JPH04129120A - Manufacture of electrode material - Google Patents

Manufacture of electrode material

Info

Publication number
JPH04129120A
JPH04129120A JP24879390A JP24879390A JPH04129120A JP H04129120 A JPH04129120 A JP H04129120A JP 24879390 A JP24879390 A JP 24879390A JP 24879390 A JP24879390 A JP 24879390A JP H04129120 A JPH04129120 A JP H04129120A
Authority
JP
Japan
Prior art keywords
copper
melting point
bismuth
vessel
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24879390A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Toshimasa Fukai
利眞 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP24879390A priority Critical patent/JPH04129120A/en
Publication of JPH04129120A publication Critical patent/JPH04129120A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To improve the homogeneity of a product with uniform distribution of low melting point materials in an electrode material by infiltrating copper and low melting point metals into porous portions of high melting point metals while mounting low melting point metals onto powders of high melting point metals in an airtightly sealed copper vessel. CONSTITUTION:Chromium powder is charged into a mother material vessel A, and are heated and kept to obtain an infiltration mother material B. On the other hand, bismuth D is filled in a copper vessel C, further a copper lid plate E is fitted into the copper vessel C, and they are mounted onto the mother material B while further mounting a copper ingot F onto the lid plate E. And, by covering it with a lid plate G, a vessel A whose inner part being shut tightly is heated and holded so that copper and bismuth are infiltrated in porous portions of the mother material B, subsequently the obtained electrode material is taken out from the vessel A followed by machining into a disc shape. Consequently, the homogeneity of products are improved and electrode materials having a desired chopped current characteristic can be manufactured. Besides, an operating device for switching can be reduced in size, and a cubicle can be miniaturized combining with lower heat generation.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、低融点金属の分布のばらつきが少ない均質な
電極材料の製造方法に関し、特にビスマスを添加した銅
−クロム系の電極材、料(こ応用して好適なものである
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of Application The present invention relates to a method for producing a homogeneous electrode material with little variation in the distribution of low melting point metals, and in particular to copper-chromium based electrode materials and materials added with bismuth. (This is suitable for this application.

B9発明の概要 銅よりも高融点の金属粉末上に銅よりも低融点の金属を
充填した銅容器を載置するか、或いは更にこの銅容器上
に銅塊を載置し、これらを非酸化性雰囲気にて加熱保持
し、前記低融点金属の蒸散を抑制しつつ高融点金属の空
隙部分に銅及び低融点金属を溶浸させることにより、所
望の性能を有する均質な電極材料を製造し得るようにし
たものである。
B9 Summary of the Invention A copper container filled with a metal having a lower melting point than copper is placed on a metal powder having a higher melting point than copper, or a copper lump is further placed on the copper container, and these are non-oxidized. A homogeneous electrode material having desired performance can be manufactured by infiltrating the voids of the high melting point metal with copper and the low melting point metal while heating and holding the electrode in a neutral atmosphere and suppressing evaporation of the low melting point metal. This is how it was done.

C9従来の技術 真空インタラプタの電極材料として要求される重要な性
能の一つとして、電流遮断性能の高いことが挙げられる
C9 Prior Art One of the important performances required for the electrode material of a vacuum interrupter is high current interrupting performance.

近年、この電流遮断性能が非常に優れている銅−クロム
系の材料に、電流週断後の接触抵抗値の上昇を抑制する
目的でビスマスを添加したものを、真空インタラプタの
電極材料として使用することが試みられている。
In recent years, copper-chromium materials, which have excellent current interrupting performance, with bismuth added in order to suppress the rise in contact resistance after current interruptions have been used as electrode materials for vacuum interrupters. That is what is being attempted.

従来、このビスマスを添加した銅−クロム系の電極材料
の製造方法としては、銅とクロムとビスマスとの混合粉
末を一括して焼結するようにしたものや、容器内に充填
されたクロムとビスマスとの混合粉末上に銅塊を載置し
、これらを非酸化性雰囲気にて銅の融点以上に加熱し、
クロム及びビスマスの空隙部分に銅塊を溶浸させるよう
にしたもの、或いは予め焼結された銅とクロムとからな
る多孔質の溶浸母材の空隙部分にビスマスを溶浸させる
ようにしたもの等が知られている。
Conventionally, methods for producing bismuth-added copper-chromium electrode materials include sintering a mixed powder of copper, chromium, and bismuth all at once, or sintering a mixed powder of copper, chromium, and bismuth, or sintering a mixture of copper and chromium in a container. A copper ingot is placed on a mixed powder with bismuth, and these are heated above the melting point of copper in a non-oxidizing atmosphere.
A copper ingot is infiltrated into the voids of chromium and bismuth, or a porous infiltration base material made of pre-sintered copper and chromium is infiltrated with bismuth. etc. are known.

なお、ビスマスを添加した銅−クロム系の電極材料の組
成として一般的には、鋼が20から98重量%の範囲、
クロムが2から80重量%の範囲、ビスマスが0.1か
ら15重量%の範囲に調整されている。
In addition, the composition of copper-chromium based electrode materials to which bismuth is added generally ranges from 20 to 98% by weight of steel;
Chromium is adjusted to a range of 2 to 80% by weight, and bismuth is adjusted to a range of 0.1 to 15% by weight.

D1発明が解決しようとする課題 ビスマスを添加した銅−クロム系の金属材料に対する従
来の製造方法の内、銅とクロムとビスマスとの混合粉末
を一括して焼結するようにした方法及びクロム及びビス
マスの空隙部分に銅塊を溶浸させるようにした方法では
、ビスマスは蒸気圧が高くて融点が低いことから、銅塊
を溶浸させる加熱工程において銅よりも融点の低いビス
マスの蒸発量が非常に多く、一つの容器内で製造される
電極材料中のビスマスの分布が著しく不均一となって製
品の均質性を損なう虞がある上、電極材料中に占めるビ
スマスの割合を設計通りに保つことが困難である。
D1 Problem to be Solved by the Invention Among the conventional manufacturing methods for copper-chromium based metal materials added with bismuth, a method in which a mixed powder of copper, chromium, and bismuth is sintered all at once, and a method in which chromium and bismuth are sintered together. In the method of infiltrating copper ingots into the voids of bismuth, since bismuth has a high vapor pressure and a low melting point, the amount of evaporation of bismuth, which has a lower melting point than copper, is reduced during the heating process of infiltrating the copper ingots. In many cases, the distribution of bismuth in the electrode material manufactured in one container may become extremely uneven, which may impair the homogeneity of the product, and it is necessary to maintain the proportion of bismuth in the electrode material as designed. It is difficult to do so.

又、銅とクロムとの焼結体の空隙部分にビスマスを溶浸
させるようにした方法では、上述の如き不具合はないも
のの、所定量のビスマスを含有する電極材料を製造する
ためには、銅とクロムとの焼結体の空隙率の調整が極め
て重要となる。しかし、従来の方法では銅とクロムとの
焼結体を所望の空隙率に調整することが非常に難しいこ
とに加え、一つの焼結体内での空隙率のばらつきも多い
ことから、電極材料中のビスマスの分布が不均一となっ
て、製品の均質性を損なう虞があった。
In addition, although the method of infiltrating bismuth into the voids of a sintered body of copper and chromium does not have the above-mentioned problems, it is necessary to It is extremely important to adjust the porosity of the sintered body of aluminum and chromium. However, with conventional methods, it is very difficult to adjust the porosity of a sintered body of copper and chromium to the desired porosity. There was a risk that the distribution of bismuth would become uneven, impairing the homogeneity of the product.

80課題を解決するための手段 本発明による電極材料の製造方法は、銅よりも高融点の
スケルトンを構成する高融点金属の粉末上に銅よりも低
融点の低融点金属を収めた銅容器を載置し、更にこの銅
容器上に当該銅容器内を密封する銅製の蓋板を被せ、こ
れらを非酸化性雰囲気にて加熱保持し、前記低融点金属
及び銅を前記高融点金属の空隙部分に溶浸させるように
したことを特徴とするものである。
80 Means for Solving the Problems The method for manufacturing an electrode material according to the present invention includes a copper container containing a low melting point metal having a lower melting point than copper on a high melting point metal powder constituting a skeleton having a higher melting point than copper. Then, a copper lid plate is placed on top of the copper container to seal the inside of the copper container, and these are heated and maintained in a non-oxidizing atmosphere, so that the low melting point metal and copper are removed from the voids of the high melting point metal. It is characterized by being infiltrated with.

なお、前記高融点金属としてはクロム等を挙げることが
できる。又、前記低融点金属としては粉末状のビスマス
等を挙げることができる。ここで、高融点金属としてク
ロムを採用すると共に低融点金属としてをビスマスを採
用したものにおいて、銅が20重量%未満の場合には、
導電率が低下して発熱量が多(なり、逆に鋼が98重量
%を越えると耐溶着性の低下や電流さい断値の増大をも
たらす。
In addition, chromium etc. can be mentioned as said high melting point metal. Further, the low melting point metal may include powdered bismuth. Here, in a product that uses chromium as a high melting point metal and bismuth as a low melting point metal, if the copper content is less than 20% by weight,
The electrical conductivity decreases and the amount of heat generated increases (on the contrary, if the steel content exceeds 98% by weight, the welding resistance decreases and the current cutoff value increases).

又、クロムが2重量%未満の場合には、電流さい断値が
増大し、逆にクロムが80重量%を越える場合には、電
流遮断性能が低下してしまう。一方、ビスマスが0.1
重量%未満の場合には、電流速断後の接触抵抗値を抑制
する効果が薄れてしまい、逆にビスマスが15重量%を
越えると、耐電圧特性等の真空インタラプタとしての性
能に悪影響を及ぼす。
Furthermore, if the chromium content is less than 2% by weight, the current interrupting value increases, whereas if the chromium content exceeds 80% by weight, the current interrupting performance decreases. On the other hand, bismuth is 0.1
If it is less than 15% by weight, the effect of suppressing the contact resistance value after a rapid current cutoff will be diminished, and if it exceeds 15% by weight, it will have an adverse effect on the performance as a vacuum interrupter, such as withstand voltage characteristics.

従って、高融点金属としてクロムを採用すると共に低融
点金属としてビスマスを採用したものにおいては、銅は
20から98重量%の範囲、クロムは2から80重量%
の範囲、ビスマスは0.1から15重量%の範囲にそれ
ぞれあることが望ましい。
Therefore, in a product that uses chromium as a high melting point metal and bismuth as a low melting point metal, copper is in the range of 20 to 98% by weight, and chromium is in the range of 2 to 80% by weight.
The content of bismuth is preferably in the range of 0.1 to 15% by weight.

但し、さい断電流値に注目した場合、ビスマスの添加量
とさい断電流値との関係を表す第3図に示すように、2
A以下のさい断電流値を得るためにはビスマスの添加量
を少なくとも20重量%にしなければならない。そして
、Iへ以下のさい断電流値を得るためには、ビスマスを
6.0重量%以上添加する必要があるが、このビスマス
を12重量%以上添加しても、さい断電流値をそれ以上
に減少させることが困難となることから、ビスマスは6
から12重量%の範囲に収めることが特に有効となる。
However, when focusing on the cutting current value, as shown in Figure 3, which shows the relationship between the amount of bismuth added and the cutting current value,
In order to obtain a cutting current value of A or less, the amount of bismuth added must be at least 20% by weight. In order to obtain the following cutting current value for I, it is necessary to add 6.0% by weight or more of bismuth, but even if this bismuth is added in an amount of 12% by weight or more, the cutting current value will not exceed 6.0% by weight. Since it is difficult to reduce bismuth to 6
It is particularly effective to keep the content within the range of 12% by weight.

F0作用 銅とこの銅よりも低融点の金属とを混合した場合、これ
らの融点が純粋な銅の融点よりも低下することは、周知
の事実である。
It is a well-known fact that when F0 effect copper is mixed with a metal having a lower melting point than the copper, their melting points are lower than that of pure copper.

例えば、純粋な銅の融点は1083℃であり、純粋なビ
スマスの融点は271℃である。
For example, pure copper has a melting point of 1083°C and pure bismuth has a melting point of 271°C.

ここで、銅に対するビスマスの混合割合とこの時のこれ
らの融点との関係を表す第4図に示すように、ビスマス
の混合割合が増大するにつれて、これらの融点が次第に
低下するような傾向を持つことが判る。
As shown in Figure 4, which shows the relationship between the mixing ratio of bismuth to copper and these melting points, as the mixing ratio of bismuth increases, these melting points tend to gradually decrease. I understand that.

このため、銅容器内に低融点金属の粉末を収め、これを
非酸化性雰囲気にて加熱すると、低融点金属は密閉状態
の銅容器内で溶融する。
Therefore, when powder of a low melting point metal is placed in a copper container and heated in a non-oxidizing atmosphere, the low melting point metal will melt in the sealed copper container.

そして、この低融点金属と接触する銅容器の内壁も溶融
を始め、まずこれらが高融点金属の空隙部分に溶浸し、
次いで銅製の蓋板の上端部が高融点金属の表面全体から
溶浸する。
The inner wall of the copper container that comes into contact with this low melting point metal also begins to melt, and first these infiltrate into the voids of the high melting point metal.
The upper end of the copper lid plate is then infiltrated over the entire surface of the refractory metal.

この場合、低融点金属は密閉状態の銅容器内に収められ
ているため、低融点金属の蒸発が抑制された状態となる
In this case, since the low melting point metal is contained in a sealed copper container, evaporation of the low melting point metal is suppressed.

この加熱操作に伴って高融点金属の粉末の空隙部分から
ガスが放出され、先に述べたようにして高融点金属の空
隙部分に銅と低融点金属とが次第に溶浸して行く。低融
点金属は電極材料自体の機械的強度を下げ、この電極材
料自体を変形し易くして電流遮断後の接触抵抗値の上昇
を抑制する。
With this heating operation, gas is released from the voids in the high melting point metal powder, and copper and low melting point metal gradually infiltrate into the voids in the high melting point metal as described above. The low melting point metal lowers the mechanical strength of the electrode material itself, making the electrode material itself easily deformable and suppressing an increase in contact resistance after current interruption.

G、実施例 真空インタラプタは、その概略構造の一例を表す第8図
に示すようなものであり、相互に一直線状をなす一対の
リード棒11,12の対向端面には、それぞれ電極13
.14が一体的に設けである。これら電極13.14を
囲む筒状のシールド15の外周中央部は、このシールド
15を囲む一対の絶R¥116゜17の間に挟まれた状
態で保持されている。
G. Embodiment The vacuum interrupter is as shown in FIG. 8, which shows an example of its schematic structure, and electrodes 13 are provided on opposing end surfaces of a pair of lead rods 11 and 12 that are in a straight line with each other.
.. 14 is integrally provided. A central portion of the outer periphery of a cylindrical shield 15 surrounding these electrodes 13, 14 is held between a pair of absolute R 116° 17 surrounding the shield 15.

一方の前記リード棒11は、一方の絶縁筒16の一端に
接合された金属端板18を気密に貫通した状態で、この
金属端板18に一体的に固定されている。図示しない駆
動装置に連結される他方のり−ド棒12は、他方の絶縁
筒17の他端に気密に接合された他方の金属端板19に
ベローズ20を介して連結され、駆動装置の作動に伴っ
て電極13.14の対向方向に往復動可能に可動側の電
極14が固定側の電極13に対して開閉動作するように
なっている。
One of the lead rods 11 is integrally fixed to the metal end plate 18 joined to one end of the insulating tube 16 while airtightly passing through the metal end plate 18 . The other lead rod 12, which is connected to a drive device (not shown), is connected via a bellows 20 to the other metal end plate 19, which is hermetically joined to the other end of the other insulating cylinder 17, and is connected to the other end plate 19, which is connected to the other end of the insulating cylinder 17, through a bellows 20, and is connected to the drive device. Accordingly, the movable electrode 14 is configured to open and close with respect to the fixed electrode 13 so as to be able to reciprocate in the opposite direction of the electrodes 13 and 14.

前記電極13.14は、クロム(Cr)と、銅(Cu)
と、これらクロムと銅との界面に分散するビスマス(B
i)とからなる複合金属で構成される。
The electrodes 13.14 are made of chromium (Cr) and copper (Cu).
and bismuth (B) dispersed at the interface between these chromium and copper.
i) It is composed of a composite metal consisting of.

本発明によるこの電極材料の製造方法の一例を第1図に
基づいて以下に記すと、まず100メツシユの粒度のク
ロムの粉末を内径が68m+のアルミナセラミックス製
の母材容器A中ニ170 g装入し、これを5XlO−
5Torrの真空炉内で脱ガスしながら1200″Cに
加熱保持し、クロム粒子を相互に拡散結合させて多孔質
の溶浸母材Bを得る。
An example of the method for manufacturing this electrode material according to the present invention will be described below based on FIG. 1. First, chromium powder with a particle size of 100 mesh is placed in a 170 g container A made of alumina ceramics with an inner diameter of 68 m+. and add 5XlO-
It is heated and maintained at 1200''C while degassing in a 5 Torr vacuum furnace, and the chromium particles are mutually diffused and bonded to obtain a porous infiltrated base material B.

一方、外径が60unで高さが17−2肉厚が2Bの銅
製の容器C(重量が107.5g)内に一275メツシ
ュの粒度のビスマスDを70g充填し、更にこの銅製の
容器Cに外径が56mで肉厚が2mm(重量が44g)
の銅製の蓋板Eを嵌め込み、これを前記溶浸母材B上に
載置すると共に更に蓋板Eの上に190gの銅塊Fを載
せる。そして、アルミナセラミックス製の蓋板Gを被せ
ることにより、内部を密閉状態に保持した母材容器Aを
5×10−57orrの真空溶解炉にて40分間脱ガス
しつつ1100°Cに加熱保持し、多孔質の溶浸母材B
の空隙部分に銅及びビスマスを溶浸させ、得られる電極
材料を母材容器Aから出して直径60mmで厚さが10
mmの円板状に機械加工した。
On the other hand, 70g of bismuth D with a particle size of 1275 mesh was filled into a copper container C (weighing 107.5g) with an outer diameter of 60un and a height of 17-2 and a wall thickness of 2B. The outer diameter is 56 m and the wall thickness is 2 mm (weight 44 g).
A copper lid plate E of 1 is fitted and placed on the infiltration base material B, and a 190 g copper ingot F is further placed on the lid plate E. Then, by covering the lid plate G made of alumina ceramics, the base material container A, whose inside was kept in a sealed state, was heated and maintained at 1100°C while degassing for 40 minutes in a 5 x 10-57 orr vacuum melting furnace. , porous infiltration base material B
Copper and bismuth are infiltrated into the void part of the electrode material, and the obtained electrode material is taken out from the base material container A and has a diameter of 60 mm and a thickness of 10 mm.
It was machined into a disk shape of mm.

このようにして、 Cu : 45重量% Cr:45重量% Bi:10重量% からなる電極材料を作成した。In this way, Cu: 45% by weight Cr: 45% by weight Bi: 10% by weight An electrode material consisting of

この方法によって、合計で25の試料を作成し、電極材
料中に占めるビスマスの割合を誘導結合高周波プラグv
 (I CP :InductivelyCouple
d Plasma)分光分析法により測定した結果、ビ
スマスの割合の平均値が10重量%でその標準偏差が2
%となり、ビスマスの割合のばらつきの小さいことが判
明した。
By this method, a total of 25 samples were prepared, and the proportion of bismuth in the electrode material was determined by inductively coupled high-frequency plug v
(ICP: Inductively Couple
d Plasma) As a result of measurement by spectroscopic analysis, the average value of the proportion of bismuth was 10% by weight, and its standard deviation was 2.
%, and it was found that the variation in the proportion of bismuth was small.

なお、容器Cの底板部分の厚みを他の部分よりも薄く設
定することにより、ビスマスDが銅に囲まれた状態て溶
浸母材B中に溶浸させることが可能となり、蓋板Eて密
閉された容器C内のビスマスDの蒸発をより一層抑制す
ることができる。又、本実施例では溶浸母材Bであるク
ロムの多孔質焼結体の上に、ビスマスDを収めた容器C
を載置するようにしたが、クロムの焼結工程を省略し、
その粉末上にビスマスDを収めた容器Cを載置し、これ
らをクロムの空隙部分に溶浸させても同様な結果を得る
ことができる。更に、本実施例では蓋板Eの上に銅塊F
を載せるようにしたが、蓋板Eと銅塊Fとを一体化して
単一の肉厚の蓋板とすることも当然可能である。
In addition, by setting the thickness of the bottom plate part of the container C to be thinner than other parts, it becomes possible to infiltrate the bismuth D into the infiltration base material B while being surrounded by copper, and the thickness of the bottom plate part of the container C becomes thinner than the other parts. Evaporation of bismuth D in the sealed container C can be further suppressed. In addition, in this example, a container C containing bismuth D is placed on a porous sintered body of chromium, which is the infiltration base material B.
However, the chromium sintering process was omitted,
A similar result can be obtained by placing a container C containing bismuth D on top of the powder and infiltrating it into the voids of chromium. Furthermore, in this embodiment, a copper ingot F is placed on the lid plate E.
However, it is of course possible to integrate the lid plate E and the copper ingot F into a single thick lid plate.

H9発明の効果 本発明の電極材料の製造方法によると、蒸発し易い低融
点金属を銅容器内に密閉した状態で高融点金属の粉末上
に載置し、この高融点金属の空隙部分に銅及び低融点金
属を溶浸させるようにしたので、低融点金属の蒸発量を
従来の方法よりも大幅に抑制することが可能となり、電
極材料中の低融点金属の分布が均一となって製品の均質
性が向上し、電極材料中に占める低融点金属の割合を設
計通りに保つことができる。
H9 Effects of the Invention According to the method for manufacturing an electrode material of the present invention, a low melting point metal that easily evaporates is placed on a powder of a high melting point metal in a sealed state in a copper container, and copper is poured into the voids of the high melting point metal. By infiltrating the low melting point metal and the low melting point metal, it is possible to significantly suppress the amount of evaporation of the low melting point metal compared to the conventional method, and the distribution of the low melting point metal in the electrode material becomes uniform, making it possible to improve the quality of the product. Homogeneity is improved, and the proportion of low melting point metal in the electrode material can be maintained as designed.

この結果、所望のさい断電流値を有する電極材料を製造
できると共に多数回の開閉操作後でも接触抵抗値が低く
安定しているため、開閉のだめの操作装置を小形化でき
ると共に発熱が少ないことと相俟ってキユービクルを小
形化できる。
As a result, it is possible to manufacture an electrode material with a desired cutting current value, and the contact resistance value remains low and stable even after multiple opening/closing operations, making it possible to downsize the opening/closing device and generate less heat. Together, the cubicle can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電極材料の製造方法の一実施例を
表す断面図、第2図は真空インタラプタの一例を表す断
面図、第3図はビスマスの添加量とさい断電流値との関
係を表すグラフ、第4図は銅に対するビスマスの割合と
これらの融点との関係を表すグラフである。 又、図中の符号てAは母材容器、Bは溶浸母材、Cは容
器、Dはビスマス、E、Gは蓋板、Fは銅塊、11.1
2はリード棒、l 3. l 4は電極である。 特許出願人 株式会社 明 電 舎 代理人 弁理士 光石英俊(他1名) 第 を 図 本発明1こよる電極材料の製造 方法の一実施例を表す断面図 A:母材容器 B:溶浸母材 C:容器 D=ビスマス E、G:蓋板 「:銅塊 第2図 真空インタラプタの断面図 +3.+4:電極 第3図 ざL1断電流値の変化を表すグラフ 第4 図 銅−ビスマス複合金属の 融点の変化を表すグラフ
Fig. 1 is a cross-sectional view showing an example of the method for producing an electrode material according to the present invention, Fig. 2 is a cross-sectional view showing an example of a vacuum interrupter, and Fig. 3 is the relationship between the amount of bismuth added and the cutting current value. FIG. 4 is a graph showing the relationship between the ratio of bismuth to copper and their melting points. Also, in the figure, A is a base material container, B is an infiltrated base material, C is a container, D is bismuth, E and G are lid plates, F is a copper ingot, 11.1
2 is the lead rod, l 3. l4 is an electrode. Patent Applicant Meidensha Co., Ltd. Agent Patent Attorney Hidetoshi Mitsuishi (and one other person) Cross-sectional view showing an embodiment of the method for manufacturing an electrode material according to the present invention 1 A: Base material container B: Infiltration base Material C: Container D = Bismuth E, G: Lid plate: Copper block Figure 2 Cross-sectional view of vacuum interrupter +3.+4: Electrode Figure 3 Graph showing changes in L1 disconnection current value Figure 4 Copper-bismuth composite Graph showing changes in melting point of metals

Claims (3)

【特許請求の範囲】[Claims] (1)銅よりも高融点のスケルトンを構成する高融点金
属の粉末上に銅よりも低融点の低融点金属を収めた銅容
器を載置し、更にこの銅容器上に当該銅容器内を密封す
る銅製の蓋板を被せ、これらを非酸化性雰囲気にて加熱
保持し、前記低融点金属及び銅を前記高融点金属の空隙
部分に溶浸させるようにしたことを特徴とする電極材料
の製造方法。
(1) A copper container containing a low-melting point metal with a lower melting point than copper is placed on top of a powder of a high-melting point metal that constitutes a skeleton with a higher melting point than copper, and the inside of the copper container is placed on top of this copper container. An electrode material characterized in that it is covered with a copper lid plate for sealing and heated and held in a non-oxidizing atmosphere to infiltrate the low melting point metal and copper into the voids of the high melting point metal. Production method.
(2)高融点金属がクロムであることを特徴とする請求
項(1)に記載した電極材料の製造方法。
(2) The method for manufacturing an electrode material according to claim (1), wherein the high melting point metal is chromium.
(3)低融点金属がビスマスの粉末であることを特徴と
する請求項(1)に記載した電極材料の製造方法。
(3) The method for producing an electrode material according to claim (1), wherein the low melting point metal is bismuth powder.
JP24879390A 1990-09-20 1990-09-20 Manufacture of electrode material Pending JPH04129120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24879390A JPH04129120A (en) 1990-09-20 1990-09-20 Manufacture of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24879390A JPH04129120A (en) 1990-09-20 1990-09-20 Manufacture of electrode material

Publications (1)

Publication Number Publication Date
JPH04129120A true JPH04129120A (en) 1992-04-30

Family

ID=17183484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24879390A Pending JPH04129120A (en) 1990-09-20 1990-09-20 Manufacture of electrode material

Country Status (1)

Country Link
JP (1) JPH04129120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516975A (en) * 1992-04-02 1996-05-14 Senka Co. Methods for processing leachate using completely closed system in monitor-type and stabilizing-type industrial and non-industrial waste treatment plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516975A (en) * 1992-04-02 1996-05-14 Senka Co. Methods for processing leachate using completely closed system in monitor-type and stabilizing-type industrial and non-industrial waste treatment plant

Similar Documents

Publication Publication Date Title
JPH056780B2 (en)
US4547639A (en) Vacuum circuit breaker
JPH04334832A (en) Manufacture of electrode material
US5352404A (en) Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. %
JPH04129120A (en) Manufacture of electrode material
WO2015194344A1 (en) Process for producing electrode material, and electrode material
JPH04137326A (en) Manufacture of electrode material
JP2853308B2 (en) Manufacturing method of electrode material
JPH05217473A (en) Manufacture of electrode material
JPH05101750A (en) Manufacture of electrode material
JP3106598B2 (en) Manufacturing method of electrode material
JPH04141924A (en) Manufacture of electrode material
JP2013032589A (en) Contact material and method for manufacturing the same
JP2004192992A (en) Contact material for vacuum valve
JPH04324220A (en) Manufacture of electrode material
US3505037A (en) Hypereutectic silicon alloys
JPH04141925A (en) Manufacture of electrode material
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JP2024084349A (en) Contact member for vacuum valves, and vacuum valve
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JP2001076595A (en) Contact point material for vacuum valve and its manufacturing method
JP2661200B2 (en) Electrode materials for vacuum interrupters
JPH0193018A (en) Contact material for vacuum bulb
JPH05117721A (en) Production of electrode material