JP3106605B2 - Manufacturing method of electrode material - Google Patents
Manufacturing method of electrode materialInfo
- Publication number
- JP3106605B2 JP3106605B2 JP03275337A JP27533791A JP3106605B2 JP 3106605 B2 JP3106605 B2 JP 3106605B2 JP 03275337 A JP03275337 A JP 03275337A JP 27533791 A JP27533791 A JP 27533791A JP 3106605 B2 JP3106605 B2 JP 3106605B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- chromium
- powder
- sintering
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/0203—Contacts characterised by the material thereof specially adapted for vacuum switches
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Switches (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、水アトマイズ法により
得た銅(Cu)−クロム(Cr)合金の粉末を用いて電
極材料を製造する方法に関し、特に真空インタラプタの
電極の材料の製造に用いて好適なものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material using a copper (Cu) -chromium (Cr) alloy powder obtained by a water atomization method, and more particularly to a method for producing an electrode material for a vacuum interrupter. It is suitable for use.
【0002】[0002]
【従来の技術】真空インタラプタの電極材料として要求
される重要な性能の一つに電流遮断性能の高いことが挙
げられる。2. Description of the Related Art One of the important performances required as an electrode material of a vacuum interrupter is a high current interruption performance.
【0003】銅(Cu)−クロム(Cr)合金は、この
電流遮断性能が非常に優れている電極材料として知られ
ており、従来では電解法等により製造された銅の粉末
と、粉砕法等により製造されたクロムの粉体とを混合し
たものを圧縮加圧成形し、これを高温で焼結する粉末冶
金法による製造方法が一般的である。A copper (Cu) -chromium (Cr) alloy is known as an electrode material having a very excellent current interrupting performance. Conventionally, a copper powder produced by an electrolytic method or the like and a pulverization method or the like are used. A method of powder metallurgy in which a mixture of chromium powder produced by the above method and a mixture thereof is compression-pressed and sintered at a high temperature is generally used.
【0004】この他、圧縮加圧成形した銅の粉体の空隙
部分にクロムを溶浸させる溶浸法や、或いは銅とクロム
との混合粉体を圧縮加圧成形し、これを低温で焼結した
後、その空隙部分に銅を溶浸させるようにした方法、或
いは鋳造による方法等も試みられている。[0004] In addition, an infiltration method in which chromium is infiltrated into voids of the compression-pressed copper powder, or a mixed powder of copper and chromium is compression-pressed and fired at a low temperature. After sintering, a method of infiltrating copper into the voids or a method of casting has been attempted.
【0005】[0005]
【発明が解決しようとする課題】この銅−クロム合金
は、銅のマトリックス中にクロムが分散したものである
が、電極材料としての電気的特性に着目した場合、微細
なクロムが銅マトリックス中に均一に分散している方が
好ましい。This copper-chromium alloy has chromium dispersed in a copper matrix. However, when attention is paid to the electrical characteristics as an electrode material, fine chromium is contained in the copper matrix. It is preferable that they are uniformly dispersed.
【0006】ところが、粉末冶金法により製造される従
来の銅−クロム合金の場合、粉砕法により機械的に粉砕
して得られるクロム粉末の粒度分布の幅が非常に大き
く、しかもその平均粒径が40μm程度にも達するた
め、銅の粉体とクロムの粉体とを混合する際にこれらの
比重差や粉体の粒度、或いは粒度分布の相違により、均
一に混合され難い欠点を有する。この結果、焼結後にお
ける銅マトリックス中のクロムが微細且つ均一に分散せ
ず、その電気的特性が期待できるほど良好ではなかっ
た。However, in the case of a conventional copper-chromium alloy produced by powder metallurgy, the width of the particle size distribution of chromium powder obtained by mechanical pulverization by a pulverization method is very large, and the average particle diameter is large. Since it reaches about 40 μm, there is a drawback that when mixing the copper powder and the chromium powder, uniform mixing is difficult due to the difference in specific gravity, the particle size of the powder, or the difference in particle size distribution. As a result, chromium in the copper matrix after sintering was not finely and uniformly dispersed, and the electrical characteristics were not as good as expected.
【0007】そこで、クロム粉末を更に機械的に粉砕し
てその粒径を小さくすることが考えられるが、この場合
には粉砕の過程及び保管時にクロム粉体の表面が酸化が
進行し、酸素含有量の増加に伴って焼結性が低下してし
まう問題も生ずる。又、粉砕法により得られるクロム粉
末をふるいで分級し、微細径のクロム粉末のみを使用す
ることも考えられるが、この方法では歩留りが極めて悪
くなってしまい、製造コストが嵩む原因となる。[0007] Therefore, it is conceivable to further mechanically pulverize the chromium powder to reduce its particle size. In this case, the surface of the chromium powder is oxidized during the pulverization process and during storage, and oxygen-containing powder is contained. There is also a problem that the sinterability is reduced as the amount increases. It is also conceivable to classify the chromium powder obtained by the pulverization method by sieving and use only the chromium powder having a fine diameter. However, in this method, the yield is extremely deteriorated and the production cost is increased.
【0008】一方、溶浸法により製造される従来の銅−
クロム合金の場合、クロム粉体は酸化し易いため、その
品質管理を徹底する必要がある上、表面が酸化したクロ
ムの粉末は銅との濡れ性が悪く、溶浸ができなくなる欠
点を有する。[0008] On the other hand, conventional copper produced by the infiltration method
In the case of a chromium alloy, chromium powder is easily oxidized, so it is necessary to thoroughly control its quality, and chromium powder having an oxidized surface has poor wettability with copper and has a disadvantage that it cannot be infiltrated.
【0009】又、鋳造法により製造される従来の銅−ク
ロム合金の場合、凝固時の冷却速度が遅いため、銅のマ
トリックス中のクロム粒子が成長してしまい、均一で微
細なクロムの分散が困難となる上、凝固偏析が生じ易い
ことから得られる銅−クロム合金の品質にばらつきが生
じ易い欠点を有する。In the case of a conventional copper-chromium alloy produced by a casting method, chromium particles in a copper matrix grow due to a low cooling rate during solidification, and uniform and fine chromium is dispersed. In addition to the difficulty, there is a disadvantage that the quality of the obtained copper-chromium alloy is apt to vary due to the tendency of solidification segregation.
【0010】[0010]
【課題を解決するための手段】本発明者らは、微細化が
困難で表面酸化の問題を抱えたクロムの機械的粉砕法を
採用せず、アトマイズ法により銅−クロム合金の微粉末
を得た。The present inventors have obtained a fine powder of a copper-chromium alloy by an atomizing method without employing a mechanical pulverization method of chromium, which is difficult to make fine and has a problem of surface oxidation. Was.
【0011】アトマイズ法は、高圧ガスによるガスアト
マイズ法と加圧水による水アトマイズ法とがあり、両方
法により得られた銅−クロム合金粉末を調べたところ、
水アトマイズ法による合金粉末は冷却速度が速いことか
ら形状が不規則となっていた。The atomizing method includes a gas atomizing method using a high-pressure gas and a water atomizing method using pressurized water. The copper-chromium alloy powder obtained by both methods was examined.
The alloy powder produced by the water atomization method had an irregular shape due to a high cooling rate.
【0012】本発明は、水アトマイズ法により得られる
銅−クロム合金粉末のこのような特性に着目してなされ
たもので、その構成は、水アトマイズ法により得られた
銅とクロムとの合金粉末を加圧成形し、得られた成形体
を不活性雰囲気で加熱して焼結させることを特徴とし、
また、水アトマイズ法により得られた銅とクロムとの合
金粉末を加圧成形し、得られた成形体を不活性雰囲気で
加熱して予備焼結を行い、引き続きさらに高い圧力で加
圧した後、予備焼結時より高い温度下で加熱処理するこ
とを特徴とする。The present invention has been made by paying attention to such characteristics of a copper-chromium alloy powder obtained by a water atomization method, and has a structure comprising an alloy powder of copper and chromium obtained by a water atomization method. Is molded under pressure, and the obtained molded body is heated and sintered in an inert atmosphere,
In addition, the alloy powder of copper and chromium obtained by the water atomization method is subjected to pressure molding, the obtained molded body is heated in an inert atmosphere, pre-sintered, and subsequently pressed at a higher pressure. Heat treatment is performed at a higher temperature than during pre-sintering.
【0013】[0013]
【作用】水アトマイズ法により得られる銅−クロム合金
粉末は形状が不規則であるので、プレス成形が容易であ
る。また、表面積が大きくなることから、低い加熱温度
(1000〜1050℃)での焼結ができる。The copper-chromium alloy powder obtained by the water atomizing method has an irregular shape, so that press molding is easy. In addition, since the surface area is large, sintering at a low heating temperature (1000 to 1050 ° C.) can be performed.
【0014】[0014]
【実施例】まず、本発明に係る方法により得られる電極
材料の適用例の一例である真空インタラプタを図2に示
す。相互に一直線状をなす一対のリード棒11,12の
対向端面には、それぞれ電極13,14が図示しないろ
う材を介して一体的に設けてある。これら電極13,1
4を囲む筒状のシールド15の外周中央部は、このシー
ルド15を囲む一対の絶縁筒16,17の間に挟まれた
状態で保持されている。一方の前記リード棒11は、一
方の絶縁筒16の一端に接合された金属端板18を気密
に貫通した状態で、この金属端板18に一体的に固定さ
れている。図示しない駆動装置に連結される他方のリー
ド棒12は、他方の絶縁筒17の他端に気密に接合され
た他方の金属端板19にベローズ20を介して連結さ
れ、駆動装置の作動に伴って電極13,14の対向方向
に往復動可能に可動側の電極14が固定側の電極13に
対して開閉動作するようになっている。FIG. 2 shows a vacuum interrupter as an example of an application example of an electrode material obtained by the method according to the present invention. Electrodes 13 and 14 are provided integrally on opposite ends of a pair of lead rods 11 and 12 which are linear with each other via a brazing material (not shown). These electrodes 13, 1
The central portion of the outer periphery of the cylindrical shield 15 surrounding the shield 4 is held between the pair of insulating tubes 16 and 17 surrounding the shield 15. The one lead bar 11 is integrally fixed to the metal end plate 18 in a state where the lead rod 11 air-tightly penetrates the metal end plate 18 joined to one end of the one insulating cylinder 16. The other lead rod 12 connected to a drive device (not shown) is connected via a bellows 20 to the other metal end plate 19 airtightly joined to the other end of the other insulating cylinder 17, and is driven by the operation of the drive device. The movable electrode 14 opens and closes with respect to the fixed electrode 13 so that the movable electrode 14 can reciprocate in the direction opposite to the electrodes 13 and 14.
【0015】電極13,14の電極材料を製造するため
の銅−クロム合金微粉末は水アトマイズ法により得られ
る。図1にその方法を示す。The copper-chromium alloy fine powder for producing the electrode material for the electrodes 13 and 14 is obtained by a water atomizing method. FIG. 1 shows the method.
【0016】21は溶解炉であり、80%銅−20%ク
ロム量の無酸素銅と5〜6mmの大きさのショットクロム
が1750℃で溶解される。溶湯は温度制御される。Reference numeral 21 denotes a melting furnace in which oxygen-free copper having an amount of 80% copper and 20% chromium and shot chrome having a size of 5 to 6 mm are melted at 1750 ° C. The temperature of the molten metal is controlled.
【0017】22は水アトマイズ装置であり、ドラム状
の装置本体23の上部には溶湯を受けるタンディシュ2
4が設けてあり、装置本体23内における溶湯の出口に
は水噴射ノズル25が設けてある。装置本体23の下部
には水31が貯めてあり、かつ下部の排出口26には回
収コンテナ27が接続してある。Reference numeral 22 denotes a water atomizing device, and a tundish 2 for receiving molten metal is provided on an upper portion of a drum-shaped device main body 23.
4 is provided, and a water injection nozzle 25 is provided at an outlet of the molten metal in the apparatus main body 23. Water 31 is stored in a lower part of the apparatus main body 23, and a collection container 27 is connected to a lower outlet 26.
【0018】回収コンテナ27の出口側にはヒータ2
8、分級器29、秤量器30等が設けられている。At the outlet side of the collection container 27, a heater 2 is provided.
8, a classifier 29, a weighing device 30, and the like are provided.
【0019】銅とクロムの混合溶湯はまず水アトマイズ
装置22のタンディシュ24に注入される。溶湯はタン
ディシュ24の下部より重力により落下する。このと
き、水噴射ノズル25より、9.8MPa (100kgf /
cm2 )に加圧された水が溶湯に吹き付けられ、溶湯は粉
化される。粉化された溶湯は装置本体23内の水31に
よって冷却される。冷却された粉体は装置本体23の下
部から回収コンテナ27に回収され、ヒータ28により
乾燥された後、分級器29を経て秤量器30により秤量
される。The molten mixture of copper and chromium is first poured into a tundish 24 of a water atomizer 22. The molten metal falls from the lower part of the tundish 24 by gravity. At this time, 9.8 MPa (100 kgf /
Water pressurized to cm 2 ) is sprayed on the melt, and the melt is pulverized. The powdered molten metal is cooled by the water 31 in the apparatus main body 23. The cooled powder is collected in a collection container 27 from the lower part of the apparatus main body 23, dried by the heater 28, and then weighed by the weighing device 30 through the classifier 29.
【0020】得られた銅−クロム合金微粉末の粒径は1
50μm以下であり、その成分割合も元の銅とクロムと
の混合物の割合と同等(Cu:80〜95重量%、C
r:5〜20重量%)であった。この銅−クロム合金微
粉末を電子顕微鏡にて観察した結果、5μm以下のクロ
ム粒子が銅マトリックス中に均一に分散されていること
を確認できた。また、冷却速度が速いため、粉体自体は
不規則形状となる。The particle size of the obtained copper-chromium alloy fine powder is 1
50 μm or less, and its component ratio is also equivalent to the ratio of the original mixture of copper and chromium (Cu: 80 to 95% by weight, C
r: 5 to 20% by weight). As a result of observing the copper-chromium alloy fine powder with an electron microscope, it was confirmed that chromium particles of 5 μm or less were uniformly dispersed in the copper matrix. Further, since the cooling rate is high, the powder itself has an irregular shape.
【0021】上記銅−クロム合金粉末による真空インタ
ラプタ用の電極材料の製造は次のようにしてなされる。The production of an electrode material for a vacuum interrupter using the above-mentioned copper-chromium alloy powder is performed as follows.
【0022】まず、銅−クロム合金粉末を直径42mmの
金型に入れ、490MPa (5000kgf /cm2 )の圧力
で加圧成形し、成形体(圧粉体)を得る。このとき、水
アトマイズ法により得られた銅−クロム合金粉末は不規
則な形状をなしているので、強固な成形体を得ることが
できる。First, a copper-chromium alloy powder is placed in a mold having a diameter of 42 mm, and molded under pressure at a pressure of 490 MPa (5000 kgf / cm 2 ) to obtain a compact (compact). At this time, since the copper-chromium alloy powder obtained by the water atomizing method has an irregular shape, a strong compact can be obtained.
【0023】次に、得られた成形体を真空炉(5×10
-5Torr)中において1050℃で30分間加熱し、焼結
させた。銅−クロム合金粉末が不規則形状をなし、表面
積が大きくなっているので、銅の融点より低い温度での
焼結ができる。Next, the obtained compact was placed in a vacuum furnace (5 × 10
(−5 Torr) at 1050 ° C. for 30 minutes for sintering. Since the copper-chromium alloy powder has an irregular shape and a large surface area, it can be sintered at a temperature lower than the melting point of copper.
【0024】このようにして得られた焼結体の充填率
(理論密度に対する比)は95%であり、導電率は50
%IACS、酸素含有量は0.1%であった。The packing ratio (ratio to the theoretical density) of the sintered body thus obtained is 95%, and the conductivity is 50%.
% IACS, oxygen content 0.1%.
【0025】焼結体を直径40mmの電極形状に機械加工
し、図2に示す真空インタラプタの電極13,14と
し、しゃ断性能を測定した結果、7.2KV−12.5KA
の性能を満足することが確認できた。The sintered body was machined into an electrode shape having a diameter of 40 mm, and the electrodes 13 and 14 of the vacuum interrupter shown in FIG. 2 were used. As a result of measuring the breaking performance, 7.2 KV-12.5 KA
It was confirmed that the performance was satisfied.
【0026】水アトマイズ法により得られた銅−クロム
合金粉末による他の電極製造方法を以下に記す。Another electrode manufacturing method using a copper-chromium alloy powder obtained by a water atomizing method is described below.
【0027】水アトマイズ法により得られた銅−クロム
合金粉末を直径42mmの金型に入れ、343MPa (35
00kgf /cm2 )の圧力で加圧成形し、成形体(圧粉
体)を得た。The copper-chromium alloy powder obtained by the water atomizing method is placed in a mold having a diameter of 42 mm and placed at 343 MPa (35
Pressure molding was performed at a pressure of 00 kgf / cm 2 ) to obtain a compact (compact).
【0028】得られた成形体を真空炉(5×10-5Tor
r)中において900℃で60分間加熱し、焼結(予備
焼結)させた。The obtained molded body was placed in a vacuum furnace (5 × 10 −5 Tor).
Heating was performed at 900 ° C. for 60 minutes in sintering to perform sintering (pre-sintering).
【0029】予備焼結により得られた焼結体を再び49
0MPa (5000kgf /cm2 )の圧力で加圧した後、真
空炉(5×10-5Torr)中において、1050℃で30
分間加熱し、焼結(本焼結)を行った。The sintered body obtained by the preliminary sintering is again
After pressurizing at a pressure of 0 MPa (5000 kgf / cm 2 ), the pressure was increased to 3050 at 1050 ° C. in a vacuum furnace (5 × 10 −5 Torr).
After heating for a minute, sintering (main sintering) was performed.
【0030】得られた焼結体の充填率(理論密度に対す
る比)は98%、導電率は55%IACS、酸素含有量
は0.07%であった。つまり、焼結を二段階で行うこ
とにより、焼結後の密度、導電率の向上が図れると共
に、酸素含有率を低減させることができるのである。The packing ratio (ratio to the theoretical density) of the obtained sintered body was 98%, the conductivity was 55% IACS, and the oxygen content was 0.07%. That is, by performing sintering in two stages, the density and conductivity after sintering can be improved, and the oxygen content can be reduced.
【0031】焼結体を直径40mmの電極形状に機械加工
し、図2に示す真空インタラプタの電極13,14と
し、しゃ断性能を測定した結果、7.2KV−12.5KA
の性能を満足することが確認できた。The sintered body was machined into an electrode shape having a diameter of 40 mm, and the electrodes 13 and 14 of the vacuum interrupter shown in FIG. 2 were used to measure the breaking performance. As a result, 7.2 KV-12.5 KA
It was confirmed that the performance was satisfied.
【0032】なお、上記以外にも、成形体の焼結温度と
しては1000〜1050℃が採用され、また、成形圧
力としては196〜588MPa (2000〜6000kg
f /cm2 )が採用され、焼結雰囲気としても真空以外
に、Ar、H2 等のガス雰囲気が採用される。In addition to the above, the sintering temperature of the compact is 1000 to 1050 ° C., and the compacting pressure is 196 to 588 MPa (2000 to 6000 kg).
f / cm 2 ), and a sintering atmosphere other than vacuum, such as a gas atmosphere such as Ar or H 2 .
【0033】[0033]
【発明の効果】本発明による電極材料の製造方法によれ
ば、水アトマイズ法により得られた銅とクロムとの合金
粉末を加圧成形し、得られた成形体を不活性雰囲気で加
熱して焼結させるようにしたので、銅マトリックス中に
微細な粒径のクロムが均一に分散した電極材料を得るこ
とができ、また、合金粉末が不規則な形状をなしている
ので、プレス成形が容易となり、さらに表面積の拡大に
より従来に比べ低い温度での焼結ができる。また、焼結
を二段階で行うことにより、焼結後の密度、導電率を向
上させることができる。According to the method for producing an electrode material according to the present invention, an alloy powder of copper and chromium obtained by a water atomization method is subjected to pressure molding, and the obtained molded body is heated in an inert atmosphere. Sintering makes it possible to obtain an electrode material in which chromium with a fine particle size is uniformly dispersed in a copper matrix.Also, the alloy powder has an irregular shape, so press molding is easy. And sintering at a lower temperature than before can be performed by increasing the surface area. Further, by performing sintering in two stages, the density and conductivity after sintering can be improved.
【図1】水アトマイズ法による銅−クロム合金粉末の製
造の概略工程図である。FIG. 1 is a schematic process chart of production of a copper-chromium alloy powder by a water atomizing method.
【図2】真空インタラプタの一例を表す断面図である。FIG. 2 is a cross-sectional view illustrating an example of a vacuum interrupter.
11,12 リード棒 13,14 電極 22 水アトマイズ装置 24 タンディシュ 25 水噴射ノズル 27 回収コンテナ 28 ヒータ 11, 12 Lead rod 13, 14 Electrode 22 Water atomizing device 24 Tundish 25 Water injection nozzle 27 Recovery container 28 Heater
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−146904(JP,A) 特開 昭57−67141(JP,A) 特開 昭63−174535(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 11/04 C22C 9/00 H01H 33/66 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-146904 (JP, A) JP-A-57-67141 (JP, A) JP-A-63-174535 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01H 11/04 C22C 9/00 H01H 33/66
Claims (1)
ムとの合金粉末を加圧成形し、得られた成形体を不活性
雰囲気で加熱して予備焼結を行い、引き続きさらに高い
圧力で加圧した後、予備焼結時より高い温度下で加熱処
理することを特徴とする電極材料の製造方法。 1. An alloy powder of copper and chromium obtained by a water atomizing method is subjected to pressure molding, and the obtained molded body is heated in an inert atmosphere to perform preliminary sintering, and then to a higher pressure. A method for producing an electrode material, comprising: performing heat treatment at a higher temperature than during pre-sintering after pressing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03275337A JP3106605B2 (en) | 1991-10-23 | 1991-10-23 | Manufacturing method of electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03275337A JP3106605B2 (en) | 1991-10-23 | 1991-10-23 | Manufacturing method of electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05114328A JPH05114328A (en) | 1993-05-07 |
JP3106605B2 true JP3106605B2 (en) | 2000-11-06 |
Family
ID=17554066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03275337A Expired - Fee Related JP3106605B2 (en) | 1991-10-23 | 1991-10-23 | Manufacturing method of electrode material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3106605B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0722406U (en) * | 1993-01-12 | 1995-04-21 | 株式会社ベンハー | Vehicle lights |
JPH0722405U (en) * | 1993-01-12 | 1995-04-21 | 株式会社ベンハー | Vehicle lights |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8440112B2 (en) * | 2008-10-31 | 2013-05-14 | Meiden T&D Corporation | Electrode material for vacuum circuit breaker and method of manufacturing the same |
-
1991
- 1991-10-23 JP JP03275337A patent/JP3106605B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0722406U (en) * | 1993-01-12 | 1995-04-21 | 株式会社ベンハー | Vehicle lights |
JPH0722405U (en) * | 1993-01-12 | 1995-04-21 | 株式会社ベンハー | Vehicle lights |
Also Published As
Publication number | Publication date |
---|---|
JPH05114328A (en) | 1993-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2705998B2 (en) | Manufacturing method of electrical contact material | |
CN104946915A (en) | Preparation method of fine-grained CuCr alloy | |
JPS6362122A (en) | Manufacture of electrode for vacuum breaker | |
US2205865A (en) | Method of manufacturing alloys, in particular steel alloys | |
JP3168630B2 (en) | Manufacturing method of electrode material | |
US4766274A (en) | Vacuum circuit interrupter contacts containing chromium dispersions | |
JP3106605B2 (en) | Manufacturing method of electrode material | |
JP3067318B2 (en) | Manufacturing method of electrode material | |
US5352404A (en) | Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. % | |
JP4620071B2 (en) | Contact materials for vacuum circuit breakers | |
JPH05217473A (en) | Manufacture of electrode material | |
CN107604199A (en) | A kind of preparation method of Cu Cr Fe vacuum contact materials | |
CN114892064B (en) | FeCrCuVCo high-entropy alloy and preparation method thereof | |
JP3168635B2 (en) | Manufacturing method of electrode material | |
JP3067317B2 (en) | Manufacturing method of electrode material | |
JP3106609B2 (en) | Manufacturing method of electrode material | |
JP3106598B2 (en) | Manufacturing method of electrode material | |
JP3298129B2 (en) | Manufacturing method of electrode material | |
JP3106610B2 (en) | Manufacturing method of electrode material | |
JP2853308B2 (en) | Manufacturing method of electrode material | |
JPS62116736A (en) | Production of electrode for vacuum valve circuit breaker | |
JPH0472896B2 (en) | ||
JPH05263177A (en) | Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure | |
JPH09167534A (en) | Contact member for vacuum breaker and its manufacture | |
JPH09190730A (en) | Manufacture of contact member for vacuum circuit breaker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000808 |
|
LAPS | Cancellation because of no payment of annual fees |