JP2853308B2 - Manufacturing method of electrode material - Google Patents

Manufacturing method of electrode material

Info

Publication number
JP2853308B2
JP2853308B2 JP2248792A JP24879290A JP2853308B2 JP 2853308 B2 JP2853308 B2 JP 2853308B2 JP 2248792 A JP2248792 A JP 2248792A JP 24879290 A JP24879290 A JP 24879290A JP 2853308 B2 JP2853308 B2 JP 2853308B2
Authority
JP
Japan
Prior art keywords
copper
melting point
bismuth
point metal
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2248792A
Other languages
Japanese (ja)
Other versions
JPH04129119A (en
Inventor
信行 吉岡
伸尚 鈴木
泰司 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2248792A priority Critical patent/JP2853308B2/en
Publication of JPH04129119A publication Critical patent/JPH04129119A/en
Application granted granted Critical
Publication of JP2853308B2 publication Critical patent/JP2853308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、低融点金属の分布のばらつきが少ない均質
な電極材料の製造方法に関し、特にビスマスを添加した
銅−クロム系の電極材料に応用して好適なものである。
The present invention relates to a method for producing a homogeneous electrode material having a small variation in the distribution of low-melting-point metals, and particularly to a copper-chromium-based electrode material to which bismuth is added. It is preferable.

B.発明の概要 高融点金属の粉末上に銅と低融点金属との合金及び銅
塊を載置し、これらを非酸化性雰囲気にて銅の融点以上
に加熱保持し、前記銅と低融点金属との合金と前記銅塊
とを前記高融点金属の空隙部分に溶浸させるようにした
電極材料の製造方法であり、低融点金属を銅と合金化す
ることにより、低融点金属の蒸散を抑制しつつ高融点金
属の空隙部分に銅及び低融点金属を溶浸させ、所望の性
能を有する均質な電極材料を製造し得るようにしたもの
である。
B. Summary of the Invention An alloy of copper and a low-melting metal and a copper lump are placed on a powder of a high-melting metal, and these are heated and held in a non-oxidizing atmosphere at a temperature equal to or higher than the melting point of copper. This is a method for producing an electrode material in which an alloy of a metal and the copper lump are infiltrated into voids of the high-melting metal, and the low-melting metal is alloyed with copper, thereby evaporating the low-melting metal. While suppressing this, copper and the low melting point metal are infiltrated into the void portion of the high melting point metal so that a homogeneous electrode material having desired performance can be manufactured.

C.従来の技術 真空インタラプタの電極材料として要求される重要な
性能の一つとして、電流遮断性能の高いことが挙げられ
る。
C. Prior Art One of the important performances required as an electrode material of a vacuum interrupter is high current interruption performance.

近年、この電流遮断性能が非常に優れている銅−クロ
ム系の材料に、電流処断後の接触抵抗値の上昇を抑制す
る目的でビスマスを添加したものを、真空インタラプタ
の電極材料として使用することが試みられている。
In recent years, the use of copper-chromium-based materials, which have extremely excellent current interrupting performance, with bismuth added for the purpose of suppressing an increase in contact resistance after current processing, is used as electrode materials for vacuum interrupters. Have been tried.

従来、このビスマスを添加した銅−クロム系の電極材
料の製造方法としては、銅とクロムとビスマスとの混合
粉末を一括して焼結するようにしたものや、容器内に充
填されたクロムとビスマスとの混合粉末上に銅塊を載置
し、これらを非酸化性雰囲気にて銅の融点以上に加熱
し、クロム及びビスマスの空隙部分に銅塊を溶浸させる
ようにしたもの、或いは予め焼結された銅とクロムとか
らなる多孔質の溶浸母材の空隙部分にビスマスを溶浸さ
せるようにしたもの等が知られている。
Conventionally, as a method of producing this bismuth-added copper-chromium-based electrode material, a method of simultaneously sintering a mixed powder of copper, chromium, and bismuth, and a method of producing chromium filled in a container are described. A copper lump is placed on a mixed powder with bismuth and heated in a non-oxidizing atmosphere to a temperature equal to or higher than the melting point of copper so that the copper lump infiltrates voids of chromium and bismuth, or There is known a material in which bismuth is infiltrated into voids of a porous infiltration base material made of sintered copper and chromium.

なお、ビスマスを添加した銅−クロム系の電極材料の
組成として一般的には、銅が20から98重量%の範囲、ク
ロムが2から80重量%の範囲、ビスマスが0.1から1.5重
量%の範囲に調整されている。
The composition of the copper-chromium-based electrode material to which bismuth is added is generally in the range of 20 to 98% by weight of copper, 2 to 80% by weight of chromium, and 0.1 to 1.5% by weight of bismuth. Has been adjusted.

D.発明が解決しようとする課題 ビスマスを添加した銅−クロム系の金属材料に対する
従来の製造方法の内、銅とクロムとビスマスとの混合粉
末を一括して焼結するようにした方法及びクロム及びビ
スマスの空隙部分に銅塊を溶浸させるようにした方法で
は、ビスマスは蒸気圧が高くて融点が低いことから、銅
塊を溶浸させる加熱工程において銅よりも融点の低いビ
スマスの蒸発量が非常に多く、一つの容器内で製造され
る電極材料中のビスマスの分布が著しく不均一となって
製品の均質性を損なう虞がある上、電極材料中に占める
ビスマスの割合を設計通りに保つことが困難である。
D. Problems to be Solved by the Invention Among the conventional production methods for a copper-chromium-based metal material to which bismuth is added, a method in which a mixed powder of copper, chromium and bismuth is sintered at once, and chromium In the method of infiltrating a copper lump into the void portion of bismuth and bismuth, since the vapor pressure of bismuth is high and the melting point is low, the evaporation amount of bismuth having a lower melting point than copper in the heating step of infiltrating the copper lump There is a possibility that the distribution of bismuth in the electrode material manufactured in one container will be extremely uneven and the homogeneity of the product will be impaired, and the ratio of bismuth in the electrode material as designed Difficult to keep.

又、銅とクロムとの焼結体の空隙部分にビスマスを溶
浸させるようにした方法では、上述の如き不具合はない
ものの、所定量のビスマスを含有する電極材料を製造す
るためには、銅とクロムとの焼結体の空隙率の調整が極
めて重要となる。しかし、従来の方法では銅とクロムと
の焼結体を所望の空隙率に調整することが非常に難しい
ことに加え、一つの焼結体内での空隙率のばらつきも多
いことから、電極材料中のビスマスの分布が不均一とな
って、製品の均質性を損なう虞があった。
In the method in which bismuth is infiltrated into the void portion of the sintered body of copper and chromium, although there is no such a problem as described above, in order to produce an electrode material containing a predetermined amount of bismuth, copper is required. It is extremely important to adjust the porosity of the sintered body of chromium and chromium. However, in the conventional method, it is very difficult to adjust the sintered body of copper and chromium to a desired porosity, and the porosity in one sintered body varies widely. And the distribution of bismuth may become non-uniform, thereby impairing the homogeneity of the product.

E.課題を解決するための手段 本発明による電極材料の製造方法は、銅よりも高融点
のスケルトンを構成する高融点金属の粉末上に銅とこの
銅よりも低融点の低融点金属との合金及び銅塊を載置
し、これらを非酸化性雰囲気にて銅の融点以上に加熱保
持し、前記銅と低融点金属との合金と前記銅塊とを前記
高融点金属の空隙部分に溶浸させる1うにしたことを特
徴とするものである。
E. Means for Solving the Problems The method for producing an electrode material according to the present invention comprises the steps of: combining copper and a low-melting metal having a lower melting point than copper on a powder of a high-melting metal constituting a skeleton having a higher melting point than copper. The alloy and the copper lump are placed and heated and held in a non-oxidizing atmosphere at a temperature equal to or higher than the melting point of copper, and the alloy of copper and the low-melting metal and the copper lump are melted in the voids of the high-melting metal. It is characterized in that it is soaked.

なお、前記高融点金属としてはクロム等を挙げること
ができる。又、前記低融点金属としてはビスマス等を挙
げることができる。ここで、高融点金属としてクロムを
採用すると共に低融点金属としてビスマスを採用したも
のにおいて、銅が20重量%未満の場合には、導電率が低
下して発熱量が多くなり、逆に銅が98重量%を越えると
耐溶着性の低下や電流さい断値の増大をもたらす。又、
クロムが2重量%未満の場合には、電流さい断値が増大
し、逆にクロムが80重量%を越える場合には、電流遮断
性能が低下してしまう。一方、ビスマスが0.1重量%未
満の場合には、電流遮断後の接触抵抗値を抑制する効果
が薄れてしまい、逆にビスマスが15重量%を越えると、
耐電圧特性等の真空インタラプタとしての性能に悪影響
を及ぼす。
In addition, chromium etc. can be mentioned as said high melting point metal. In addition, bismuth or the like can be used as the low melting point metal. Here, in the case where chromium is used as the high melting point metal and bismuth is used as the low melting point metal, if the copper content is less than 20% by weight, the conductivity decreases and the calorific value increases. If the content exceeds 98% by weight, the welding resistance is reduced and the current breaking value is increased. or,
If the chromium content is less than 2% by weight, the cutoff value of the current increases, and if the chromium content exceeds 80% by weight, the current interrupting performance decreases. On the other hand, when bismuth is less than 0.1% by weight, the effect of suppressing the contact resistance value after current interruption is diminished. Conversely, when bismuth exceeds 15% by weight,
It adversely affects the performance as a vacuum interrupter such as withstand voltage characteristics.

従って、高融点金属としてクロムを採用すると共に低
融点金属としてビスマスを採用したものにおいては、銅
は20から98重量%の範囲、クロムは2から80重量%の範
囲、ビスマスは0.1から15重量%の範囲にそれぞれある
ことが望ましい。
Therefore, in the case of using chromium as the high melting point metal and bismuth as the low melting point metal, copper ranges from 20 to 98% by weight, chromium ranges from 2 to 80% by weight, and bismuth ranges from 0.1 to 15% by weight. Respectively.

但し、真空インタラプタとしての耐電圧特性等に注目
した場合、ビスマスを1重量%以下に収めることが特に
有効である。
However, when attention is paid to withstand voltage characteristics and the like as a vacuum interrupter, it is particularly effective to contain bismuth at 1% by weight or less.

又、銅と低融点金属との合金において、低融点金属の
割合が0.1重量%未満の場合には、この合金の使用量が
多くなってコスト高を招来し、逆に20重量%を越える場
合には低融点金属が著しく析出し、得られる電極材料中
の低融点金属の量にばらつきを生じる虞がある。以上の
ような観点から、銅と低融点金属との合金中に占める低
融点金属の割合は、0.1から20重量%の範囲にあること
が望ましい。
When the proportion of the low melting point metal in the alloy of copper and the low melting point metal is less than 0.1% by weight, the use amount of this alloy increases and the cost is increased. In this case, the low melting point metal is remarkably precipitated, and the amount of the low melting point metal in the obtained electrode material may vary. From the above viewpoints, it is desirable that the ratio of the low melting point metal in the alloy of copper and the low melting point metal is in the range of 0.1 to 20% by weight.

F.作用 銅と低融点金属との合金中に占める低融点金属の一部
は、銅の結晶粒中に固溶している。固溶限界を越えた低
融点金属は銅の結晶粒界に析出するが、この析出状態の
低融点金属は合金表面のみならず合金内部にも当然存在
する。
F. Action A part of the low-melting-point metal in the alloy of copper and the low-melting-point metal is dissolved in the copper crystal grains. The low melting point metal exceeding the solid solution limit is precipitated at the crystal grain boundary of copper, and the low melting point metal in the precipitated state naturally exists not only on the alloy surface but also inside the alloy.

このような状態の銅と低融点金属との合金を銅塊と共
に高融点金属の粉末上に載置してこれらを加熱すると、
銅と低融点金属との合金から低融点金属が蒸発するの
は、銅の結晶粒界に沿ってこの銅と低融点金属との合金
の表面からだけとなり、銅と低融点金属との合金中の銅
が溶けるまでは、低融点金属の蒸発が抑制された状態と
なる。
When an alloy of copper and a low-melting metal in such a state is placed on a powder of a high-melting metal together with a copper lump and heated,
The low-melting-point metal evaporates from the alloy of copper and the low-melting-point metal only from the surface of the alloy of copper and the low-melting-point metal along the copper crystal grain boundaries. Until the copper melts, evaporation of the low melting point metal is suppressed.

この加熱操作に伴い、高融点金属の粉末の空隙部分か
らガスが放出され、高融点金属の空隙部分に銅と低融点
金属とが溶浸して行く。低融点金属は電極材料自体の機
械的強度を下げ、この電極材料自体を変形し易くして電
流遮断後の接触抵抗値の上昇を抑制する。
Along with this heating operation, gas is released from the voids of the high melting point metal powder, and copper and the low melting point metal infiltrate into the voids of the high melting point metal. The low-melting-point metal lowers the mechanical strength of the electrode material itself, easily deforms the electrode material itself, and suppresses an increase in contact resistance after current interruption.

G.実施例 真空インタラプタは、その概略構造の一例を示す第2
図に示すようなものであり、相互に一直線状をなす一対
のリード棒11,12の対向端面には、それぞれ電極13,14が
一体的に設けてある。これら電極13,14を囲む筒状のシ
ールド15の外周中央部は、このシールド15を囲む一対の
絶縁筒16,17の間に挟まれた状態で保持されている。一
方の前記リード棒11は、一方の絶縁筒16の一端に接合さ
れた金属端板18を気密に貫通した状態で、この金属端板
18に一体的に固定されている。図示しない駆動装置に連
結される他方のリード棒12は、他方の絶縁筒17の他端に
気密に接合された他方の金属端板19にベローズ20を介し
て連結され、駆動装置の作動に伴って電極13,14の対向
方向に往復動可能に可動側の電極14が固定側の電極13に
対して開閉動作するようになっている。
G. Example A vacuum interrupter is a second example showing a schematic structure thereof.
As shown in the drawing, electrodes 13 and 14 are integrally provided on opposing end surfaces of a pair of lead rods 11 and 12 which are linear with each other. The center of the outer periphery of the cylindrical shield 15 surrounding the electrodes 13 and 14 is held in a state of being sandwiched between a pair of insulating cylinders 16 and 17 surrounding the shield 15. One of the lead rods 11 is airtightly penetrated through a metal end plate 18 joined to one end of one of the insulating cylinders 16, and this metal end plate
It is integrally fixed to 18. The other lead rod 12 connected to a driving device (not shown) is connected via a bellows 20 to the other metal end plate 19 airtightly joined to the other end of the other insulating cylinder 17, and is associated with the operation of the driving device. The movable electrode 14 opens and closes with respect to the fixed electrode 13 so that the movable electrode 14 can reciprocate in the direction opposite to the electrodes 13 and 14.

前記電極13,14は、クロム(Cr)と、銅(Cu)と、こ
れらクロムと銅との界面に分散するビスマス(Bi)とか
らなる複合金属で構成される。
The electrodes 13 and 14 are composed of a composite metal composed of chromium (Cr), copper (Cu), and bismuth (Bi) dispersed at the interface between chromium and copper.

本発明によるこの電極材料の製造方法の一例を第1図
に基づいて以下に記すと、まず−100メッシュの粒度の
クロムの粉末を内径68mmのアルミナセラミックス製の容
器Aに170g入れ、これを5×10-5Torrの真空炉内で脱ガ
スしながら1200℃に加熱保持し、クロム粒子を相互に拡
散結合させて多孔質の溶浸母材Bを得る。
An example of a method for producing this electrode material according to the present invention will be described below with reference to FIG. 1. First, 170 g of chromium powder having a particle size of -100 mesh is placed in a container A made of alumina ceramic having an inner diameter of 68 mm, and 5 g While maintaining the temperature at 1200 ° C. while degassing in a vacuum furnace of × 10 −5 Torr, chromium particles are mutually diffused and bonded to obtain a porous infiltration base material B.

一方、5×10-5Torrの真空溶解炉にて銅を1100℃に溶
融させ、所定量のビスマスを銅の溶湯中に添加してこれ
らを撹拌した後、冷却してビスマスが0.5重量%含まれ
た銅ビスマス合金を得る。
On the other hand, copper is melted at 1100 ° C. in a 5 × 10 −5 Torr vacuum melting furnace, a predetermined amount of bismuth is added to the copper melt, and these are stirred, and then cooled to contain 0.5% by weight of bismuth. Obtained copper-bismuth alloy.

しかるのち、前記アルミナセラミックス製の容器A内
に形成された溶浸母材Bの上に、上述した方法により作
られた170gの銅ビスマス合金Cと更にこの上に170gの銅
塊Dとを載置し、この状態で容器Aにアルミナセラミッ
クス製の蓋Eを被せ、これらを真空炉内にて脱ガスしつ
つ1100℃に1時間加熱処理し、多孔質の溶浸母材Bの空
隙部分に銅ビスマス合金Cと銅塊Dとを溶浸させ、これ
によって得られた電極材料を容器Aから取り出し、所定
の寸法形状に機械加工する。
Thereafter, 170 g of a copper-bismuth alloy C produced by the above-described method and 170 g of a copper lump D are placed on the infiltration base material B formed in the alumina ceramic container A. In this state, the container A is covered with a lid E made of alumina ceramics, and these are heated in a vacuum furnace for 1 hour at 1100 ° C. while being degassed. The copper-bismuth alloy C and the copper lump D are infiltrated, and the obtained electrode material is taken out of the container A and machined into a predetermined shape.

このようにして、 Cu:55.00重量% Cr:44.75重量% Bi: 0.25重量% からなる電極材料を作成した。 Thus, an electrode material composed of Cu: 55.00% by weight, Cr: 44.75% by weight, Bi: 0.25% by weight was prepared.

この電極材料を第2図に示した真空インタラプタに組
み込み、30KAの電流遮断操作を20回行った結果、遮断操
作前の接触抵抗値を基準とした場合、遮断操作後の接触
抵抗値は1.8倍程度にしか上昇しなかった。
This electrode material was incorporated into the vacuum interrupter shown in Fig. 2 and the current interruption operation at 30 KA was performed 20 times. As a result, the contact resistance value after the interruption operation was 1.8 times the reference value before the interruption operation. Rose only to the extent.

なお、比較として上述した製造方法と同様な溶浸法に
より Cu:55重量% Cr:45重量% のビスマスを含まない電極材料を作成し、これを第2図
に示す真空インタラプタに組み込み、30KAの電流遮断操
作を20回行った。ビスマスを0.25重量%含む上述した本
実施例による遮断操作前の接触抵抗値を基準とした場
合、この比較例における電極材料では遮断操作前の接触
抵抗値が1.4倍であり、遮断操作後の接触抵抗値は3.0倍
にも達した。
As a comparison, an electrode material not containing bismuth of Cu: 55% by weight and Cr: 45% by weight was prepared by the same infiltration method as the above-mentioned manufacturing method, and this was incorporated into a vacuum interrupter shown in FIG. The current interruption operation was performed 20 times. Based on the contact resistance before the breaking operation according to the above-described embodiment including bismuth of 0.25% by weight, the contact resistance before the breaking operation is 1.4 times with the electrode material in this comparative example, and the contact after the breaking operation is 1.4 times. The resistance reached 3.0 times.

又、上述した本実施例の製造方法により合計で25の試
料を作成し、電極材料中に占めるビスマスの割合を調査
した結果、ビスマスの割合の平均値が0.25重量%でその
標準偏差が0.02%となり、ビスマスの割合のばらつきが
非常に小さいことも判明した。
Further, a total of 25 samples were prepared by the manufacturing method of the present embodiment described above, and the ratio of bismuth in the electrode material was examined. As a result, the average value of the bismuth ratio was 0.25% by weight and the standard deviation was 0.02%. It was also found that the variation in the bismuth ratio was very small.

なお、上述した実施例では予めクロムの粉末を焼結
し、これによって得られる溶浸母材に対して銅ビスマス
合金と銅塊とを溶浸させるようにしたが、容器内に装入
されたクロムの粉末上に銅ビスマス合金と銅塊とを載置
し、この容器内を蓋により密閉状態のまま加熱してクロ
ムの粉末の空隙部分に銅ビスマス合金と銅塊とを溶浸さ
せるようにしても同様な結果を得ることができる。
In the above-described embodiment, the chromium powder was sintered in advance, and the copper-bismuth alloy and the copper lump were infiltrated into the infiltration base material obtained by the sintering. A copper-bismuth alloy and a copper lump are placed on the chromium powder, and the inside of the container is heated while being sealed with a lid so that the copper-bismuth alloy and the copper lump infiltrate into the voids of the chromium powder. The same result can be obtained.

H.発明の効果 本発明の電極材料の製造方法によると、スケルトンを
構成する高融点金属の上に銅と低融点金属との合金及び
銅塊を載置し、これらを加熱して高融点金属の空隙部分
に銅と低融点金属との合金及び銅塊を溶浸させるように
したので、低融点金属の蒸発量を従来の方法よりも抑制
することが可能となり、電極材料中の低融点金属の分布
が均一となって製品の均質性が向上し、電極材料中に占
める低融点金属の割合を設計通りに保つことができる。
H. Effects of the Invention According to the method for producing an electrode material of the present invention, an alloy of copper and a low melting point metal and a copper lump are placed on a high melting point metal constituting a skeleton, and these are heated to form a high melting point metal. Since the alloy of copper and the low melting point metal and the copper lump are infiltrated into the voids, the amount of evaporation of the low melting point metal can be suppressed as compared with the conventional method, and the low melting point metal in the electrode material can be suppressed. And the homogeneity of the product is improved, and the proportion of the low melting point metal in the electrode material can be maintained as designed.

この結果、電流遮断後における接触抵抗値や電流遮断
性能等の特性が全体的に向上した電極材料を得ることが
できる。特に、多数回の開閉操作後でも接触抵抗値が低
く安定しているため、開閉のための操作装置を小形化で
きると共に発熱が少ないことと相俟ってキュービクルを
小形化できる。
As a result, it is possible to obtain an electrode material in which the characteristics such as the contact resistance value and the current interruption performance after the interruption of the current are entirely improved. In particular, since the contact resistance value is low and stable even after a large number of opening / closing operations, the operating device for opening / closing can be miniaturized and the cubicle can be miniaturized in combination with low heat generation.

又、銅と低融点金属との合金の他に銅塊を用意するよ
うにしたので、銅と低融点金属との合金のみを用いる場
合と比較すると、銅と低融点金属との合金の使用量を少
なくすることができ、生産性の向上に伴う製造コストの
低減を企図し得る。
In addition, since a copper lump is prepared in addition to the alloy of copper and the low-melting-point metal, the amount of the alloy of copper and the low-melting-point metal used is smaller than when only the alloy of copper and the low-melting-point metal is used. Can be reduced, and a reduction in manufacturing cost accompanying an improvement in productivity can be attempted.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による電極材料の製造方法の一実施例を
表す断面図、第2図は真空インタラプタの一例を表す断
面図である。 又、図中の符号でAは容器、Bは溶浸母材、Cは銅ビス
マス合金、Dは銅塊、Eは蓋、11,12はリード棒、13,14
は電極である。
FIG. 1 is a sectional view showing an embodiment of a method for producing an electrode material according to the present invention, and FIG. 2 is a sectional view showing an example of a vacuum interrupter. In the reference numerals in the figure, A is a container, B is an infiltration base material, C is a copper-bismuth alloy, D is a copper lump, E is a lid, 11, 12 are lead rods, and 13, 14
Is an electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−160325(JP,A) 特開 昭60−313442(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01H 33/66 H01H 1/02 H01H 11/04────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-160325 (JP, A) JP-A-60-313442 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01H 33/66 H01H 1/02 H01H 11/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銅よりも高融点のスケルトンを構成する高
融点金属の粉末上に銅とこの銅よりも低融点の低融点金
属との合金及び銅塊を載置し、これらを非酸化性雰囲気
にて銅の融点以上に加熱保持し、前記銅と低融点金属と
の合金と前記銅塊とを前記高融点金属の空隙部分に溶浸
させるようにしたことを特徴とする電極材料の製造方
法。
1. An alloy of copper and a low melting point metal having a lower melting point than copper is placed on a powder of a high melting point metal constituting a skeleton having a higher melting point than copper, and these are oxidized. Producing an electrode material, wherein the material is heated and held at a temperature equal to or higher than the melting point of copper in an atmosphere, and an alloy of the copper and the low melting point metal and the copper lump are infiltrated into voids of the high melting point metal. Method.
【請求項2】高融点金属がクロムであることを特徴とす
る請求項(1)に記載した電極材料の製造方法。
2. The method according to claim 1, wherein the high melting point metal is chromium.
【請求項3】低融点金属がビスマスであることを特徴と
する請求項(1)に記載した電極材料の製造方法。
3. The method according to claim 1, wherein the low melting point metal is bismuth.
JP2248792A 1990-09-20 1990-09-20 Manufacturing method of electrode material Expired - Fee Related JP2853308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248792A JP2853308B2 (en) 1990-09-20 1990-09-20 Manufacturing method of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248792A JP2853308B2 (en) 1990-09-20 1990-09-20 Manufacturing method of electrode material

Publications (2)

Publication Number Publication Date
JPH04129119A JPH04129119A (en) 1992-04-30
JP2853308B2 true JP2853308B2 (en) 1999-02-03

Family

ID=17183468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248792A Expired - Fee Related JP2853308B2 (en) 1990-09-20 1990-09-20 Manufacturing method of electrode material

Country Status (1)

Country Link
JP (1) JP2853308B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017001814B4 (en) * 2016-03-29 2021-10-07 Mitsubishi Electric Corporation CONTACT ELEMENT, METHOD OF MANUFACTURING THE SAME AND VACUUM CIRCUIT BREAKERS

Also Published As

Publication number Publication date
JPH04129119A (en) 1992-04-30

Similar Documents

Publication Publication Date Title
JPH0151844B2 (en)
EP1528581B1 (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker
CA1217074A (en) Contact material of vacuum interrupter and manufacturing process therefor
US4546222A (en) Vacuum switch and method of manufacturing the same
JPH11232971A (en) Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof
US5352404A (en) Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. %
JP2853308B2 (en) Manufacturing method of electrode material
JP3067318B2 (en) Manufacturing method of electrode material
US3548135A (en) Contacts for vacuum interrupters
US5130068A (en) Method of manufacturing vacuum switch contact material from Cr2 O3 powder
JP3067317B2 (en) Manufacturing method of electrode material
JPH05217473A (en) Manufacture of electrode material
JP3106598B2 (en) Manufacturing method of electrode material
JP3106609B2 (en) Manufacturing method of electrode material
JP3168635B2 (en) Manufacturing method of electrode material
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JPH04141924A (en) Manufacture of electrode material
JP3298129B2 (en) Manufacturing method of electrode material
JPH04137326A (en) Manufacture of electrode material
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JP2661199B2 (en) Electrode materials for vacuum interrupters
JPH04141925A (en) Manufacture of electrode material
US5225381A (en) Vacuum switch contact material and method of manufacturing it
JPH04324220A (en) Manufacture of electrode material
JPH04129120A (en) Manufacture of electrode material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees