JP3270798B2 - Method for producing silicon carbide sintered body - Google Patents

Method for producing silicon carbide sintered body

Info

Publication number
JP3270798B2
JP3270798B2 JP32473394A JP32473394A JP3270798B2 JP 3270798 B2 JP3270798 B2 JP 3270798B2 JP 32473394 A JP32473394 A JP 32473394A JP 32473394 A JP32473394 A JP 32473394A JP 3270798 B2 JP3270798 B2 JP 3270798B2
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
sintered body
temperature
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32473394A
Other languages
Japanese (ja)
Other versions
JPH08183661A (en
Inventor
正喜 寺園
周一 立野
昭彦 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32473394A priority Critical patent/JP3270798B2/en
Publication of JPH08183661A publication Critical patent/JPH08183661A/en
Application granted granted Critical
Publication of JP3270798B2 publication Critical patent/JP3270798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造用治具など
に適した炭化珪素質焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon carbide sintered body suitable for a jig for manufacturing semiconductors.

【0002】[0002]

【従来技術】炭化珪素焼結体は、その優れた耐熱性、高
温強度から例えば、焼成用棚板、熱機関用部品の他、そ
の他半導体素子などを製造する際に使用するプロセスチ
ューブ、ライナーチューブ、ウエハボートなどの治具用
の材料として注目され、その実用化が進められている。
2. Description of the Related Art Due to its excellent heat resistance and high-temperature strength, silicon carbide sintered bodies are used, for example, in process tubes and liner tubes used for manufacturing sintering shelves, heat engine parts, and other semiconductor elements. Attention has been paid to jig materials for wafer boats and the like, and their practical use is being promoted.

【0003】一般に、このような炭化珪素質焼結体は、
炭化珪素、または炭化珪素と炭素からなる成形体に珪素
を含浸させ、炭素を珪化させるとともに空孔を珪素で充
填することにより高密度化されている。この炭化珪素質
焼結体の反応焼結による製造方法は、例えば、特開平5
−270917号等に記載されている。
Generally, such a silicon carbide sintered body is
High density is achieved by impregnating silicon into silicon carbide or a molded body made of silicon carbide and carbon, silicifying carbon, and filling voids with silicon. The production method of this silicon carbide sintered body by reaction sintering is described in, for example,
-270917 and the like.

【0004】[0004]

【発明が解決しようとする問題点】ところが、上記炭化
珪素質焼結体の製造方法によれば、高緻密質な炭化珪素
質焼結体が得られるものの、珪化後の焼成物中にクラッ
クが生じる場合があった。
According to the method for producing a silicon carbide-based sintered body, a high-density silicon carbide-based sintered body can be obtained, but cracks occur in the fired product after silicidation. May have occurred.

【0005】このクラックの発生の原因について検討し
たところ、珪素が他の金属と異なり、それ自体が固化す
る時に体積が膨張する特性を有することから、珪化処理
後に冷却する過程で珪素の体積膨張によりクラックが発
生することがわかった。
When the cause of the cracks was examined, it was found that, unlike other metals, silicon has the property of expanding its volume when it is solidified. It was found that cracks occurred.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上述し
たようなクラックの発生を抑制するための検討を重ねた
結果、珪化後の冷却過程で珪素の融点を通過する時を徐
冷することにより、クラックの発生を顕著に抑制できる
ことを見いだし、本発明に至った。
As a result of repeated studies for suppressing the occurrence of cracks as described above, the present inventors have found that the cooling process after the silicidation gradually cools the silicon when passing through the melting point of silicon. By doing so, it has been found that the occurrence of cracks can be significantly suppressed, and the present invention has been achieved.

【0007】即ち、本発明の炭化珪素質焼結体の製造方
法は、炭化珪素、または炭化珪素と炭素からなる成形体
を非酸化性雰囲気中、珪素の融点以上の温度で珪素を含
浸させてなる金属珪素を含む炭化珪素質焼結体の製造方
法において、前記珪素の含浸工程後の降温過程で少なく
とも珪素の融点の±10℃の温度範囲を12℃/hrで
徐冷する工程を具備することを特徴とするものである。
More specifically, the method for producing a silicon carbide sintered body of the present invention comprises impregnating silicon carbide or a compact comprising silicon carbide and carbon with silicon at a temperature equal to or higher than the melting point of silicon in a non-oxidizing atmosphere. The method for producing a silicon carbide sintered body containing metallic silicon comprises a step of gradually cooling at least a temperature range of ± 10 ° C. of the melting point of silicon at 12 ° C./hr in a temperature decreasing process after the silicon impregnation step. It is characterized by the following.

【0008】以下、本発明を詳述する。本発明の高純度
炭化珪素焼結体を製造するために、炭化珪素、または炭
化珪素と炭素からなる成形体を作製する。このような成
形体は、まず原料粉末として炭化珪素粉末を準備する。
炭化珪素粉末としてはα型、β型のいずれかまたはこれ
らを混合して使用することもできる。炭化珪素粉末の平
均粒径としてはサブミクロンから数十μmまでのいずれ
でもよいが、焼結体の機械的特性を考慮すると10μm
以下とするのが望ましい。
Hereinafter, the present invention will be described in detail. In order to manufacture the high-purity silicon carbide sintered body of the present invention, silicon carbide or a molded body made of silicon carbide and carbon is produced. For such a compact, first, silicon carbide powder is prepared as a raw material powder.
As the silicon carbide powder, either α-type or β-type or a mixture thereof can be used. The average particle size of the silicon carbide powder may be any from submicron to several tens of μm, but is 10 μm in consideration of the mechanical properties of the sintered body.
It is desirable to do the following.

【0009】次に、上記粉末を公知の成形方法、たとえ
ば、プレス成形、押出成形、鋳込み成形、冷間静水圧成
形等により所望の形状に成形する。尚、場合によっては
この成形体を1300〜2100℃で仮焼して成形体強
度を高めることもできる。
Next, the powder is formed into a desired shape by a known molding method, for example, press molding, extrusion molding, casting molding, cold isostatic pressing and the like. In some cases, the molded body may be calcined at 1300 to 2100 ° C. to increase the molded body strength.

【0010】その後、熱分解したときに残炭するような
樹脂、たとえば、フェノール樹脂、エポキシ樹脂、ウレ
タン樹脂、メラミン樹脂等を溶媒に溶解させ、成形体あ
るいは仮焼体の細孔中に導入する。樹脂は溶媒に溶解さ
せているため細孔中に均一に導入される。そして、樹脂
を導入した成形体又は仮焼体を800〜2000℃で熱
分解し炭素を生成させる。この時炭素は炭化珪素成形体
中で均一に存在するため、反応焼結後の炭化珪素質焼結
体の機械的強度を向上させることができる。
[0010] Thereafter, a resin such as a phenol resin, an epoxy resin, a urethane resin, a melamine resin, or the like, which is left behind when thermally decomposed, is dissolved in a solvent and introduced into the pores of the molded or calcined body. . Since the resin is dissolved in the solvent, it is uniformly introduced into the pores. Then, the molded body or the calcined body into which the resin is introduced is thermally decomposed at 800 to 2000 ° C. to generate carbon. At this time, since carbon is uniformly present in the silicon carbide molded body, the mechanical strength of the silicon carbide sintered body after reaction sintering can be improved.

【0011】尚、上記のような炭素の導入方法のほかに
出発原料の炭化珪素粉末に所定量の炭素粉末を混合した
後に成形することもできる。
In addition to the above-described method of introducing carbon, a predetermined amount of carbon powder may be mixed with silicon carbide powder as a starting material, followed by molding.

【0012】次に、上記の成形体あるいは仮焼体は、珪
素の融点以上、具体的には1414℃以上の温度で溶融
した金属珪素と接触させることにより、試料の細孔中に
珪素を導入する。この温度より低いと金属珪素が溶融せ
ず、珪素と炭素の反応に時間がかかる。そして、導入さ
れた金属珪素は、仮焼体中の炭素と反応し、炭化珪素を
生成する。この反応により体積膨張を起こし、緻密化が
促進される。しかも炭化珪素による完全な緻密体が得ら
れない場合であっても金属珪素が残りの細孔を埋めるた
めに見かけ上完全な緻密体を得ることができる。
Next, the compact or calcined body is brought into contact with molten metal silicon at a temperature higher than the melting point of silicon, specifically at a temperature of 1414 ° C. or higher, to introduce silicon into the pores of the sample. I do. If the temperature is lower than this, the metal silicon does not melt and the reaction between silicon and carbon takes time. Then, the introduced metallic silicon reacts with carbon in the calcined body to generate silicon carbide. This reaction causes volume expansion and promotes densification. In addition, even when a complete dense body made of silicon carbide cannot be obtained, an apparently complete dense body can be obtained because metal silicon fills the remaining pores.

【0013】本発明によれば、上記の珪化処理後の冷却
過程において、珪素の融点、即ち、1414℃±10℃
の温度領域を12℃/hr以下、特に10℃/hr以下
の降温速度で徐冷することが重要である。この徐冷温度
領域は、上記の温度領域を含んでいればよく、この温度
範囲以外の温度領域では12℃/hrを超える降温速度
で冷却してもよい。因みに、放冷時の降温速度はおよそ
600〜1200℃/hrである。
According to the present invention, in the cooling step after the above-mentioned silicidation, the melting point of silicon, ie, 1414 ° C. ± 10 ° C.
It is important to gradually cool the temperature range of 12 ° C./hr or less, particularly 10 ° C./hr or less. This slow cooling temperature range only needs to include the above-mentioned temperature range, and in a temperature range other than this temperature range, cooling may be performed at a temperature lowering rate exceeding 12 ° C./hr. Incidentally, the cooling rate at the time of cooling is about 600 to 1200 ° C./hr.

【0014】本発明において、降温速度を上記の範囲に
設定したのは、12℃/hrより速いと珪素が固化する
際の体積膨張が急激に生じる結果、珪化物にクラックが
生じるためである。
In the present invention, the cooling rate is set in the above-mentioned range because if the temperature is higher than 12 ° C./hr, the volume expansion when silicon is solidified occurs rapidly, resulting in cracks in the silicide.

【0015】[0015]

【作用】炭化珪素、または炭化珪素と炭素からなる成形
体に珪素を含浸させて珪化処理した後の冷却過程におい
て、珪素の固化に際して体積膨張が生じる。この膨張に
よって成形物に対してクラックが発生する場合がある。
In a cooling process after silicon is impregnated with silicon carbide or a compact made of silicon carbide and carbon and subjected to a silicification treatment, volume expansion occurs when the silicon is solidified. This expansion may cause cracks in the molded product.

【0016】本発明によれば、珪化処理後の冷却過程に
おいて、珪素の融点の±10℃の温度領域を12℃/h
rの降温速度で徐冷すると、溶融珪素が珪素の融点付近
で固化する際の膨張が徐々に進行する。その結果、ゆる
やかな体積膨張を他の部分がを吸収するために最終物に
おいてもクラックの発生を抑制することができる。
According to the present invention, in the cooling process after the silicidation, the temperature range of ± 10 ° C. of the melting point of silicon is set to 12 ° C./h.
When gradually cooled at a temperature lowering rate of r, expansion when molten silicon solidifies near the melting point of silicon gradually progresses. As a result, cracks can be suppressed even in the final product because other parts absorb the gradual volume expansion.

【0017】これにより、量産時においても不良品の少
ない高い歩留りで信頼性の高い炭化珪素質焼結体を製造
することができる。
Thus, even in mass production, a highly reliable silicon carbide sintered body can be manufactured with a high yield with few defective products.

【0018】[0018]

【実施例】以下、本発明を実施例をもとに説明する。 実施例1 平均粒径1.5μmの炭化珪素粉末に炭素粉末を5重量
%の割合で混合し、これをプレス成形により60×70
×7mmの形状に成形した。この成形体を1600℃で
仮焼した後、珪素粉末をペースト化したものを成形体表
面に塗布した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. Example 1 Carbon powder was mixed with silicon carbide powder having an average particle size of 1.5 μm at a ratio of 5% by weight, and the mixture was press-molded to form a 60 × 70 powder.
It was formed into a shape of × 7 mm. After calcining the molded body at 1600 ° C., a paste of silicon powder was applied to the surface of the molded body.

【0019】これを1torrの減圧下、1500℃で
1時間珪化処理を行った後、これを表1の温度領域を表
1に記載の降温速度で冷却した。なお、この範囲外の温
度領域は放冷(600℃/hr以上)で冷却した。
This was subjected to a silicidation treatment at 1500 ° C. for 1 hour under a reduced pressure of 1 torr, and was then cooled in the temperature range shown in Table 1 at the rate shown in Table 1. The temperature region outside this range was cooled by standing cooling (600 ° C./hr or more).

【0020】[0020]

【表1】 [Table 1]

【0021】表1の試料No.1〜6の結果によれば、降
温速度が12℃/hrを超える試料No.6では、クラッ
クの発生率が非常に高いものであったが、降温速度を1
2℃/hr以下に制御することによりクラックの発生を
顕著に抑制することができ、降温速度が10℃/hr以
下ではクラックの発生を完全に抑制することができた。
また、試料No.7〜11の結果から、制御温度領域が珪
素の融点の±10℃より狭い試料No.11は、クラック
の発生が認められた。しかし、珪素の融点の±10℃を
含む温度範囲を徐冷することによりクラックの発生を防
止することができた。
According to the results of Samples Nos. 1 to 6 in Table 1, in Sample No. 6 in which the cooling rate exceeds 12 ° C./hr, the crack generation rate was extremely high. 1
By controlling the temperature to 2 ° C./hr or less, the occurrence of cracks could be remarkably suppressed.
From the results of Samples Nos. 7 to 11, cracks were observed in Sample No. 11 in which the control temperature range was narrower than the melting point of silicon ± 10 ° C. However, by gradually cooling the temperature range including the melting point of silicon ± 10 ° C., it was possible to prevent the occurrence of cracks.

【0022】[0022]

【発明の効果】以上詳述した通り、本発明によれば、珪
化後の珪素の固化時の体積膨張によるクラックの発生を
抑制することができ、量産時の歩留りを向上するととも
に、信頼性の高い炭化珪素質焼結体を作製することがで
きる。
As described in detail above, according to the present invention, it is possible to suppress the occurrence of cracks due to volume expansion during the solidification of silicon after silicification, to improve the yield during mass production, and to improve the reliability. A high silicon carbide sintered body can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/573 C04B 41/87 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/573 C04B 41/87

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化珪素、または炭化珪素と炭素からなる
成形体を非酸化性雰囲気中、珪素の融点以上の温度で珪
素を含浸させてなる金属珪素を含む炭化珪素質焼結体の
製造方法において、前記珪素の含浸工程後の降温過程で
少なくとも珪素の融点の±10℃の温度範囲を12℃/
hr以下の降温速度で徐冷する工程を具備することを特
徴とする炭化珪素質焼結体の製造方法。
1. A method for producing a silicon carbide sintered body containing metallic silicon obtained by impregnating silicon carbide or a compact comprising silicon carbide and carbon in a non-oxidizing atmosphere at a temperature not lower than the melting point of silicon. The temperature range of at least ± 10 ° C. of the melting point of silicon in the temperature decreasing process after the silicon impregnation step
A method for producing a silicon carbide based sintered body, comprising a step of gradually cooling at a temperature lowering rate of not more than hr.
JP32473394A 1994-12-27 1994-12-27 Method for producing silicon carbide sintered body Expired - Fee Related JP3270798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32473394A JP3270798B2 (en) 1994-12-27 1994-12-27 Method for producing silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32473394A JP3270798B2 (en) 1994-12-27 1994-12-27 Method for producing silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPH08183661A JPH08183661A (en) 1996-07-16
JP3270798B2 true JP3270798B2 (en) 2002-04-02

Family

ID=18169090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32473394A Expired - Fee Related JP3270798B2 (en) 1994-12-27 1994-12-27 Method for producing silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP3270798B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261130B2 (en) * 2002-06-18 2009-04-30 株式会社東芝 Silicon / silicon carbide composite material
JP4619118B2 (en) * 2002-07-30 2011-01-26 株式会社ブリヂストン Sputtering target and manufacturing method thereof
JP2010222153A (en) * 2009-03-19 2010-10-07 Taiheiyo Cement Corp Silicon carbide sintered compact and method for producing the same
CN115956064A (en) * 2020-09-07 2023-04-11 日本碍子株式会社 Refractory material

Also Published As

Publication number Publication date
JPH08183661A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
US4560668A (en) Substantially pore-free shaped articles of polycrystalline silicon carbide, and a process for their manufacture by isostatic hot-pressing
JP5444387B2 (en) Semiconductor device heat sink
JP2004018322A (en) Silicon/silicon carbide composite material and method of producing the same
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
JPS6128627B2 (en)
JPH0577632B2 (en)
EP0636594A2 (en) Ceramic matrix composite material and method of producing thereof
JP3270798B2 (en) Method for producing silicon carbide sintered body
US5139719A (en) Sintering process and novel ceramic material
JP3698571B2 (en) Silicon carbide based composite and method for producing the same
JPH03208865A (en) Manufacture of refractory composite article
JPH09143591A (en) Production of tungsten copper alloy sintered body
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPS632913B2 (en)
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JPS59143347A (en) Manufacture of material for semiconductor substrate
JP3204566B2 (en) Manufacturing method of heat sink material
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JP3847009B2 (en) Method for producing silicon carbide composite
JPS6212664A (en) Method of sintering b4c base composite body
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JPH06279124A (en) Production of silicon nitride sintered compact
JP2975490B2 (en) Method for producing high thermal conductivity β-type silicon carbide sintered body
JPH0522670B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees