JP3168635B2 - Manufacturing method of electrode material - Google Patents

Manufacturing method of electrode material

Info

Publication number
JP3168635B2
JP3168635B2 JP28138891A JP28138891A JP3168635B2 JP 3168635 B2 JP3168635 B2 JP 3168635B2 JP 28138891 A JP28138891 A JP 28138891A JP 28138891 A JP28138891 A JP 28138891A JP 3168635 B2 JP3168635 B2 JP 3168635B2
Authority
JP
Japan
Prior art keywords
powder
copper
chromium
electrode material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28138891A
Other languages
Japanese (ja)
Other versions
JPH05117721A (en
Inventor
信行 吉岡
泰司 野田
利真 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP28138891A priority Critical patent/JP3168635B2/en
Publication of JPH05117721A publication Critical patent/JPH05117721A/en
Application granted granted Critical
Publication of JP3168635B2 publication Critical patent/JP3168635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスアトマイズ法によ
り得た銅(Cu)−クロム(Cr)合金の粉末を用いて
電極材料を製造する方法に関し、特に真空インタラプタ
の電極の材料の製造に用いて好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material using a copper (Cu) -chromium (Cr) alloy powder obtained by a gas atomizing method, and more particularly to a method for producing an electrode material for a vacuum interrupter. It is suitable.

【0002】[0002]

【従来の技術】真空インタラプタの電極材料として要求
される重要な性能の一つに電流しゃ断性能の高いことが
挙げられる。
2. Description of the Related Art One of the important performances required as an electrode material of a vacuum interrupter is a high current breaking performance.

【0003】銅(Cu)−クロム(Cr)合金は、この
電流しゃ断性能が非常に優れている電極材料として知ら
れており、従来では電解法等により製造された銅の粉末
と、粉砕法等により製造されたクロムの粉体とを混合し
たものを圧縮加圧成形し、これを高温で焼結する粉末冶
金法による製造方法が一般的である。
[0003] A copper (Cu) -chromium (Cr) alloy is known as an electrode material having a very excellent current breaking performance. Conventionally, a copper powder produced by an electrolytic method or the like and a pulverization method or the like are used. A method of powder metallurgy in which a mixture of chromium powder produced by the above method and a mixture thereof is compression-pressed and sintered at a high temperature is generally used.

【0004】この他、圧縮加圧成形した銅の粉体の空隙
部分にクロムを溶浸させる溶浸法や、或いは銅とクロム
との混合粉体を圧縮加圧成形し、これを低温で焼結した
後、その空隙部分に銅を溶浸させるようにした方法、或
いは鋳造による方法等も試みられている。
[0004] In addition, an infiltration method in which chromium is infiltrated into voids of the compression-pressed copper powder, or a mixed powder of copper and chromium is compression-pressed and fired at a low temperature. After sintering, a method of infiltrating copper into the voids or a method of casting has been attempted.

【0005】[0005]

【発明が解決しようとする課題】この銅−クロム合金
は、銅のマトリックス中にクロムが分散したものである
が、電極材料としての電気的特性に着目した場合、微細
なクロムが銅マトリックス中に均一に分散している方が
好ましい。
In this copper-chromium alloy, chromium is dispersed in a copper matrix. However, when attention is paid to the electrical characteristics as an electrode material, fine chromium is contained in the copper matrix. It is preferable that they are uniformly dispersed.

【0006】ところが、粉末冶金法により製造される従
来の銅−クロム合金の場合、粉砕法により機械的に粉砕
して得られるクロム粉末の粒度分布の幅が非常に大き
く、しかもその平均粒径が40μm程度にも達するた
め、銅の粉体とクロムの粉体とを混合する際にこれらの
比重差や粉体の粒度、或いは粒度分布の相違により、均
一に混合され難い欠点を有する。この結果、焼結後にお
ける銅マトリックス中のクロムが微細且つ均一に分散せ
ず、その電気的特性が期待できるほど良好ではなかっ
た。
However, in the case of a conventional copper-chromium alloy produced by powder metallurgy, the width of the particle size distribution of chromium powder obtained by mechanical pulverization by a pulverization method is very large, and the average particle diameter is large. Since it reaches about 40 μm, there is a drawback that when mixing the copper powder and the chromium powder, uniform mixing is difficult due to the difference in specific gravity, the particle size of the powder, or the difference in particle size distribution. As a result, chromium in the copper matrix after sintering was not finely and uniformly dispersed, and the electrical characteristics were not as good as expected.

【0007】そこで、クロム粉末を更に機械的に粉砕し
てその粒径を小さくすることが考えられるが、この場合
には粉砕の過程及び保管時にクロム粉体の表面が酸化が
進行し、酸素含有量の増加に伴って焼結性が低下してし
まう問題も生ずる。又、粉砕法により得られるクロム粉
末をふるいで分級し、微細径のクロム粉末のみを使用す
ることも考えられるが、この方法では歩留りが極めて悪
くなってしまい、製造コストが嵩む原因となる。
[0007] Therefore, it is conceivable to further mechanically pulverize the chromium powder to reduce its particle size. In this case, the surface of the chromium powder is oxidized during the pulverization process and during storage, and oxygen-containing powder is contained. There is also a problem that the sinterability is reduced as the amount increases. It is also conceivable to classify the chromium powder obtained by the pulverization method by sieving and use only the chromium powder having a fine diameter. However, in this method, the yield is extremely deteriorated and the production cost is increased.

【0008】一方、溶浸法により製造される従来の銅−
クロム合金の場合、クロム粉体は酸化し易いため、その
品質管理を徹底する必要がある上、表面が酸化したクロ
ムの粉末は銅との濡れ性が悪く、溶浸ができなくなる欠
点を有する。
[0008] On the other hand, conventional copper produced by the infiltration method
In the case of a chromium alloy, chromium powder is easily oxidized, so it is necessary to thoroughly control its quality, and chromium powder having an oxidized surface has poor wettability with copper and has a disadvantage that it cannot be infiltrated.

【0009】又、鋳造法により製造される従来の銅−ク
ロム合金の場合、凝固時の冷却速度が遅いため、銅のマ
トリックス中のクロム粒子が成長してしまい、均一で微
細なクロムの分散が困難となる上、凝固偏析が生じ易い
ことから得られる銅−クロム合金の品質にばらつきが生
じ易い欠点を有する。
In the case of a conventional copper-chromium alloy produced by a casting method, chromium particles in a copper matrix grow due to a low cooling rate during solidification, and uniform and fine chromium is dispersed. In addition to the difficulty, there is a disadvantage that the quality of the obtained copper-chromium alloy is apt to vary due to the tendency of solidification segregation.

【0010】本発明者らは、微細化が困難で表面酸化の
問題を抱えたクロムの機械的粉砕法を採用せず、アトマ
イズ法により銅−クロム合金の微粉末を得た。
The present inventors have obtained a fine powder of a copper-chromium alloy by an atomizing method without using a mechanical crushing method of chromium, which is difficult to miniaturize and has a problem of surface oxidation.

【0011】アトマイズ法による粉末の製造方法として
は、媒体にガスを用いたガスアトマイズ製法と水を用い
た水アトマイズ製法がある。
As a method for producing powder by the atomizing method, there are a gas atomizing method using gas as a medium and a water atomizing method using water.

【0012】ガスアトマイズ粉は、ガス含有量が少ない
ため真空インタラプタ用電極材料として適しているが、
その粉体形状は球形であり、そのため、プレス成形によ
り電極材料を製造すると、粉体の変形が小さいことから
成形性が悪く、図6に示すように、成形体1に欠け2や
割れ3が発生してしまう。
Gas atomized powder is suitable as an electrode material for a vacuum interrupter because of its low gas content.
The powder has a spherical shape. Therefore, when the electrode material is manufactured by press molding, the powder is less deformable due to small deformation of the powder, and as shown in FIG. Will occur.

【0013】一方、水アトマイズ粉は、粉体形状が異形
であるため成形性は良好であるが、水噴霧により得られ
るため、粉体に水分が残留しやすく、粉体の表面酸化を
生じることがある。このため、水アトマイズ粉を原料と
して用いる場合には、噴霧後に充分な乾燥と還元処理を
必要とする。
On the other hand, water atomized powder has good formability due to its irregular shape, but because it is obtained by spraying water, water tends to remain in the powder, causing surface oxidation of the powder. There is. For this reason, when water atomized powder is used as a raw material, sufficient drying and reduction treatment are required after spraying.

【0014】
[0014]

【課題を解決するための手段】本発明は、上記事情にか
んがみ、ガスアトマイズ粉の特徴を生かしつつ、成形性
の良好な電極材料の製造方法を提供することを目的とし
てなされたもので、その構成は、ガスアトマイズ法によ
り得られた80〜95重量%銅−5〜20重量%クロム
組成の合金粉体に、粒径が150μm以下の電解銅粉を
5重量%以上50重量%以下の割合で添加し、得られた
混合粉末を加圧成形し、得られた成形体を不活性雰囲気
で加熱して焼結させることを特徴とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention has been made to provide a method of manufacturing an electrode material having good moldability while utilizing the characteristics of gas atomized powder. Is to add an electrolytic copper powder having a particle size of 150 μm or less in a ratio of 5% by weight or more and 50% by weight or less to an alloy powder having a composition of 80 to 95% by weight of copper and 5 to 20% by weight of chromium obtained by gas atomization Then, the obtained mixed powder is subjected to pressure molding, and the obtained molded body is heated and sintered in an inert atmosphere.

【0015】
[0015]

【作用】ガスアトマイズ法により得られた銅−クロム合
金粉末は酸素含有量は低いが、成形性はあまり良くな
い。この合金粉末に、電解銅粉を混ぜることにより、そ
の異形性により成形性は向上する。したがって、この混
合粉体を成形し、加熱焼結することにより、微細なクロ
ムが均一に分散した、しゃ断性能等のすぐれた電極材料
を得ることができる。
The copper-chromium alloy powder obtained by the gas atomization method has a low oxygen content, but has poor moldability. By mixing electrolytic copper powder with this alloy powder, the formability is improved due to its irregular shape. Therefore, by shaping and heating and sintering the mixed powder, it is possible to obtain an electrode material in which fine chromium is uniformly dispersed and has excellent breaking performance and the like.

【0016】[0016]

【実施例】まず、本発明に係る方法により得られる電極
材料の適用例の一例である真空インタラプタを図1に示
す。相互に一直線状をなす一対のリード棒11,12の
対向端面には、それぞれ電極13,14が図示しないろ
う材を介して一体的に設けてある。これら電極13,1
4を囲む筒状のシールド15の外周中央部は、このシー
ルド15を囲む一対の絶縁筒16,17の間に挟まれた
状態で保持されている。一方の前記リード棒11は、一
方の絶縁筒16の一端に接合された金属端板18を気密
に貫通した状態で、この金属端板18に一体的に固定さ
れている。図示しない駆動装置に連結される他方のリー
ド棒12は、他方の絶縁筒17の他端に気密に接合され
た他方の金属端板19にベローズ20を介して連結さ
れ、駆動装置の作動に伴って電極13,14の対向方向
に往復動可能に可動側の電極14が固定側の電極13に
対して開閉動作するようになっている。
FIG. 1 shows a vacuum interrupter which is an example of an application example of an electrode material obtained by the method according to the present invention. Electrodes 13 and 14 are provided integrally on opposite ends of a pair of lead rods 11 and 12 which are linear with each other via a brazing material (not shown). These electrodes 13, 1
The central portion of the outer periphery of the cylindrical shield 15 surrounding the shield 4 is held between the pair of insulating tubes 16 and 17 surrounding the shield 15. The one lead bar 11 is integrally fixed to the metal end plate 18 in a state where the lead rod 11 air-tightly penetrates the metal end plate 18 joined to one end of the one insulating cylinder 16. The other lead rod 12 connected to a drive device (not shown) is connected via a bellows 20 to the other metal end plate 19 airtightly joined to the other end of the other insulating cylinder 17, and is driven by the operation of the drive device. The movable electrode 14 opens and closes with respect to the fixed electrode 13 so that the movable electrode 14 can reciprocate in the direction opposite to the electrodes 13 and 14.

【0017】電極13、14の電極材料を製造するため
の出発原料である銅−クロム合金粉末はガスアトマイズ
法により得られる。
A copper-chromium alloy powder, which is a starting material for producing electrode materials for the electrodes 13 and 14, is obtained by a gas atomizing method.

【0018】例えば、80重量%銅−20重量%クロム
の混合物を真空中で加熱溶解した後、アルゴル(Ar)
ガスにより5〜8MPaの圧力で噴霧することにより製
造される。
For example, after a mixture of 80% by weight of copper and 20% by weight of chromium is heated and dissolved in a vacuum, the
It is produced by spraying with a gas at a pressure of 5 to 8 MPa.

【0019】上記ガスアトマイズに際し、溶融前の銅と
クロムとの混合物における銅とクロムとの重量割合を
4:1に設定する。クロムの重量割合がこれよりも多く
なると、クロムのマトリックス中に銅が分散したものが
生成してしまい、目標とする銅−クロム合金粉末が得ら
れない。
In the above gas atomization, the weight ratio of copper and chromium in the mixture of copper and chromium before melting is set to 4: 1. If the weight ratio of chromium is higher than this, copper dispersed in a chromium matrix is generated, and a target copper-chromium alloy powder cannot be obtained.

【0020】又、銅とクロムとの混合物を溶融する際に
は、溶湯の酸素含有量を低減するために酸素含有量の低
い銅及びクロムを選定する一方、上述した非酸化性雰囲
気にて溶融するか、或いは、脱酸して酸素含有量を10
00ppm 以下に抑える。
When the mixture of copper and chromium is melted, copper and chromium having a low oxygen content are selected in order to reduce the oxygen content of the molten metal, while melting in a non-oxidizing atmosphere as described above. Or deoxidize to an oxygen content of 10
Keep below 00ppm.

【0021】これにより得られた銅−クロム合金粉末の
粒径は150μm以下であり、その成分割合も元の銅と
クロムとの混合物の割合と同等であった。又、この銅−
クロム合金微粉末を電子顕微鏡にて観察した結果、5μ
m以下のクロム粒子が銅マトリックス中に均一に分散さ
れていることを確認できた。
The particle size of the copper-chromium alloy powder thus obtained was 150 μm or less, and its component ratio was equivalent to that of the original mixture of copper and chromium. Also, this copper
As a result of observing the chromium alloy fine powder with an electron microscope, 5μ
It was confirmed that chromium particles of m or less were uniformly dispersed in the copper matrix.

【0022】上記製法により得られた銅−クロム合金粉
末に、粒径50μmの電解銅を5重量%以上50重量%
以下の範囲で混合し、混合粉体を得る。
The copper-chromium alloy powder obtained by the above-mentioned process is coated with electrolytic copper having a particle size of 50 μm in an amount of 5% by weight to 50% by weight.
Mix in the following range to obtain a mixed powder.

【0023】混合粉体を直径40mm金型に充填し、98
〜490MPa(1000〜5000kgf /cm2 )の圧
力で加圧成形し、成形体(圧粉体)を得る。ガスアトマ
イズ粉体に、成形性の良い電解銅粉が混合されているの
で、この時の成形は容易かつ強固になされ、割れや欠け
の発生のおそれがない。
The mixed powder is filled in a mold having a diameter of 40 mm,
Pressure molding is performed at a pressure of 〜490 MPa (1000 to 5000 kgf / cm 2 ) to obtain a molded body (compact). Since the electrolytic copper powder having good moldability is mixed with the gas atomized powder, the molding at this time is easily and firmly performed, and there is no fear of occurrence of cracks and chips.

【0024】次に、得られた成形体を真空炉(真空圧:
5×10-5Torr)中において融点直下で加熱処理し、焼
結体とする。得られた電極材料の充填密度、導電率と電
解銅粉添加量との関係を図2、図3に示す。
Next, the obtained molded body is placed in a vacuum furnace (vacuum pressure:
In 5 × 10 −5 Torr), heat treatment is performed just below the melting point to obtain a sintered body. FIGS. 2 and 3 show the relationship between the packing density and conductivity of the obtained electrode material and the amount of electrolytic copper powder added.

【0025】図2、図3からわかるように、電解銅粉の
添加量の増加に伴って充填密度、導電率とも向上する。
特に、銅粉を10〜25重量%添加した場合には、最も
高いしゃ断電流値を示す。なお、成形性は、銅粉体を1
0重量%以上添加することにより向上した。したがっ
て、銅粉の添加量は5重量%以上50重量%以下の範囲
であり、好ましいのは、10重量%以上25重量%以下
の範囲である。また、この焼結段階において、焼結温
度、時間を変えることにより、銅マトリックス中のクロ
ムの粒径を調整できる。
As can be seen from FIGS. 2 and 3, both the packing density and the electrical conductivity increase with an increase in the amount of the electrolytic copper powder added.
In particular, when 10 to 25% by weight of copper powder is added, the highest breaking current value is exhibited. In addition, the moldability is as follows.
It was improved by adding 0% by weight or more. Therefore, the addition amount of the copper powder is in the range of 5% by weight to 50% by weight, and preferably in the range of 10% by weight to 25% by weight. In this sintering step, the particle size of chromium in the copper matrix can be adjusted by changing the sintering temperature and time.

【0026】得られた焼結体を直径40mmのスパイラル
電極形状に機械加工し、しゃ断性能と接触抵抗とを試験
した結果を図4、図5に示す。図から明らかなように、
銅−クロム合金のガスアトマイズ粉をそのまま使う場合
(図中の黒点)に比べ、良好な性能が得られた。
The obtained sintered body was machined into a spiral electrode shape having a diameter of 40 mm, and the results of testing the breaking performance and contact resistance are shown in FIGS. 4 and 5. As is clear from the figure,
Good performance was obtained as compared with the case where the gas atomized powder of the copper-chromium alloy was used as it was (the black spot in the figure).

【0027】
[0027]

【発明の効果】本発明による電極材料の製造方法によれ
ば、ガスアトマイズ法により得られた銅−クロム合金粉
末をそのまま使わずに、電解銅粉末を添加して混合粉と
して成形、焼結を行うので、欠けや割れのないしゃ断性
能のすぐれた電極材料を得ることができる。
According to the method for producing an electrode material according to the present invention, the copper-chromium alloy powder obtained by the gas atomization method is not used as it is, but the electrolytic copper powder is added and the mixture is molded and sintered as a mixed powder. Therefore, an electrode material having excellent breaking performance without chipping or cracking can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】真空インタラプタの一例を表す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a vacuum interrupter.

【図2】銅粉添加量と充填密度との関係を示すグラフで
ある。
FIG. 2 is a graph showing the relationship between the amount of copper powder added and the packing density.

【図3】銅粉添加量と導電率との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the amount of copper powder added and the conductivity.

【図4】銅粉添加量としゃ断電流値との関係を示すグラ
フである。
FIG. 4 is a graph showing a relationship between an added amount of copper powder and a breaking current value.

【図5】銅粉添加量と接触抵抗値との関係を示すグラフ
である。
FIG. 5 is a graph showing a relationship between an added amount of copper powder and a contact resistance value.

【図6】成形体に欠け等が生じた状態の外観図である。FIG. 6 is an external view showing a state in which a molded body has a chip or the like.

【符号の説明】[Explanation of symbols]

11,12 リード棒 13,14 電極 11,12 Lead rod 13,14 Electrode

フロントページの続き (56)参考文献 特開 昭57−67141(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 5/00 C22C 9/00 H01H 11/04 H01H 33/66 Continuation of the front page (56) References JP-A-57-67141 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 5/00 C22C 9/00 H01H 11/04 H01H 33 / 66

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガスアトマイズ法により得られた80〜
95重量%銅−5〜20重量%クロム組成の合金粉体
に、粒径が150μm以下の電解銅粉を5重量%以上5
0重量%以下の割合で添加し、得られた混合粉末を加圧
成形し、得られた成形体を不活性雰囲気で加熱して焼結
させることを特徴とする電極材料の製造方法。
[Claim 1] 80 to 80 obtained by a gas atomizing method
Alloy powder 95 wt% of copper-5-20 wt% chromium composition, particle size less electrolytic copper powder 150 [mu] m 5 wt% or more 5
A method for producing an electrode material, comprising adding at a ratio of 0% by weight or less, press-molding the obtained mixed powder, and heating and sintering the obtained compact in an inert atmosphere.
JP28138891A 1991-10-28 1991-10-28 Manufacturing method of electrode material Expired - Fee Related JP3168635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28138891A JP3168635B2 (en) 1991-10-28 1991-10-28 Manufacturing method of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28138891A JP3168635B2 (en) 1991-10-28 1991-10-28 Manufacturing method of electrode material

Publications (2)

Publication Number Publication Date
JPH05117721A JPH05117721A (en) 1993-05-14
JP3168635B2 true JP3168635B2 (en) 2001-05-21

Family

ID=17638450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28138891A Expired - Fee Related JP3168635B2 (en) 1991-10-28 1991-10-28 Manufacturing method of electrode material

Country Status (1)

Country Link
JP (1) JP3168635B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440112B2 (en) * 2008-10-31 2013-05-14 Meiden T&D Corporation Electrode material for vacuum circuit breaker and method of manufacturing the same
JP7378907B2 (en) * 2022-02-28 2023-11-14 山陽特殊製鋼株式会社 Method for producing mixed powder for 3D modeling

Also Published As

Publication number Publication date
JPH05117721A (en) 1993-05-14

Similar Documents

Publication Publication Date Title
JP2705998B2 (en) Manufacturing method of electrical contact material
JP5124734B2 (en) Electrode material for vacuum circuit breaker and manufacturing method thereof
JPH0925526A (en) Production of oxide grain dispersed metal matrix composite
US5889220A (en) Copper-tungsten alloys and their manufacturing methods
JP3168630B2 (en) Manufacturing method of electrode material
JP3067318B2 (en) Manufacturing method of electrode material
JP3168635B2 (en) Manufacturing method of electrode material
US5352404A (en) Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. %
JPH05217473A (en) Manufacture of electrode material
JP3106605B2 (en) Manufacturing method of electrode material
JP3067317B2 (en) Manufacturing method of electrode material
JP3106609B2 (en) Manufacturing method of electrode material
JP3106598B2 (en) Manufacturing method of electrode material
JP2748658B2 (en) Manufacturing method of brazing material
JP2853308B2 (en) Manufacturing method of electrode material
JP3106610B2 (en) Manufacturing method of electrode material
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH07188702A (en) Ag-base alloy powder and its production
JPH055139A (en) Production of silver or silver-copper alloy-metal oxide composite material
JPH07216477A (en) Production of copper-tungsten alloy
JP2017082298A (en) W-Cu-Ag ALLOY AND MANUFACTURING METHOD THEREFOR
JPH05198230A (en) Manufacture of electrode material
JPH06314532A (en) Electrode material for vacuum interrupter
JPH0472896B2 (en)
JPS61121218A (en) Vacuum breaker

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010213

LAPS Cancellation because of no payment of annual fees