JPH0472896B2 - - Google Patents

Info

Publication number
JPH0472896B2
JPH0472896B2 JP60130098A JP13009885A JPH0472896B2 JP H0472896 B2 JPH0472896 B2 JP H0472896B2 JP 60130098 A JP60130098 A JP 60130098A JP 13009885 A JP13009885 A JP 13009885A JP H0472896 B2 JPH0472896 B2 JP H0472896B2
Authority
JP
Japan
Prior art keywords
nickel
powder
silver
weight
electrical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60130098A
Other languages
Japanese (ja)
Other versions
JPS61288032A (en
Inventor
Shigeki Ochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60130098A priority Critical patent/JPS61288032A/en
Publication of JPS61288032A publication Critical patent/JPS61288032A/en
Publication of JPH0472896B2 publication Critical patent/JPH0472896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明に粉末冶金により製造される銀−ニツケ
ル系合金からなる電気接点材料に関する。 〔従来の技術〕 電磁スイツチ等に使用される接点材料には、電
気アークによる消耗が少ない、遮断特性が優れて
いる、接触抵抗が低く且つそれを維持できる、開
閉を繰り返しても溶着しない、等の条件が要求さ
れる。特に、耐電気アーク性及び耐溶着性を備え
ることは接点材料自体及びこれを用いる制御機器
の寿命を左右するので重要である。 これらの条件を比較的バランスよく具えた電気
接点材料として、ニツケルを約5〜50重量%含有
した銀−ニツケル系焼結合金が中負荷ないし低負
荷電流用として市販され、使用されている。 しかし、銀とニツケルは固溶解度(固溶限)が
低いため、ニツケルは銀中に固溶せず、特にニツ
ケルが1重量%以上になると通常の溶解法では均
一に固溶させることは不可能になる。従つて、上
記の銀−ニツケル系合金の電気接点材料を製造す
るためには、溶解法によらず粉末冶金法が利用さ
れる。即ち、微細な銀粉末とニツケル粉末とを混
合し、圧縮成形した後に普通焼結するか又は熱間
押出等により焼結し、更に必要に応じて密度を高
めるために冷間圧延等を行なつて板状又は線状の
電気接点材料を製造する。 しかしこのようにして製造された従来の銀−ニ
ツケル系電気接点材料は、製造プロセス中にガス
を含むこと及び銀とニツケルの固溶解度が低いこ
と等のため耐電気アーク性が劣り、従つて銀の消
耗が比較的大きく、接触抵抗が増大し、溶着が起
りやすくなる欠点があつた。 〔発明が解決しようとする問題点〕 本発明は、スイツチの開閉により頻繁に電気ア
ークに曝されても消耗量が少なく、接触抵抗が増
大せず、溶着が起こりにくい銀−ニツケル系の電
気接点材料の製造方法を提供することを目的とす
る。 〔問題点を解決するための手段〕 本発明においては、従来使用していた銀粉末の
代わりに、銀にニツケルを超急冷粉末製造法によ
つて得られる銀にニツケルを微細均一に分散させ
た銀−ニツケル複合粉末を使用し、同時に原料粉
末からの脱ガス工程を採用する。 即ち、本発明の銀−ニツケル系電気接点材料の
製造方法においては、超急冷粉末製造法により銀
とニツケルの溶湯を104℃/秒以上の冷却速度で
急冷凝固して銀に1〜5重量%のニツケルを微細
均一に分散させた銀−ニツケル複合粉末を製造
し、この銀−ニツケル複合粉末に最終組成でニツ
ケルが5〜40重量%となるように更にニツケル粉
末を添加混合し、得られた混合粉を脱ガスした
後、圧縮成形して焼結するか又は熱間押出加工す
ることを特徴とする。 本発明で使用する銀−ニツケル複合粉末は超急
冷粉末製造法によつて、銀中へのニツケルの固溶
解度を超えて銀にニツケルを微細均一に分散させ
た粉末である。超急冷粉末製造法は溶湯を噴霧化
させることによつて急速に凝固させる方法であ
り、噴霧化の手段によつてガスアトマイズ法、液
体アトマイズ法、遠心アトマイズ法、超音波アト
マイズ法、回転ロールアトマイズ法等がある。冷
却速度が速いほどニツケルの固溶解度ないし分散
量が増加するので、104℃/秒以上の冷却速度、
好ましくは〜107℃/秒程度の冷却速度が得られ
る装置を用いることが望ましい。 このようにして製造した銀−ニツケル複合粉末
は、製造方法にもよるが銀中にニツケルが1〜5
重量%微細均一に分散し、その内1重量%程度の
ニツケルが銀に固溶している。従つて、必然的に
最終組成におけるニツケル含有量が5〜40重量%
となるようニツケル含有量を補なうために、ある
程度ニツケル粉末を銀−ニツケル複合粉末に加え
ねばならないが、全て銀粉末とニツケル粉末を使
用していた従来に比べ、銀粉末を銀−ニツケル複
合粉末に代えることにより遥かに微細で均一なニ
ツケルの分散が達成でき、ニツケルの固溶解度の
不足を補うことができる。 本発明方法では、銀−ニツケル複合粉末とニツ
ケル粉末に、更に酸化イツトリウム粉末を最終組
成で全体の3重量%まで添加混合することができ
る。酸化イツトリウム粉末を全体の3重量%まで
の範囲で添加することによつて、得られる銀−ニ
ツケル系焼結合金の耐熱性を著しく向上させるこ
とが出来ると共に、多量のニツケル粉末の添加に
よつて起こる接触抵抗の増大等の接点性能の低下
及び加工性の低下を防止できる。酸化イツトリウ
ムはセラミツクであつて銀−ニツケルに固溶しな
いため、メカニカルアロイング法により銀−ニツ
ケル複合粉末及びニツケル粉末に添加するのが好
ましい。 銀−ニツケル複合粉末の粒径は44μm以下であ
り、及びニツケル粉末の粒径は10μm以下である
ことが均一な混合粉を得るために好ましい。必要
に応じて更に酸化イツトリウム粉末を添加するこ
とができるが、これら3種の粉末の混合順序は重
要ではない。 又、本発明方法では、この混合粉を充分に脱ガ
スした後、機械プレス又は冷間静水圧成形
(Cold Isostatic Pressing)等により圧縮成形
し、普通焼結するか、もしくは熱間押出加工して
電気接点材料を得る。上記脱ガス工程により、通
常の粉末冶金法では原料粉末中に混入して電気接
点材料中にも残留しやすいガスを、成形ないし焼
結前に除去できる。必要に応じて、接点材料の密
度を高め又は形状を整えるために、再プレス、圧
延又は伸線等の加工を施して電気接点とする。 〔実施例〕 実施例により本発明を更に詳しく説明する。 実施例 1 5重量%のNiを混合したAgの溶湯をヘリウム
ガスアトマイズ法により冷却速度104 P〜105℃/
秒で冷却し、平均粒径60μmのAg−5wt%Ni複合
粉末を製造した。 これを篩分けして44μm以下の複合粉末を集
め、カルボニールニツケル粉末を添加してAg−
10wt%Ni混合粉を調整した。この混合粉を銀合
金罐に10-4〜10-5torrで真空脱ガスし、そのまま
電子ビーム溶接して封入し、温度880℃、圧力
1500Kgf/cm2で2時間の条件で熱間静水圧成形
(Hot Isostatic Pressing)することによりAg−
10wt%Niの合金を製造した。得られた合金の密
度は理論密度の99%以上であつた。 次に、この合金を押出加工により直径10mmの押
出棒を作り、スエージ及び冷間伸線により直径
2.42mmの線状に加工し、更にヘツダー加工によつ
て直径5mmの電気接点リベツを作製した。 このようにして得られた電気接点のアーク発生
量及び消耗量を測定するために、25Aフレームの
マグネツトスイツチでインチング試験を行なつ
た。電気条件はAC220V、105A、力率0.4、及び
開閉度500回/時間とした。2万回の開閉後にお
ける接点の消耗量を測定した。試験結果を第1表
に示した。比較のために、Ag粉末とNi粉末の焼
結体で実施例と同じAg−10wt%Niの組成を有す
る従来の電気接点について、同一条件下で行なつ
た試験結果も併記した。
[Industrial Application Field] The present invention relates to an electrical contact material made of a silver-nickel alloy produced by powder metallurgy. [Prior art] Contact materials used in electromagnetic switches, etc. have characteristics such as low wear due to electric arcs, excellent breaking characteristics, low contact resistance and the ability to maintain it, and no welding even after repeated opening and closing. The following conditions are required. In particular, it is important to have electrical arc resistance and welding resistance because they affect the life of the contact material itself and the control equipment using it. As an electrical contact material that satisfies these conditions in a relatively well-balanced manner, a silver-nickel based sintered alloy containing about 5 to 50% by weight of nickel is commercially available and used for medium to low load currents. However, since silver and nickel have low solid solubility (solid solubility limit), nickel does not dissolve in silver, and especially when nickel exceeds 1% by weight, it is impossible to uniformly dissolve nickel in silver using normal dissolution methods. become. Therefore, in order to manufacture the above-mentioned silver-nickel alloy electrical contact material, a powder metallurgy method is used instead of a melting method. That is, fine silver powder and nickel powder are mixed, compression molded, and then sintered normally or by hot extrusion, and if necessary, cold rolled or the like is performed to increase the density. A plate-shaped or wire-shaped electrical contact material is manufactured using this process. However, conventional silver-nickel electrical contact materials produced in this way have poor electrical arc resistance due to the inclusion of gas in the manufacturing process and the low solid solubility of silver and nickel. The drawbacks were that the wear was relatively large, the contact resistance increased, and welding was more likely to occur. [Problems to be Solved by the Invention] The present invention provides a silver-nickel electrical contact that has little wear even if it is frequently exposed to electric arcs due to the opening and closing of switches, does not increase contact resistance, and is less prone to welding. The purpose is to provide a method for manufacturing materials. [Means for solving the problem] In the present invention, instead of the conventionally used silver powder, nickel is finely and uniformly dispersed in silver obtained by an ultra-quenched powder manufacturing method. A silver-nickel composite powder is used, and at the same time a degassing process from the raw material powder is adopted. That is, in the method for producing a silver-nickel electrical contact material of the present invention, a molten silver and nickel is rapidly solidified at a cooling rate of 10 4 °C/second or more by an ultra-quenched powder production method, and 1 to 5 weight of silver is added to the silver. % of nickel is finely and uniformly dispersed, and further nickel powder is added and mixed to this silver-nickel composite powder so that the final composition contains nickel of 5 to 40% by weight. After the mixed powder is degassed, it is compression molded and sintered, or hot extruded. The silver-nickel composite powder used in the present invention is a powder in which nickel is finely and uniformly dispersed in silver using an ultra-quenched powder manufacturing method, exceeding the solid solubility of nickel in silver. The ultra-quenched powder manufacturing method is a method of rapidly solidifying molten metal by atomizing it. Depending on the atomization method, there are gas atomization methods, liquid atomization methods, centrifugal atomization methods, ultrasonic atomization methods, and rotating roll atomization methods. etc. The faster the cooling rate, the greater the solid solubility or dispersion of nickel .
Preferably, it is desirable to use an apparatus that can obtain a cooling rate of about 10 7 C/sec. The silver-nickel composite powder produced in this way has 1 to 5 nickel in silver, depending on the production method.
It is finely and uniformly dispersed in weight percent, and approximately 1 weight percent of nickel is dissolved in silver. Therefore, the final composition necessarily has a nickel content of 5 to 40% by weight.
In order to compensate for the nickel content, a certain amount of nickel powder must be added to the silver-nickel composite powder, but compared to the past, which used both silver powder and nickel powder, silver powder is By replacing it with powder, a much finer and more uniform dispersion of nickel can be achieved, making up for the lack of solid solubility of nickel. In the method of the present invention, yttrium oxide powder can be added to and mixed with the silver-nickel composite powder and the nickel powder in an amount of up to 3% by weight of the total in the final composition. By adding yttrium oxide powder in an amount up to 3% by weight of the total, the heat resistance of the resulting silver-nickel sintered alloy can be significantly improved, and by adding a large amount of nickel powder, Deterioration in contact performance such as increase in contact resistance and deterioration in processability can be prevented. Since yttrium oxide is a ceramic and does not form a solid solution in silver-nickel, it is preferably added to the silver-nickel composite powder and nickel powder by a mechanical alloying method. In order to obtain a uniform mixed powder, it is preferable that the particle size of the silver-nickel composite powder is 44 μm or less, and that the particle size of the nickel powder is 10 μm or less. Yttrium oxide powder can be further added if necessary, but the order in which these three powders are mixed is not important. In addition, in the method of the present invention, after the mixed powder is sufficiently degassed, it is compressed by mechanical pressing or cold isostatic pressing, and then sintered normally or hot extruded. Obtain electrical contact material. By the above-mentioned degassing step, the gas that gets mixed into the raw material powder and tends to remain in the electrical contact material in the usual powder metallurgy method can be removed before forming or sintering. If necessary, in order to increase the density or adjust the shape of the contact material, processing such as re-pressing, rolling, or wire drawing is performed to obtain an electrical contact. [Example] The present invention will be explained in more detail with reference to Examples. Example 1 Molten Ag mixed with 5% by weight of Ni was cooled at a cooling rate of 10 4 ~ P ~ 10 5 °C/by helium gas atomization method.
It was cooled in seconds to produce Ag-5wt%Ni composite powder with an average particle size of 60 μm. This was sieved to collect composite powder of 44μm or less, and carbonyl nickel powder was added to Ag-
A 10wt% Ni mixed powder was prepared. This mixed powder was vacuum degassed in a silver alloy can at 10 -4 to 10 -5 torr, sealed by electron beam welding, and heated at a temperature of 880°C and a pressure of
Ag-
An alloy with 10wt%Ni was produced. The density of the obtained alloy was 99% or more of the theoretical density. Next, an extruded rod with a diameter of 10 mm is made from this alloy by extrusion processing, and the diameter is
It was processed into a 2.42 mm linear shape and further processed into a header to produce an electrical contact rivet with a diameter of 5 mm. In order to measure the amount of arc generated and the amount of wear of the electrical contacts thus obtained, an inching test was conducted using a 25A frame magnetic switch. The electrical conditions were AC220V, 105A, power factor 0.4, and opening/closing rate 500 times/hour. The amount of contact wear was measured after 20,000 times of opening and closing. The test results are shown in Table 1. For comparison, test results of a conventional electrical contact made of a sintered body of Ag powder and Ni powder and having the same Ag-10wt%Ni composition as in the example under the same conditions are also shown.

【表】 実施例 2 5重量%のNiを混合したAgの溶湯を遠心アト
マイズ法により冷却速度105〜106℃/秒で冷却
し、平均粒径50〜60μmのAg−5wt%Ni複合粉末
を製造した。この複合粉末にカルボニルニツケル
粉末とY2O3粉末を添加して、乾式アトライター
中で機械的に混合し、Ag−15wt%Ni−0.2wt%
Y2O3混合粉を得た。アトライター条件はアルゴ
ン雰囲気中で、アジテータ回転数150rpm及びア
トライター時間24hrであつた。得られた混合粉を
Ag合金罐に充填し、500℃で1時間脱ガス処理し
た後、罐を電子ビーム溶接で封止した。これを
750℃にて押出比22で熱間押出加工して線状の接
点材料を得た。更にこの線を熱間ドローベンチと
伸線機で直径2.42mmまで伸線し、最後にヘツダー
加工によつて直径5mmの電気接点リベツトを作製
した。 このようにして得られた電気接点のアーク発生
量及び消耗量を実施例1と同一条件で測定した。
比較のために、Ag−15wt%Niの組成の焼結体か
らなる従来の電気接点についても同一の試験を行
ない、試験結果を第2表に併せて記載した。
[Table] Example 2 A molten Ag mixed with 5 wt% Ni was cooled by centrifugal atomization at a cooling rate of 10 5 to 10 6 °C/sec to produce an Ag-5 wt% Ni composite powder with an average particle size of 50 to 60 μm. was manufactured. Carbonyl nickel powder and Y 2 O 3 powder were added to this composite powder and mixed mechanically in a dry attritor to obtain Ag-15wt% Ni-0.2wt%.
A Y 2 O 3 mixed powder was obtained. The attritor conditions were an argon atmosphere, an agitator rotation speed of 150 rpm, and an attritor time of 24 hr. The obtained mixed powder
After filling an Ag alloy can and degassing at 500°C for 1 hour, the can was sealed by electron beam welding. this
A linear contact material was obtained by hot extrusion at 750°C and an extrusion ratio of 22. Further, this wire was drawn to a diameter of 2.42 mm using a hot draw bench and a wire drawing machine, and finally an electrical contact rivet with a diameter of 5 mm was produced by header processing. The amount of arc generated and the amount of wear of the electrical contact thus obtained were measured under the same conditions as in Example 1.
For comparison, the same test was conducted on a conventional electrical contact made of a sintered body having a composition of Ag-15wt%Ni, and the test results are also listed in Table 2.

【表】 次に、本発明のAg−15wt%Ni−0.2wt%
Y2oO3合金の接点材料と従来のAg−15wt%Ni合
金の接点材料の加工性能を比較すると、熱間押出
加工後に直径15mmから直径2.42mmに冷間伸線する
ための焼鈍回数は、従来品の場合800℃で30分間
の焼鈍が6回必要であつたが、本発明品において
は同一条件で4回の焼鈍で充分であつた。 実施例 3 3重量%のNiを混合したAgの溶湯をヘリウム
ガスアトマイズ法により冷却速度104〜105℃/秒
で冷却し、平均粒径50〜65μmのAg−3wt%Ni複
合粉末を製造した。この複合粉末を篩分けして、
100メツシユ以下のものを集めカルボニルNi粉末
を添加し、ボールミルで混合し、Ag−5wt%Ni
混合粉を得た。混合粉を10-4〜10-5Qtorrで真空
脱ガスした後を5500Kgf/cm2で冷間静水圧成形し、
成形体を10-4〜10-5Qtorrの真空中、850℃で2時
間焼結した。次に、焼結体を850℃、1200Kgf/cm2
で1時間の条件で熱間静水圧成形により密度99%
以上とし、更に熱間圧延で厚さ1.5mmの板とした
後、各辺が10mmで厚さ1.5mmの電気接点を作製し
た。 このようにして得られた電気接点について、
25Aフレームのマグネツトスイツチでインチング
試験を行なつた。電気条件はAC220V、375A、
力率0.6及び開閉頻度300回/時間とした。1万回
の開閉後に電気接点の消耗量を測定した。結果
を、Ag粉末とNi粉末との焼結体よりなる作来品
についての試験結果と共に第3表に記載した。
[Table] Next, Ag-15wt% Ni-0.2wt% of the present invention
Comparing the processing performance of Y 2 oO 3 alloy contact material and conventional Ag-15wt%Ni alloy contact material, the number of annealing times for cold drawing from a diameter of 15 mm to a diameter of 2.42 mm after hot extrusion processing is: In the case of the conventional product, six times of annealing for 30 minutes at 800° C. was required, but for the product of the present invention, four times of annealing under the same conditions were sufficient. Example 3 A molten Ag mixed with 3 wt% Ni was cooled by a helium gas atomization method at a cooling rate of 10 4 to 10 5 °C/sec to produce an Ag-3 wt% Ni composite powder with an average particle size of 50 to 65 μm. . This composite powder is sieved and
Collect 100 meshes or less, add carbonyl Ni powder, mix in a ball mill, Ag-5wt%Ni
A mixed powder was obtained. After vacuum degassing the mixed powder at 10 -4 to 10 -5 Qtorr, it was cold isostatically formed at 5500Kgf/ cm2 .
The compact was sintered at 850° C. for 2 hours in a vacuum of 10 −4 to 10 −5 Qtorr. Next, the sintered body was heated to 850℃ and 1200Kgf/cm 2
The density is 99% by hot isostatic pressing for 1 hour.
After doing the above and hot rolling it into a plate with a thickness of 1.5 mm, an electrical contact with each side of 10 mm and a thickness of 1.5 mm was produced. Regarding the electrical contacts obtained in this way,
An inching test was conducted using a 25A frame magnetic switch. Electrical conditions are AC220V, 375A,
The power factor was 0.6 and the switching frequency was 300 times/hour. The amount of wear on the electrical contacts was measured after 10,000 times of opening and closing. The results are listed in Table 3 together with the test results for a conventional product made of a sintered body of Ag powder and Ni powder.

【表】 〔発明の効果〕 本発明によれば、銀粉末の代わりに銀にニツケ
ルを微細均一に分散させた銀−ニツケル複合粉末
を用いることによつて、銀とニツケルの均一な分
布が得られ且つ相互の結合が改善され、更に各粉
末を混合した混合粉を脱ガスとしてから成形及び
焼結するので、得られる銀−ニツケル電気接点材
料は電気アークの発生が少く且つ銀とニツケルの
分離及び蒸発飛散による接点の消耗を最小限度に
抑えることができ、耐溶着性も改善される。又、
銀とニツケルの均一な分布及び結合力の改善によ
つて、冷間加工における加工性が改良され、従つ
て生産効率を大幅に向上することができる。更に
酸化イツトリウムを含む接点材料においては、耐
熱性が向上すると共に、ニツケル粉末の使用量が
増えても、得られる接点材料の接触抵抗の増大等
の接点性能が低下せず、又加工性の低下も防止で
きる。
[Table] [Effects of the Invention] According to the present invention, by using a silver-nickel composite powder in which nickel is finely and uniformly dispersed in silver instead of silver powder, a uniform distribution of silver and nickel can be obtained. Furthermore, since the mixed powder of each powder is degassed before being molded and sintered, the resulting silver-nickel electrical contact material has less occurrence of electric arc and the separation of silver and nickel. Also, wear of the contacts due to evaporation and scattering can be minimized, and welding resistance is also improved. or,
The uniform distribution of silver and nickel and the improved bonding strength improve the processability in cold working and therefore can significantly increase production efficiency. Furthermore, contact materials containing yttrium oxide have improved heat resistance, and even if the amount of nickel powder used increases, the contact performance of the resulting contact material does not deteriorate, such as an increase in contact resistance, and there is no decrease in workability. can also be prevented.

Claims (1)

【特許請求の範囲】 1 超急冷粉末製造法により銀とニツケルの溶湯
を10℃/秒以上の冷却速度で急冷凝固して銀に1
〜5重量%のニツケルを微細均一に分散させた銀
−ニツケル複合粉末を製造し、この銀−ニツケル
複合粉末に最終組成でニツケルが5〜40重量%と
なるように更にニツケル粉末を添加混合し、得ら
れた混合粉を脱ガスした後、圧縮成形して焼結す
るか又は熱間押出加工することを特徴とする銀−
ニツケル系電気接点材料の製造方法。 2 超急冷粉末製造法により銀とニツケルの溶湯
を10℃/秒以上の冷却速度で急冷凝固して銀に1
〜5重量%のニツケルを微細均一に分散させた銀
−ニツケル複合粉末を製造し、この銀−ニツケル
複合粉末に最終組成でニツケルが5〜40重量%及
び酸化イツトリウムが3重量%以下となるように
更にニツケル粉末及び酸化イツトリウム粉末を添
加混合し、得られた混合粉を脱ガスした後、圧縮
成形して焼結するか又は熱間押出加工することを
特徴とする銀−ニツケル系電気接点材料の製造方
法。
[Claims] 1. Melted silver and nickel are rapidly solidified by an ultra-quenched powder production method at a cooling rate of 10°C/second or more to form silver.
A silver-nickel composite powder is produced in which ~5% by weight of nickel is finely and uniformly dispersed, and further nickel powder is added and mixed to this silver-nickel composite powder so that the final composition contains 5 to 40% by weight of nickel. , the resulting mixed powder is degassed and then compression molded and sintered or hot extruded.
A method for manufacturing nickel-based electrical contact materials. 2 Using an ultra-quenched powder manufacturing method, molten silver and nickel are rapidly solidified at a cooling rate of 10℃/second or more to form silver.
A silver-nickel composite powder in which ~5% by weight of nickel is finely and uniformly dispersed is produced, and the final composition of this silver-nickel composite powder is such that the final composition is 5 to 40% by weight of nickel and 3% by weight or less of yttrium oxide. A silver-nickel electrical contact material characterized by further adding and mixing nickel powder and yttrium oxide powder, and degassing the obtained mixed powder, followed by compression molding and sintering, or hot extrusion processing. manufacturing method.
JP60130098A 1985-06-13 1985-06-13 Silver-nickel electrical contact point material Granted JPS61288032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60130098A JPS61288032A (en) 1985-06-13 1985-06-13 Silver-nickel electrical contact point material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60130098A JPS61288032A (en) 1985-06-13 1985-06-13 Silver-nickel electrical contact point material

Publications (2)

Publication Number Publication Date
JPS61288032A JPS61288032A (en) 1986-12-18
JPH0472896B2 true JPH0472896B2 (en) 1992-11-19

Family

ID=15025898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60130098A Granted JPS61288032A (en) 1985-06-13 1985-06-13 Silver-nickel electrical contact point material

Country Status (1)

Country Link
JP (1) JPS61288032A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911769A (en) * 1987-03-25 1990-03-27 Matsushita Electric Works, Ltd. Composite conductive material
JPH0791608B2 (en) * 1990-06-21 1995-10-04 松下電工株式会社 Contact material and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090992A (en) * 1973-12-15 1975-07-21
JPS5386622A (en) * 1977-01-11 1978-07-31 Toshiba Corp Silver-nickel electrical contact point material
JPS5763648A (en) * 1980-10-02 1982-04-17 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-ni composite electrical contact material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090992A (en) * 1973-12-15 1975-07-21
JPS5386622A (en) * 1977-01-11 1978-07-31 Toshiba Corp Silver-nickel electrical contact point material
JPS5763648A (en) * 1980-10-02 1982-04-17 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-ni composite electrical contact material

Also Published As

Publication number Publication date
JPS61288032A (en) 1986-12-18

Similar Documents

Publication Publication Date Title
JP2705998B2 (en) Manufacturing method of electrical contact material
US4452652A (en) Electrical contact materials and their production method
CN112620640A (en) Preparation method of AgNi electrical contact material based on recycling of AgC scrap
JPH0796701B2 (en) Sputtering target and manufacturing method thereof
US4766274A (en) Vacuum circuit interrupter contacts containing chromium dispersions
US4452651A (en) Electrical contact materials and their production method
CN109593981A (en) A kind of preparation method for the sliver oxidized tin contactor materials improving ingot blank agglutinating property
JP3168630B2 (en) Manufacturing method of electrode material
JPH0561334B2 (en)
US5352404A (en) Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. %
JPH0472896B2 (en)
JP3067318B2 (en) Manufacturing method of electrode material
JPH05217473A (en) Manufacture of electrode material
JP3106605B2 (en) Manufacturing method of electrode material
CN115570139B (en) Preparation method of silver tin oxide electric contact material
WO1998017423A1 (en) Dispersion strengthened copper
JP2912427B2 (en) Method for producing hydrogen storage alloy powder and cathode for Ni-hydrogen battery
JPS621835A (en) Manufacture of ag-nio electric contact point material
JP3106609B2 (en) Manufacturing method of electrode material
JPH0563535B2 (en)
JP3168635B2 (en) Manufacturing method of electrode material
JP3106610B2 (en) Manufacturing method of electrode material
JPH05101749A (en) Manufacture of electrode material
JPH0432133B2 (en)
JPS5938301A (en) Manufacture of sintered ag-w contact