が得られている。 なおターゲツト板の原料としては、テルル粉末
に限らずテルル合金の粉末も用いられる。 以上説明したように、本発明に係るスパツタリ
ング用ターゲツト板は、テルルもしくはテルル合
金の粉末の加圧成形焼結によつて製造され、密度
比70〜90%で強い曲げ強さを有し、スパツタリン
グ時に急熱しても割れやガスの発生がなくスパツ
タリング作業を確実に行なえる効果がある。ま
た、焼結法であるので、溶製法に比して揮発ロス
が少なくてすむ利点がある。
[Table] As can be seen from Table 1, the bending strength of the target plate according to the present invention is 20 times that of the target plate sintered by the conventional method, even though the molding pressure is 1/3 lower. In addition, the same or higher density ratio was obtained. Note that the raw material for the target plate is not limited to tellurium powder, but also tellurium alloy powder. As explained above, the sputtering target plate according to the present invention is manufactured by pressure molding and sintering of tellurium or tellurium alloy powder, has a density ratio of 70 to 90%, has high bending strength, and is suitable for sputtering. Even when heated rapidly, there is no cracking or generation of gas, making it possible to perform sputtering operations reliably. Furthermore, since it is a sintering method, it has the advantage of less volatilization loss compared to the melting method.

Claims (1)

【特許請求の範囲】[Claims] 1 テルルもしくはテルル合金の粉末を加圧成形
したのち、加圧焼結して密度比を70〜90%の間に
調整したことを特徴とするスパツタリング用ター
ゲツト板。
1. A target plate for sputtering, characterized in that tellurium or tellurium alloy powder is pressure-molded and then pressure-sintered to adjust the density ratio between 70 and 90%.
JP23992383A 1983-12-21 1983-12-21 Target plate for sputtering Granted JPS60131963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23992383A JPS60131963A (en) 1983-12-21 1983-12-21 Target plate for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23992383A JPS60131963A (en) 1983-12-21 1983-12-21 Target plate for sputtering

Publications (2)

Publication Number Publication Date
JPS60131963A JPS60131963A (en) 1985-07-13
JPH0344145B2 true JPH0344145B2 (en) 1991-07-05

Family

ID=17051853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23992383A Granted JPS60131963A (en) 1983-12-21 1983-12-21 Target plate for sputtering

Country Status (1)

Country Link
JP (1) JPS60131963A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213569A (en) * 1985-07-10 1987-01-22 Mitsubishi Metal Corp Sintered te or te alloy target for sputtering
JPS62148362A (en) * 1985-12-24 1987-07-02 三菱マテリアル株式会社 Manufacture of target material for sputtering
JPH0752527B2 (en) * 1986-08-18 1995-06-05 松下電器産業株式会社 Optical information recording / reproducing disk manufacturing method
JPS63143258A (en) * 1986-12-05 1988-06-15 Mitsubishi Metal Corp Sputtering target
JP2725331B2 (en) * 1988-12-23 1998-03-11 三菱マテリアル株式会社 Target material manufacturing method

Also Published As

Publication number Publication date
JPS60131963A (en) 1985-07-13

Similar Documents

Publication Publication Date Title
JP4860029B2 (en) Method for manufacturing high-density sputter target made of two or more metals
KR20030007448A (en) Powder-metallurgical method for producing high-density shaped parts
CN110218927B (en) High-temperature hard alloy and manufacturing method thereof
US3144328A (en) Method of producing porous sintered tantalum anodes
JPS642177B2 (en)
JPH0344145B2 (en)
JP3168630B2 (en) Manufacturing method of electrode material
JP2542566B2 (en) Method for manufacturing target for sputtering device
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPS6350444A (en) Manufacture of nd-fe-b sintered alloy magnet
JPS6253473B2 (en)
JP3038489B2 (en) Method for producing metal composite carbon material
JP2001342559A (en) METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL
JPS62501860A (en) Manufacturing method for iron alloy molded products
JP3270798B2 (en) Method for producing silicon carbide sintered body
JPS61130436A (en) Manufacture of rare earth metal magnet
JP2725331B2 (en) Target material manufacturing method
JP3106605B2 (en) Manufacturing method of electrode material
JPH0325499B2 (en)
JPH0742530B2 (en) Manufacturing method of low oxygen alloy compact
JP2919896B2 (en) Manufacturing method of brazing filler metal
JP2000021614A (en) Manufacture of rare earth magnet powder superior in magnetic anisotropy
JPS63201067A (en) Manufacture of metal diboride base ceramics
JP3300420B2 (en) Alloy for sintered sealing material
JP2946350B2 (en) Method for producing sintered body made of amorphous alloy powder