JP2001307602A - Contact material for vacuum valve and manufacturing method of the same - Google Patents

Contact material for vacuum valve and manufacturing method of the same

Info

Publication number
JP2001307602A
JP2001307602A JP2000123520A JP2000123520A JP2001307602A JP 2001307602 A JP2001307602 A JP 2001307602A JP 2000123520 A JP2000123520 A JP 2000123520A JP 2000123520 A JP2000123520 A JP 2000123520A JP 2001307602 A JP2001307602 A JP 2001307602A
Authority
JP
Japan
Prior art keywords
contact material
contact
vacuum valve
arc
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000123520A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
功 奥富
Takashi Kusano
貴史 草野
Atsushi Yamamoto
敦史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP2000123520A priority Critical patent/JP2001307602A/en
Publication of JP2001307602A publication Critical patent/JP2001307602A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide contact material for a vacuum valve used in a vacuum breaker and the like improving an breaker performance and a manufacturing method of the same. SOLUTION: Contact material is manufactured by pressure-forming mixed powder of Cu powder or the like as a conductive element and Cr powder or the like as an arc resistant element. A surface obtained corresponding to an breaker surface of the contact material and the adjacent part are melted by for example irradiation of laser beam (1 mm or more depth from the surface), and then are rapidly solidified to fine structure of the material. An average particle size of the arc resistant element is maintained as 50 μm or less then the surface is pressed or machined to be smoothed to surface roughness of 10 μm or less and processed in a contact shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空遮断器等に使
用される真空バルブの接点材料に要求される特性の内、
特に遮断性能を向上させることができる真空バルブ用接
点材料およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to the characteristics required for a contact material of a vacuum valve used in a vacuum circuit breaker and the like.
In particular, the present invention relates to a contact material for a vacuum valve capable of improving the breaking performance and a method for producing the same.

【0002】[0002]

【従来の技術】真空バルブ用接点材料に要求される特性
としては、遮断特性、耐電圧特性、耐溶着特性に対する
各性能で示される基本三要件と、その他に電気抵抗(バ
ルク抵抗と接触抵抗)と温度上昇が低く安定しているこ
とが重要な要件となっている。
2. Description of the Related Art The characteristics required for a contact material for a vacuum valve include three basic requirements represented by the respective properties of a breaking characteristic, a withstand voltage characteristic, and a welding resistance characteristic, and an electric resistance (bulk resistance and contact resistance). It is an important requirement that the temperature rise is low and stable.

【0003】しかしながら、これらの要件の中には相反
する特性がある関係上、単一の金属材料によって全ての
要件を満足させることはできない。この為実用化されて
いる多くの接点材料においては、不足する性能を相互に
補えるような2種類以上の元素例えば導電成分と耐弧成
分を組合わせて大電流用または高電圧用等のように特定
の用途に合った接点材料の開発が行なわれており、それ
なりに優れた特性を有するものが開発、実用化されてい
る。開閉器という使用目的から、高確率で電流の開閉が
可能であることは言うまでもない。
However, since these requirements have conflicting characteristics, it is not possible to satisfy all requirements with a single metal material. For this reason, in many contact materials that have been put into practical use, two or more elements that can mutually compensate for the insufficient performance, such as a combination of a conductive component and an arc-resistant component, such as for a large current or a high voltage. Contact materials suitable for specific applications are being developed, and materials having excellent characteristics have been developed and put into practical use. It goes without saying that current can be opened and closed with a high probability from the purpose of use as a switch.

【0004】真空バルブの遮断特性を向上させるには、
接点組織の微細化(特に一対の接点対向表面近傍の組織
の微細化)、ガス含有率の低減(特に一対の接点対向表
面近傍のガス含有率の低減)、更には接点対向面表面に
凹凸等が少ないことが望まれる。
In order to improve the shutoff characteristics of a vacuum valve,
Refinement of the contact structure (particularly, the structure near the pair of contact facing surfaces), reduction of the gas content (particularly, reduction of the gas content near the pair of contact facing surfaces), and unevenness on the contact facing surfaces It is desired that the number is small.

【0005】前記接点組織の微細化及びガス含有率の低
減を同時に満足する製造プロセスとしては、アーク溶解
法のように導電成分と耐弧成分の両方を溶解させた後に
急冷凝固させる方法(例えば特開昭59―143031号)が知
られている。
[0005] As a manufacturing process which simultaneously satisfies the miniaturization of the contact structure and the reduction of the gas content, a method in which both a conductive component and an arc-resistant component are melted and then rapidly solidified as in an arc melting method (for example, No. 59-143031) is known.

【0006】しかしこのアーク溶解法による場合、接点
素材の全てを溶融させて製造するため、固相焼結法で製
造した接点に比較し、開極時接点表面に微溶着による凹
凸(突起)が生じるという問題点がある。さらにアーク
溶解法で改善すべき点は咋今の遮断電流、通電電流の大
電流化の要求に応じて、溶着特性改善元素であるTe,
Bi等を添加しようとした場合、Te,Bi等が高蒸気
圧元素であることから蒸発し易く、その添加が困難であ
ることである。
However, in the case of this arc melting method, since all the contact materials are melted and manufactured, compared with the contacts manufactured by the solid phase sintering method, irregularities (projections) due to fine welding are formed on the contact surface at the time of opening. There is a problem that occurs. The point that should be further improved by the arc melting method is that, in accordance with the current requirements for increasing the breaking current and the flowing current, Te, which is an element for improving the welding characteristics,
When Bi or the like is to be added, since Te, Bi, and the like are high vapor pressure elements, they tend to evaporate, and the addition thereof is difficult.

【0007】一方接点素材を固相焼結法で製造した後に
接点の片面(一対の接点の対向面となる遮断面)をアー
ク、電子線、或いはイオンビーム等で溶融させる方法
(例えば特開平10―223075号)が開発された。
On the other hand, after a contact material is manufactured by a solid-phase sintering method, one surface of the contact (a cut-off surface which is an opposing surface of a pair of contacts) is melted by an arc, an electron beam, an ion beam, or the like (for example, see Japanese Patent Application Laid-Open No. No. 223075) was developed.

【0008】しかしながらこの方法では、溶融部に亀裂
やポアが生じ易く、大電流遮断時の接点間に離脱粒子や
突発性ガス等の遮断性能低下物質の発生原因となり、遮
断性能が低下することがあった。
However, in this method, cracks and pores are liable to be formed in the molten portion, which may cause a substance having a degraded performance such as detached particles or a sudden gas between contacts when a large current is interrupted. there were.

【0009】従来の接点材料では、接点材料の全体また
は表面近傍を、低ガス微細化することはできたが、遮断
電流値が大きくなるにつれて遮断性能低下物質(離脱し
た接点構成物質、ガス成分)の発生確率が上昇し、或い
は開極時に接点遮断面の凹凸発生確率が上昇し、予め期
待した遮断性能が得られないことがあった。
In the conventional contact material, the entire contact material or the vicinity of the surface can be made finer with a low gas. However, as the breaking current value increases, the material having a lowering of the breaking performance (disconnected contact constituent material, gas component). Or the probability of occurrence of concavities and convexities on the contact cutoff surface at the time of opening is increased, and the previously expected cutoff performance may not be obtained.

【0010】[0010]

【発明が解決しようとする課題】前述したように従来の
接点材料では電流遮断時に、遮断性能低下物質の発生や
接点の遮断面となる表面の凹凸の発生を押さえることが
困難で、遮断特性が低下する欠点があった。
As described above, in the conventional contact material, it is difficult to suppress the occurrence of a substance having a degraded interrupting performance and the occurrence of unevenness on the surface serving as the interrupting surface of the contact when the current is interrupted. There was a drawback to decrease.

【0011】本発明は遮断性能低下物質の発生や接点遮
断面表面の凹凸の発生を抑制し、接点遮断面表面近傍を
微細化し且つ低ガス化して、要求される特性である遮断
性能を向上させることができる真空バルブ用接点材料を
得ることおよび真空バルブ用接点材料の製造方法を提供
することを目的とする。
The present invention suppresses the generation of a substance having a degraded breaking performance and the occurrence of irregularities on the surface of the contact-blocking surface, miniaturizes the vicinity of the surface of the contact-blocking surface and reduces the gas, thereby improving the required breaking characteristics. It is an object of the present invention to obtain a vacuum valve contact material that can be used and to provide a method of manufacturing the vacuum valve contact material.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、CuまたはAgの少なくとも1種類
を主成分とする導電成分と、Cr,W,Nb,Ta,T
i,Moおよびこれらの炭化物の内の少なくとも1種類
を含有し且つ平均粒子径が50μm以下で表面の最大粗
さが10μm以下の耐弧成分とを有し、遮断面とその近
傍を溶融させる領域が表面から1mm以上でその反対面
まで到達しないような真空バルブ用接点材料とした。
In order to achieve the above object, the invention of claim 1 is to provide a conductive component mainly composed of at least one of Cu and Ag, and Cr, W, Nb, Ta, T
a region containing at least one of i, Mo and these carbides, having an arc-resistant component having an average particle diameter of 50 μm or less and a maximum surface roughness of 10 μm or less, and melting the interruption surface and its vicinity Was 1 mm or more from the surface and did not reach the opposite surface.

【0013】これにより真空遮断器等に使用される真空
バルブの接点材料における遮断性能低下物質の発生や接
点遮断面表面の凹凸の発生を抑制し、要求される特性で
ある遮断性能を向上させることができる接点材料とする
ことができる。
[0013] Accordingly, it is possible to suppress the generation of a substance having a deteriorating performance in a contact material of a vacuum valve used in a vacuum circuit breaker or the like and to prevent the occurrence of irregularities on the surface of the contact breaking surface, thereby improving the required performance of the breaking performance. Can be used as a contact material.

【0014】請求項2記載の発明は、導電成分および耐
弧成分とで構成される接点材料を、この接点材料を加圧
することにより接点素材を製造する素材製造工程と、接
点素材の遮断面に相当する面とその近傍を高エネルギー
の注入により溶融後、急冷凝固させ、前記接点素材の組
織を微細化する微細化工程と、前記接点素材の組織を微
細化した面を平滑にすると共に所定の接点形状に加工す
る平滑化工程により真空バルブ用接点材料を製造したも
のである。
According to a second aspect of the present invention, there is provided a contact material comprising a conductive component and an arc-resistant component, the contact material being pressurized to produce a contact material; After the corresponding surface and its vicinity are melted by injection of high energy and then rapidly solidified, a fine-graining step for finely refining the structure of the contact material is performed. This is a contact material for a vacuum valve manufactured by a smoothing process for processing into a contact shape.

【0015】従って、請求項2の発明においては、真空
遮断器等に使用される真空バルブの接点材料に要求され
る特性である遮断性能を向上させることができる。
Therefore, according to the second aspect of the present invention, it is possible to improve the breaking performance, which is a characteristic required for a contact material of a vacuum valve used in a vacuum circuit breaker or the like.

【0016】[0016]

【発明の実施の形態】以下本発明の実施態様を説明す
る。はじめに本発明の接点材料が適用される真空バルブ
の構成を図1で説明する.図1において、1は遮断室を
示し、この遮断室1は、絶縁材料によりほぼ円筒状に形
成された絶縁容器2と、この両端に封着金具3a,3b
を介して設けた金属性の蓋体4a,4bとで真空気密に
構成されている。前記遮断室1内には、導電棒5,6の
対向する端部に取り付けられた相対的に接離可能な一対
の電極7,8が配設され、図示上部の電極7を固定電
極、下部の電極8を可動電極としている。また、この可
動電極8の電極棒6には、ベローズ9が取り付けられ遮
断室1内を真空気密に保持しながら電極8の軸方向の移
動を可能にし、このベローズ9上部には金属性のアーク
シールド10が設けられ、ベローズ9がアーク蒸気で覆
われることを防止している。11は前記電極7,8を覆
うようにして遮断室1内に設けられた金属性のアークシ
ールドで、絶縁容器2内面がアーク蒸気で覆われること
を防止している。さらに、前記固定、および可動電極
7、8は、導電棒5、6に夫々ロウ付けによって固定さ
れるか、或いはかしめによって圧着接続されている。可
動および固定電極7,8の対向する面には本発明によっ
て製造された接点材料による接点12a、12bが、電
極7、8に夫々ロウ付けで固着されている。
Embodiments of the present invention will be described below. First, the configuration of a vacuum valve to which the contact material of the present invention is applied will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a shut-off chamber. The shut-off chamber 1 includes an insulating container 2 formed of an insulating material in a substantially cylindrical shape, and sealing fittings 3a, 3b at both ends.
And the metallic lids 4a and 4b provided through the intermediary of airtight. A pair of electrodes 7 and 8 which are attached to opposite ends of the conductive rods 5 and 6 and are relatively close to each other are disposed in the shut-off chamber 1. Is a movable electrode. A bellows 9 is attached to the electrode rod 6 of the movable electrode 8 to enable the electrode 8 to move in the axial direction while keeping the inside of the shut-off chamber 1 airtight. A shield 10 is provided to prevent the bellows 9 from being covered with arc vapor. Reference numeral 11 denotes a metallic arc shield provided in the cut-off chamber 1 so as to cover the electrodes 7 and 8, and prevents the inner surface of the insulating container 2 from being covered with the arc vapor. Further, the fixed and movable electrodes 7 and 8 are fixed to the conductive rods 5 and 6 by brazing or crimped by crimping. On opposite surfaces of the movable and fixed electrodes 7, 8, contacts 12a, 12b made of a contact material manufactured according to the present invention are fixed to the electrodes 7, 8 by brazing, respectively.

【0017】真空バルブ用接点材料例えばCu―Cr接点の
遮断特性を向上させる為には接点表面近傍の組織を微細
化かつ低ガス化すると共に電流遮断後においても表面が
平滑であることが必要であることは先に述べた。
In order to improve the breaking characteristics of a contact material for a vacuum valve, for example, a Cu-Cr contact, it is necessary to make the structure near the contact surface finer and lower the gas and to make the surface smooth even after current interruption. Some things have been mentioned earlier.

【0018】そこで本発明においては以下に述べる方法
により接点材料を製造した.即ち接点材料として、原料
Cu粉末と原料Cr粉末の混合粉末を加圧成型し(素材
製造工程)、接点素材を得る。このとき前記接点材料の
素材における加圧後の圧粉体の相対密度は90%以上で
あることが望ましい。尚、必要により加熱処理による脱
ガスを行う.この脱ガス処理は、非酸化性雰囲気、好ま
しくは水素雰囲気または真空雰囲気で加熱して行う。
Therefore, in the present invention, a contact material was manufactured by the method described below. That is, as a contact material, a mixed powder of a raw material Cu powder and a raw material Cr powder is subjected to pressure molding (material manufacturing step) to obtain a contact material. At this time, it is desirable that the relative density of the green compact after pressing in the contact material is 90% or more. Degas by heat treatment if necessary. This degassing treatment is performed by heating in a non-oxidizing atmosphere, preferably a hydrogen atmosphere or a vacuum atmosphere.

【0019】接点素材の遮断面に相当する面と、その面
近傍を高エネルギーの注入、例えば電子線の照射、イオ
ンビームの照射、レーザの照射、アークの発生等による
溶融、次いで急冷凝固により接点組織を微細化(微細化
工程)する。前記接点素材の通電面に相当する面とその
近傍を溶融させる領域は接点表面から1mm以上であ
り、かつ反対面まで到達しないようにする。前記接点素
材の片面を、溶融と急冷凝固により微細化された組織の
耐弧成分であるCrの平均粒子径は50μm以下となるよ
うにする。そして溶融と急冷凝固により微細化させる際
の雰囲気は、非酸化性雰囲気であり、好ましくは真空雰
囲気で行う。
The surface corresponding to the cutoff surface of the contact material and the vicinity thereof are injected with high energy, for example, by electron beam irradiation, ion beam irradiation, laser irradiation, melting by arc generation, etc., and then by rapid solidification. The structure is refined (miniaturization step). The surface of the contact material corresponding to the current-carrying surface and the area where the vicinity thereof is melted are 1 mm or more from the contact surface and do not reach the opposite surface. One surface of the contact material is made to have an average particle diameter of 50 μm or less of Cr, which is an arc-resistant component of a structure refined by melting and rapid solidification. The atmosphere for making the particles fine by melting and rapid solidification is a non-oxidizing atmosphere, preferably a vacuum atmosphere.

【0020】次いで接点表面近傍におけるポアの存在の
低減化と接点表面の平滑化を目的として、加圧または機
械加工を施こす平滑化工程により接点材料を製造する。
ここで接点素材の組織を微細化した面を平滑にした後の
表面最大粗さは10μm以下とする。
Next, for the purpose of reducing the presence of pores near the contact surface and smoothing the contact surface, a contact material is manufactured by a smoothing step of applying pressure or machining.
Here, the maximum surface roughness after smoothing the surface of the contact material whose structure has been refined is set to 10 μm or less.

【0021】上記実施態様においては、素材製造工程の
次に脱ガス処理を行うものについて説明したが、この脱
ガス処理の加熱に際し素材が焼結されるが、この焼結工
程を行わない場合にはマトリックスである導電成分の結
合力も弱く、自由度が大きいため、その後の急冷凝固に
よる微細化工程で接点素材の割れの発生やポアの発生を
抑制できる。
In the above-described embodiment, the description has been given of the case where the degassing process is performed after the material manufacturing process. However, the material is sintered when the degassing process is heated. Since the bonding force of the conductive component as the matrix is weak and the degree of freedom is large, it is possible to suppress the occurrence of cracks and pores in the contact material in the subsequent miniaturization step by rapid solidification.

【0022】更に本発明はCu−Cr接点に限るもので
はなく、他の導電成分、耐弧成分と必要により加えられ
る補助成分からなる接点材料についても適用可能であ
る。即ち前記接点材料の導電成分は、少なくともCuま
たはAgのどちらか一方を主成分とするものであり、ま
た前記接点材料の耐弧成分は、Cr,W,Nb,Ta,
Ti,Mo及びこれらの炭化物の内の少なくとも1種類
を含有するものである。更に前記接点材料の補助成分
は、Bi,Te,Se,Sb,Coの内の少なくとも1
種類を含有している。ここで前記接点材料の補助成分の
含有率の合計量は、5wt%以下であることが望まし
い。
Furthermore, the present invention is not limited to Cu-Cr contacts, but is also applicable to contact materials comprising other conductive components, arc resistant components, and auxiliary components added as necessary. That is, the conductive component of the contact material has at least one of Cu and Ag as a main component, and the arc resistant component of the contact material includes Cr, W, Nb, Ta,
It contains at least one of Ti, Mo, and these carbides. Further, the auxiliary component of the contact material is at least one of Bi, Te, Se, Sb, and Co.
Contains types. Here, the total content of the auxiliary components in the contact material is desirably 5 wt% or less.

【0023】尚、このように製造された接点材料は、そ
の後の真空バルブの組立て工程、特に接点材料とCuから
なる電極材料との蝋付け工程により、焼結が進み、寸法
変化が生じる可能性があるが、最初の素材製造工程での
加圧力を調整して圧粉体の相対密度を90%以上にする
ことにより、寸法変化の影響を除去できる。
The sintering of the contact material manufactured in this manner is likely to progress due to the subsequent assembly process of the vacuum valve, in particular, the brazing process of the contact material and the electrode material made of Cu, which may cause a dimensional change. However, the influence of the dimensional change can be eliminated by adjusting the pressing force in the first material manufacturing process to make the relative density of the green compact 90% or more.

【0024】上記のような工程で接点材料を製造するこ
とにより、接点の表面近傍の組織を微細化かつ低ガス化
され、表面が平滑化された接点となり、遮断性能を向上
しうる真空バルブ用接点材料を得ることができる。
By manufacturing the contact material in the above-described process, the structure near the surface of the contact can be made finer and less gaseous, and the contact can have a smooth surface, which can improve the breaking performance. A contact material can be obtained.

【0025】続いて図2を参照しながら、本発明による
真空バルブ用接点材料およびその製造方法ならびに遮断
特性の測定結果について述べる。 (比較例1〜4,実施例1〜2)比較例1では、固相焼
結法でCu−50Cr接点を製造した。Cu粉末とCr粉
末を重量比1:1となるように混合してφ60mmのるつぼ
に充填した後、10−3Paオーダの真空中で、1000℃
×5時間の条件で焼結した。得られた焼結体をφ60mmの
金型で10t/cm2で成形した後、再度同一条件で焼
結し、Cu−50Cr合金を得た。このCu-Cr合金を
所定の接点形状(φ50mm,t5mm)に加工した後、真空バ
ルブに組み込んで遮断試験を実施した。遮断試験は、5
kAから徐々に電流値を上げていく方法で最大遮断電流
を測定した。この比較例1の測定結果を基準とし、その
他の測定結果は相対値で示した。
Next, referring to FIG. 2, the contact material for a vacuum valve according to the present invention, a method for manufacturing the same, and the measurement results of the breaking characteristics will be described. (Comparative Examples 1 to 4, Examples 1 and 2) In Comparative Example 1, Cu-50Cr contacts were manufactured by a solid phase sintering method. The Cu powder and the Cr powder are mixed at a weight ratio of 1: 1 and filled in a crucible of φ60 mm, and then 1000 ° C. in a vacuum of the order of 10-3 Pa.
Sintering was performed for 5 hours. The obtained sintered body was molded at 10 t / cm2 in a mold having a diameter of 60 mm, and then sintered again under the same conditions to obtain a Cu-50Cr alloy. After processing this Cu—Cr alloy into a predetermined contact shape (φ50 mm, t5 mm), it was assembled in a vacuum valve and a cutoff test was performed. Block test is 5
The maximum breaking current was measured by gradually increasing the current value from kA. Based on the measurement results of Comparative Example 1, the other measurement results are shown as relative values.

【0026】比較例2では、アーク溶解法でCu−50C
r接点を製造した。粉末冶金法で作製したCu−50Cr
の組成を有する消耗電極を、陽極側として、例えば高純
度Arを注入し、104Paオーダの真空中で、消耗電
極を溶解させて、対向する水冷Cuるつぼ内にCu−50
Crのインゴットを得た。このCu−Cr合金の組織は
微細化されており、真空バルブに組み込んで遮断試験を
実施した結果、最大遮断電流は、若干向上し、比較例1
の1.1倍であったが、試験後の接点表面には、遮断性
能の信頼性低下の要因となる突起が観察された。
In Comparative Example 2, Cu-50C was used by the arc melting method.
An r-contact was manufactured. Cu-50Cr produced by powder metallurgy
The consumable electrode having the composition of, for example, is injected on the anode side with high-purity Ar, for example, and the consumable electrode is dissolved in a vacuum of the order of 10 4 Pa, and Cu-50 is placed in the opposed water-cooled Cu crucible.
A Cr ingot was obtained. The structure of this Cu—Cr alloy was refined. As a result of performing a cutoff test by incorporating the Cu—Cr alloy into a vacuum valve, the maximum cutoff current was slightly improved.
However, a protrusion was observed on the contact surface after the test, which was a cause of a decrease in the reliability of the breaking performance.

【0027】比較例3では、比較例1と同様に固相焼結
法でCu−50Cr合金を得た後に、底面の片方に104
PaオーダのAr雰囲気中で電子線(注入エネルギーは
例えば1W/mm2)を照射した後に急冷凝固させた。こ
のCu−Cr合金の表面近傍は微細化されていたが、溶
融領域と非溶融領域の境界部周辺に、ポアや割れが観察
された(これは部分的な溶融と急冷凝固の影響と考えら
れる)。このCu-Cr接点を、真空バルブに組み込ん
で遮断試験を実施した結果、比較例1とほぼ同等の性能
であった。
In Comparative Example 3, a Cu-50Cr alloy was obtained by the solid-phase sintering method as in Comparative Example 1, and 10 4
After being irradiated with an electron beam (injection energy is, for example, 1 W / mm 2 ) in an Ar atmosphere of the order of Pa, it was rapidly solidified. Although the vicinity of the surface of the Cu-Cr alloy was finer, pores and cracks were observed around the boundary between the molten region and the non-melted region (this is considered to be the effect of partial melting and rapid solidification). ). As a result of performing a cutoff test by incorporating the Cu—Cr contact into a vacuum valve, the performance was almost the same as that of Comparative Example 1.

【0028】比較例4では、焼結溶浸法でCu−50Cr
合金を得た後に、底面の片方に104PaオーダのAr
雰囲気中で電子線を照射した後に急冷凝固させた。Cr
粉末を加圧成形した後、水素雰囲気中で、1150℃×1時
間の条件で焼結して製造したCrスケルトンと溶浸材C
uをるつぼ内で上下に配置し、水素雰囲気中で1150℃で
加熱し、導電成分であるCuを溶浸させることにより、
Crを50wt%含んだCu-Cr合金を製造し、その後電子
線照射(注入エネルギーは例えば1W/mm2)した後、
急冷凝固を行った。このCu−Cr合金の表面近傍は、
比較例3と同様に微細化されていたが、溶融領域と非溶
融領域の境界部周辺に、ポアや割れが観察され、このC
u-Cr接点の最大遮断電流は、比較例1とほぼ同等で
あった。
In Comparative Example 4, Cu-50Cr was used by the sintering infiltration method.
After obtaining the alloy, Ar on the order of 10 4 Pa was applied to one of the bottom surfaces.
After being irradiated with an electron beam in an atmosphere, it was rapidly solidified. Cr
Cr skeleton and infiltrant C produced by compacting the powder under pressure and sintering it in a hydrogen atmosphere at 1150 ° C for 1 hour
u is placed up and down in a crucible and heated at 1150 ° C. in a hydrogen atmosphere to infiltrate Cu, which is a conductive component.
After producing a Cu-Cr alloy containing 50 wt% of Cr and then irradiating with an electron beam (injection energy is, for example, 1 W / mm 2 ),
Rapid solidification was performed. Near the surface of this Cu-Cr alloy,
Although it was miniaturized as in Comparative Example 3, pores and cracks were observed around the boundary between the molten region and the non-melted region.
The maximum breaking current of the u-Cr contact was almost equal to Comparative Example 1.

【0029】一方実施例1では、Cu粉末とCr粉末を
重量比1:1となるように混合してφ50mmの金型で
10t/cm2で成形した後、104PaオーダのAr
雰囲気中で底面の片方に電子線照射(注入エネルギーは
例えば1W/mm2)した後、急冷凝固を実施し、さらに
接点表面を機械加工により平滑化させた。このCu−C
r接点は電子線照射前に焼結を実施していない為に、導
電成分であるCuマトリックスの結合が弱く、溶融によ
る物性変化にも柔軟に対応できる為に、ポアや割れがほ
とんど観察されなかった。このCu-Cr接点の最大遮
断電流は、若干向上し、比較例1の1.2倍であった。
[0029] In contrast Example 1, Cu powder and Cr powder weight ratio of 1: after forming at 10t / cm @ 2 in a mixture mold φ50mm and to be 1, the 10 4 Pa order Ar
After irradiating one of the bottom surfaces with an electron beam (injection energy is, for example, 1 W / mm 2 ) in an atmosphere, rapid solidification was performed, and the contact surface was smoothed by machining. This Cu-C
Since the r-contact is not sintered before electron beam irradiation, the bonding of the Cu matrix, which is a conductive component, is weak, and it is possible to flexibly cope with changes in physical properties due to melting, so that pores and cracks are hardly observed. Was. The maximum breaking current of this Cu—Cr contact was slightly improved, and was 1.2 times that of Comparative Example 1.

【0030】実施例2では、実施例1と同様に、Cu粉
末とCr粉末を重量比1:1となるように混合してφ5
0mmの金型で10t/cm2で成形した後、104
aオーダのAr雰囲気中で底面の片方に電子線照射(注
入エネルギーは例えば1W/mm2)した後、急冷凝固を
実施した。その後側面を若干削り落とした後に、再度φ
50mmの金型で10t/cm2で成形したところ、ポ
アや割れが押しつぶされたために、観察されなかった。
このCu-Cr接点の最大遮断電流は、若干向上し、比
較例1の1.2倍であった。 (比較例5,実施例3〜4)比較例5と実施例3〜4で
は、素材製造工程における加圧力を調整して、相対密度
をパラメータとしたCu−50Crの圧粉体を作製し、減
圧されたAr雰囲気中で底面の片方にレーザ照射(注入
エネルギーは例えば2W/mm2)した後、急冷凝固を実
施し、さらに接点表面を金型に入れて加圧により平滑化
させた。
In the second embodiment, as in the first embodiment, Cu powder and Cr powder are mixed at a weight ratio of 1: 1 to obtain φ5
After molding at 10 t / cm2 with a 0 mm mold, 10 4 P
After irradiating one of the bottom surfaces with an electron beam (injection energy is, for example, 1 W / mm 2 ) in an Ar atmosphere of the order of a, rapid solidification was performed. After slightly shaving off the side,
When molded with a 50 mm mold at 10 t / cm 2, no pores or cracks were crushed, and no observation was made.
The maximum breaking current of this Cu—Cr contact was slightly improved, and was 1.2 times that of Comparative Example 1. (Comparative Example 5, Examples 3 and 4) In Comparative Example 5 and Examples 3 and 4, the pressing force in the material manufacturing process was adjusted to produce a Cu-50Cr compact using the relative density as a parameter. After laser irradiation (injection energy is, for example, 2 W / mm 2 ) on one of the bottom surfaces in a reduced-pressure Ar atmosphere, rapid solidification was performed, and the contact surface was placed in a mold and smoothed by pressing.

【0031】比較例5では、圧粉体の相対密度が88%
であるが、微細化工程と平滑化工程後の真空バルブの組
立て時に、電極とのロー付け後に接点寸法が大きく変化
し、遮断試験には不適と判断し、遮断試験は実施しなか
った。
In Comparative Example 5, the relative density of the green compact was 88%
However, at the time of assembling the vacuum valve after the miniaturization step and the smoothing step, the dimensions of the contacts greatly changed after brazing to the electrodes, and it was determined that the contact dimensions were not suitable for the cutoff test, and the cutoff test was not performed.

【0032】実施例3と実施例4では、圧粉体の相対密
度がそれぞれ92%と96%であり、微細化工程と平滑
化工程後に真空バルブに組み込んで遮断試験を実施した
結果、最大遮断電流は、比較例1のそれぞれ1.2倍と
1.3倍であった。 (比較例6〜7,実施例5〜6)比較例6〜7と実施例
5〜6では、接点表面の微細化工程における注入エネル
ギーを調整して、微細化する深さをパラメータとしたC
u−50Cr合金を作製した。なお、エネルギーは、Cu
−50Crにアークを発生させることにより注入して急冷
凝固し、機械加工により所定形状(φ50mm,t5mm)に加
工すると共に、表面を平滑化させた。
In Examples 3 and 4, the relative densities of the green compacts were 92% and 96%, respectively. After the miniaturization step and the smoothing step, they were assembled into a vacuum valve and subjected to an interruption test. The current was 1.2 times and 1.3 times that of Comparative Example 1, respectively. (Comparative Examples 6-7, Examples 5-6) In Comparative Examples 6-7 and Examples 5-6, the implantation energy in the step of miniaturizing the contact surface was adjusted, and the depth of miniaturization was set as a parameter.
A u-50Cr alloy was produced. The energy is Cu
-50Cr was injected by generating an arc, rapidly solidified, machined into a predetermined shape (φ50mm, t5mm) by machining, and the surface was smoothed.

【0033】比較例6では、微細層の深さは表面から約
0.6mmであり、最大遮断電流は比較例1とほぼ同等
であった。遮断試験後の接点の断面を観察した結果、電
流遮断時の接点の消耗により、試験前に存在していた微
細層はほとんど観察されなかった。
In Comparative Example 6, the depth of the fine layer was about 0.6 mm from the surface, and the maximum breaking current was almost equal to Comparative Example 1. As a result of observing the cross section of the contact after the cutoff test, almost no fine layer existing before the test was observed due to the consumption of the contact at the time of current cutoff.

【0034】実施例5と実施例6では、微細層の深さは
表面からそれぞれ、2.1mmと3.7mmであり、真空
バルブに組み込んで遮断試験を実施した結果、最大遮断
電流は、両方とも、比較例1のそれぞれ1.2倍であっ
た。
In Example 5 and Example 6, the depth of the fine layer was 2.1 mm and 3.7 mm from the surface, respectively. In each case, it was 1.2 times that of Comparative Example 1.

【0035】比較例7では、微細層の一部が接点の反対
側まで到達しており(微細層の深さは厚さと同一で5m
m)、真空バルブの組立て時に、約1/3の割合でロー
付け状態が悪かった。ロー付け不良の試料のロー付け部
を観察したところ、特に微細層が反対側まで到達した部
分では、ロー材(銀ロー)層が接点へと染み込んでしま
い、ロー材が薄かったことから、接合強度が弱かったと
考えられる。 (実施例7)前記比較例1〜7と実施例1〜6では、素
材製造工程を金型による加圧成型のみを実施した事例に
ついて述べたが、本発明の他の実施態様である加圧成型
後に脱ガスを目的とした非酸化性雰囲気(好ましくは水
素雰囲気または真空雰囲気)での加熱工程を実施した。
In Comparative Example 7, a part of the fine layer reached the opposite side of the contact (the depth of the fine layer was 5 m
m) At the time of assembling the vacuum valve, the brazing condition was poor at a rate of about 1/3. Observation of the brazed part of the sample with poor brazing revealed that the brazing material (silver brazing) layer soaked into the contact point, especially at the part where the fine layer reached the opposite side, and the brazing material was thin. It is considered that the strength was weak. (Embodiment 7) In Comparative Examples 1 to 7 and Examples 1 to 6, the example in which only the pressure molding using a mold was performed in the material manufacturing process was described. After the molding, a heating step in a non-oxidizing atmosphere (preferably a hydrogen atmosphere or a vacuum atmosphere) for degassing was performed.

【0036】実施例7では、加圧成型によりCu−30
Crの圧粉体を作製した後に、例えば水素雰囲気中で例
えば1000℃で脱ガスし、更にイオンビーム照射(注
入エネルギーは例えば0.5W/mm2)による微細化工
程の後に機械加工による平滑化工程を経て、Cu−30
Cr接点を製造した。この接点材料の最大遮断電流は、
比較例1の1.2倍であった。 (比較例8,実施例8〜9)比較例8と実施例8〜9で
は、接点表面の微細化工程における注入エネルギーと急
冷凝固の冷却速度を調整して、微細層中のCr粒子の粒
径をパラメータとしたCu−50Cr合金を作製した。な
お、エネルギーは、Cu−50Crに電子線を照射させる
ことにより注入した後に、φ50mmの金型による加圧
により、表面を平滑化させた。
In the seventh embodiment, Cu-30 is formed by pressure molding.
After preparing a compact of Cr, degassing is performed at, for example, 1000 ° C. in a hydrogen atmosphere, and further, smoothing is performed by machining after a finer process by ion beam irradiation (implantation energy is, for example, 0.5 W / mm 2 ). After the process, Cu-30
A Cr contact was manufactured. The maximum breaking current of this contact material is
It was 1.2 times that of Comparative Example 1. (Comparative Example 8, Examples 8 to 9) In Comparative Example 8 and Examples 8 to 9, the injection energy and the cooling rate of rapid solidification in the step of miniaturizing the contact surface were adjusted to adjust the size of the Cr particles in the fine layer. A Cu-50Cr alloy having a diameter as a parameter was produced. In addition, energy was injected by irradiating Cu-50Cr with an electron beam, and then the surface was smoothed by pressurization using a φ50 mm mold.

【0037】比較例8では、Cr粒子径が約70μmで
あるCu−50Cr接点を使用した結果、最大遮断電流
は、比較例1とほぼ同等であった。
In Comparative Example 8, as a result of using a Cu-50Cr contact having a Cr particle diameter of about 70 μm, the maximum breaking current was almost equal to Comparative Example 1.

【0038】実施例8と実施例9では、Cr粒子径がそ
れぞれ30μmと5μmであり、最大遮断電流は、比較
例1のそれぞれ1.2倍と1.3倍であった。 (実施例10〜11)前記比較例3〜8と実施例1〜9
では、微細化工程における雰囲気は、Arを注入した1
4Paオーダの真空雰囲気の事例について述べたが、
本発明はこれに限るものではない。
In Examples 8 and 9, the Cr particle diameter was 30 μm and 5 μm, respectively, and the maximum breaking current was 1.2 times and 1.3 times that of Comparative Example 1, respectively. (Examples 10 to 11) Comparative Examples 3 to 8 and Examples 1 to 9
Then, the atmosphere in the miniaturization step is 1 in which Ar is implanted.
0 4 has been described examples of the vacuum atmosphere Pa order,
The present invention is not limited to this.

【0039】実施例10と実施例11では、微細工程に
おける雰囲気は、窒素を注入した3×104Paの真空
雰囲気と10―2Paオーダの高真空雰囲気として、C
u−25Cr接点にアーク(例えば、1V,3000A)を
発生させた後、急冷凝固し、機械加工により所定形状
(φ50mm,t5mm)に加工すると共に、表面を平滑化させ
た。この2種類の接点の遮断特性を評価した結果、最大
遮断電流は、実施例10と実施例11共に、比較例1の
1.2倍であった。 (比較例9,実施例12〜13)比較例9と実施例12
〜13では、素材製造工程と微細化工程の後工程である
平滑化工程における機械加工の条件(加工バイトの種
類,加工速度等)を調整して、平滑面の表面粗さをパラ
メータとしたCu−10Cr接点を作製した。
[0039] In Examples 10 and 11, the atmosphere in the fine process, as a high vacuum atmosphere in the vacuum atmosphere and 10- 2 Pa order of 3 × 10 4 Pa injected with nitrogen, C
After an arc (for example, 1V, 3000A) is generated at the u-25Cr contact point, it is rapidly solidified and machined to a predetermined shape.
(φ50 mm, t5 mm) and the surface was smoothed. As a result of evaluating the breaking characteristics of these two types of contacts, the maximum breaking current was 1.2 times that of Comparative Example 1 in both Example 10 and Example 11. (Comparative Example 9, Examples 12 to 13) Comparative Example 9 and Example 12
In Nos. To 13, the machining conditions (type of machining tool, machining speed, and the like) in the smoothing process, which is a post-process of the material production process and the miniaturization process, are adjusted, and the surface roughness of the smooth surface is used as a parameter. A -10Cr contact was made.

【0040】比較例9では、最大粗さが15μmであ
り、最大遮断電流は比較例1とほぼ同等であった。
In Comparative Example 9, the maximum roughness was 15 μm, and the maximum breaking current was almost equal to Comparative Example 1.

【0041】実施例12と実施例13では、最大粗さが
それぞれ8μmと3μmであり、最大遮断電流は、比較
例1のそれぞれ1.2倍と1.3倍であった。
In Examples 12 and 13, the maximum roughness was 8 μm and 3 μm, respectively, and the maximum breaking current was 1.2 times and 1.3 times that of Comparative Example 1, respectively.

【0042】(実施例14)実施例14では、φ50m
mの金型を使用して、無酸素銅のブロックの上にCr粉
末を乗せ、その後加圧することにより、Cuブロックの
上にCrの圧粉体が加圧力で結合された素材製造工程を
採用した。Cr面に電子線を照射して溶融させ急冷凝固
させることにより、Cuブロックの上に微細化したCu
−50Cr層を有するCu−Crの傾斜組成合金を得た。
このCu−Cr合金を、機械加工による平滑化工程を経
て、Cu−Cr接点材料を製造し、遮断性能を評価した
結果、最大遮断電流は、比較例1の1.2倍であった。
(Embodiment 14) In the fourteenth embodiment, φ50 m
Using a mold of m, the Cr powder is placed on the oxygen-free copper block, and then pressurized to adopt a material manufacturing process in which the compact of Cr is bonded on the Cu block by pressing force. did. By irradiating the Cr surface with an electron beam and melting and rapidly solidifying, the finely divided Cu
A graded Cu-Cr alloy having a -50Cr layer was obtained.
The Cu—Cr alloy was subjected to a smoothing step by machining to produce a Cu—Cr contact material, and the breaking performance was evaluated. As a result, the maximum breaking current was 1.2 times that of Comparative Example 1.

【0043】実施例14では、導電成分のブロックであ
るCuと、耐弧成分であるCrの粉末の組み合わせを例につ
いて記述したが、本発明はこれに限定されるものではな
く、これ以外にも、例えば導電成分のブロックと耐弧成
分と導電成分の混合粉末、導電成分のブロックと耐弧成
分の線材、更には導電成分の粉末と耐弧成分の粉末等の
組み合わせも使用できる.(実施例15〜20)前記比
較例1〜8と実施例1〜14では、耐弧成分がCrで、
導電成分がCuである接点材料の事例について述べた
が、本発明はこれに限定されるものではない。
In the fourteenth embodiment, a combination of a powder of Cu, which is a block of a conductive component, and a powder of Cr, which is an arc-resistant component, has been described. However, the present invention is not limited to this. For example, a combination of a conductive component block, an arc-resistant component and a conductive component mixed powder, a conductive component block and an arc-resistant component wire rod, and a combination of a conductive component powder and an arc-resistant component powder can also be used. (Examples 15 to 20) In Comparative Examples 1 to 8 and Examples 1 to 14, the arc resistant component was Cr.
Although the case of the contact material in which the conductive component is Cu has been described, the present invention is not limited to this.

【0044】実施例15では、耐弧成分をWとし導電成
分をCuとしたCu−20wt%W接点を、接点材料表面を
微細かつ平滑にさせて製造し、遮断特性を評価した結
果、最大遮断電流は、微細化工程等を経ていない通常の
固相焼結法で製造した時のCu−W接点材料の1.2倍
であった。
In Example 15, a Cu-20 wt% W contact in which the arc resistant component was W and the conductive component was Cu was manufactured by making the contact material surface fine and smooth, and as a result of evaluating the breaking characteristics, the maximum breaking was determined. The current was 1.2 times that of the Cu-W contact material when manufactured by a normal solid-phase sintering method that did not go through a miniaturization step or the like.

【0045】実施例16〜18では、耐弧成分をそれぞ
れNb,WC,Cr+Wとし、導電成分をCuとして、
実施例15と同様な条件で、接点材料を製造して遮断特
性を評価した結果、最大遮断電流は、実施例16〜18
全て、微細化工程等を経ていない通常の固相焼結法で製
造した時の接点材料の1.2倍であった。
In Examples 16 to 18, the arc-resistant components were Nb, WC, Cr + W, and the conductive component was Cu.
The contact material was manufactured under the same conditions as in Example 15 and the breaking characteristics were evaluated. As a result, the maximum breaking current was as shown in Examples 16 to 18.
In all cases, the contact material was 1.2 times as large as that of the contact material manufactured by the ordinary solid-phase sintering method without passing through the miniaturization step and the like.

【0046】実施例19〜20では、導電成分をそれぞ
れAg,Ag+Cuとし、耐弧成分をWCとして、実施
例15と同様な条件で、接点材料を製造して遮断特性を
評価した結果、最大遮断電流は、実施例19,20共
に、微細化工程等を経ていない通常の固相焼結法で製造
した時の接点材料の1.3倍であった。 (実施例21〜23)前記比較例1〜8と実施例1〜2
0では、導電成分と耐弧成分で構成される、接点材料の
事例について述べたが、これに補助成分を加えた実施態
様である。
In Examples 19 and 20, contact materials were manufactured under the same conditions as in Example 15 to evaluate the breaking characteristics, with the conductive components being Ag and Ag + Cu, respectively, and the arc resistant component being WC. The maximum breaking current in both Examples 19 and 20 was 1.3 times that of the contact material when manufactured by the ordinary solid-phase sintering method without passing through the miniaturization step and the like. (Examples 21 to 23) Comparative Examples 1 to 8 and Examples 1 to 2
In the case of 0, an example of a contact material composed of a conductive component and an arc-resistant component was described, but this is an embodiment in which an auxiliary component is added to this.

【0047】実施例21〜23では、補助成分としてそ
れぞれBi,Te,Te+Seとし、実施例15と同様
な条件で、接点材料を製造して遮断特性を評価した結
果、最大遮断電流は、実施例21〜23全て、微細化工
程等を経ていない通常の固相焼結法で製造した時の接点
材料の1.2倍であった。
In Examples 21 to 23, Bi, Te, and Te + Se were used as auxiliary components, respectively, and a contact material was manufactured under the same conditions as in Example 15 and the breaking characteristics were evaluated. In all of Examples 21 to 23, the contact material was 1.2 times as large as that of the contact material when manufactured by the ordinary solid-phase sintering method which did not go through the miniaturization step and the like.

【0048】以上の結果が示すように、本発明の製造方
法によって得られた真空バルブ用接点材料は、遮断特性
を向上させることが可能となる。
As shown by the above results, the contact material for a vacuum valve obtained by the manufacturing method of the present invention can improve the cutoff characteristics.

【0049】なお、耐弧成分については、発明実施の形
態では、Cr,W,Nb,WC,Cr+Wを用いた記載
をしたが、Cr,W,Nb,Ta,Ti,Mo及びこれ
らの炭化物の内の少なくとも1つを副耐弧成分として使
用してもよい。
The arc resistance component is described using Cr, W, Nb, WC, Cr + W in the embodiment of the invention, but Cr, W, Nb, Ta, Ti, Mo, and these are used. At least one of the carbides may be used as a secondary arc resistant component.

【0050】また導電成分についても、CuまたはAg
を主成分とするならば他の材料との組み合わせを採用で
きる。
The conductive component is also Cu or Ag.
If is used as a main component, a combination with another material can be adopted.

【0051】さらに補助成分については、発明実施の形
態では、Bi,Te,Te+Seでの記載をしたが、B
i,Te,Se,Sb,Coの内の少なくとも1つを補
助成分として使用しても良い。
Further, as for the auxiliary component, in the embodiment of the present invention, Bi, Te, Te + Se are described.
At least one of i, Te, Se, Sb, and Co may be used as an auxiliary component.

【0052】[0052]

【発明の効果】以上述べたように、本発明によれば、遮
断特性を向上させることができる真空バルブ用接点材料
およびその製造方法を提供することができる。
As described above, according to the present invention, it is possible to provide a contact material for a vacuum valve capable of improving the cutoff characteristics and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による接点材料が適用される真空バルブ
の断面図である。
FIG. 1 is a sectional view of a vacuum valve to which a contact material according to the present invention is applied.

【図2】本発明の効果を説明するための比較例と実施例
の説明図である。
FIG. 2 is an explanatory view of a comparative example and an example for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1:遮断室, 2:絶縁容器, 3a,3a:封着金
具, 4a,5b:蓋体,5,6:導電棒, 7:固定
電極, 8:可動電極, 9:ベローズ,10:アーク
シールド, 11:アークシールド, 12a,12
b:接点
1: shut-off chamber, 2: insulating container, 3a, 3a: sealing fitting, 4a, 5b: lid, 5, 6: conductive rod, 7: fixed electrode, 8: movable electrode, 9: bellows, 10: arc shield , 11: Arc shield, 12a, 12
b: contact

───────────────────────────────────────────────────── フロントページの続き (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 5G026 BA01 BB02 BB04 BB12 BB14 BB15 BB16 BB17 BB18 BC03 BC05 BC07 5G050 AA01 AA12 AA13 AA25 AA27 AA46 AA48 AA51 BA01 BA10 CA04 DA03 EA02 EA11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Kusano 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Works Co., Ltd. Terms (reference) 5G026 BA01 BB02 BB04 BB12 BB14 BB15 BB16 BB17 BB18 BC03 BC05 BC07 5G050 AA01 AA12 AA13 AA25 AA27 AA46 AA48 AA51 BA01 BA10 CA04 DA03 EA02 EA11

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】CuまたはAgの少なくとも1種類を主成分
とする導電成分と、Cr,W,Nb,Ta,Ti,Mo
およびこれらの炭化物の内の少なくとも1種類を含有し
且つ平均粒子径が50μm以下で表面の最大粗さが10
μm以下の耐弧成分とを有し、遮断面とその近傍を溶融
させる領域が表面から1mm以上でその反対面まで到達
しないようにしたことを特徴とする真空バルブ用接点材
料。
1. A conductive component mainly composed of at least one of Cu and Ag, and Cr, W, Nb, Ta, Ti, Mo.
And at least one of these carbides, having an average particle diameter of 50 μm or less and a maximum surface roughness of 10
A contact material for a vacuum valve, having an arc-resistant component of not more than μm, wherein an area for melting a blocking surface and its vicinity is 1 mm or more from the surface so as not to reach the opposite surface.
【請求項2】導電成分および耐弧成分とで構成される接
点材料を、この接点材料を加圧することにより接点素材
を製造する素材製造工程と、接点素材の遮断面に相当す
る面とその近傍を高エネルギーの注入により溶融後、急
冷凝固させ、前記接点素材の組織を微細化する微細化工
程と、前記接点素材の組織を微細化した面を平滑にする
と共に所定の接点形状に加工する平滑化工程により真空
バルブ用接点材料を製造した真空バルブ用接点材料の製
造方法。
A contact material comprising a conductive component and an arc-resistant component; a material manufacturing step of manufacturing a contact material by pressing the contact material; and a surface corresponding to an interrupting surface of the contact material and its vicinity. Is melted by injecting high energy and then rapidly solidified to form a finer step of refining the structure of the contact material, and a smoothing step of smoothing the finer surface of the structure of the contact material and processing it into a predetermined contact shape. A method for producing a contact material for a vacuum valve, wherein the contact material for a vacuum valve is produced by the process of forming the contact material.
【請求項3】接点材料が、導電成分と耐弧成分および補
助成分から構成される請求項2記載の真空バルブ用接点
材料の製造方法。
3. The method for producing a contact material for a vacuum valve according to claim 2, wherein the contact material comprises a conductive component, an arc-resistant component and an auxiliary component.
【請求項4】接点素材の、加圧後の圧粉体の相対密度が
90%以上である請求項2乃至3のいずれかに記載の真
空バルブ用接点材料の製造方法。
4. The method for producing a contact material for a vacuum valve according to claim 2, wherein the relative density of the green compact after pressurization of the contact material is 90% or more.
【請求項5】接点素材の遮断面に相当する面とその近傍
を溶融させる領域が、接点表面から1mm以上であり、
かつ反対面まで到達していない請求項2乃至4のいずれ
かに記載の真空バルブ用接点材料の製造方法。
5. An area for melting a surface corresponding to a cutoff surface of a contact material and its vicinity is 1 mm or more from the contact surface,
The method for producing a contact material for a vacuum valve according to claim 2, wherein the contact material does not reach the opposite surface.
【請求項6】微細化された組織の耐弧成分の平均粒子径
が50μm以下である請求項2乃至5のいずれかに記載
の真空バルブ用接点材料の製造方法。
6. The method for producing a contact material for a vacuum valve according to claim 2, wherein an average particle diameter of the arc resistant component of the microstructure is 50 μm or less.
【請求項7】微細化した面の平滑化後の表面の最大粗さ
が10μm以下である請求項2乃至6のいずれかに記載
の真空バルブ用接点材料の製造方法。
7. The method for producing a contact material for a vacuum valve according to claim 2, wherein the maximum roughness of the surface after smoothing the finely divided surface is 10 μm or less.
【請求項8】接点材料の耐弧成分は、Cr,W,Nb,
Ta,Ti,Moおよびこれらの炭化物のうち少なくと
も1種類を含有している請求項2乃至7のいずれかに記
載の真空バルブ用接点材料の製造方法。
8. The arc resistant component of the contact material is Cr, W, Nb,
The method for producing a contact material for a vacuum valve according to any one of claims 2 to 7, further comprising at least one of Ta, Ti, Mo and a carbide thereof.
【請求項9】接点材料の補助成分は、Bi,Te,S
e,Sb,Coのうちの少なくとも1種類を含有してい
る請求項2乃至8のいずれかに記載の真空バルブ用接点
材料の製造方法。
9. An auxiliary component of the contact material is Bi, Te, S
The method for producing a contact material for a vacuum valve according to any one of claims 2 to 8, further comprising at least one of e, Sb, and Co.
【請求項10】接点材料の補助成分の含有率の合計量
が、5wt%以下である請求項2乃至9のいずれかに記
載の真空バルブ用接点材料の製造方法。
10. The method for producing a contact material for a vacuum valve according to claim 2, wherein the total content of the auxiliary components in the contact material is 5 wt% or less.
JP2000123520A 2000-04-25 2000-04-25 Contact material for vacuum valve and manufacturing method of the same Pending JP2001307602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123520A JP2001307602A (en) 2000-04-25 2000-04-25 Contact material for vacuum valve and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123520A JP2001307602A (en) 2000-04-25 2000-04-25 Contact material for vacuum valve and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2001307602A true JP2001307602A (en) 2001-11-02

Family

ID=18633811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123520A Pending JP2001307602A (en) 2000-04-25 2000-04-25 Contact material for vacuum valve and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2001307602A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273342A (en) * 2003-03-11 2004-09-30 Toshiba Corp Contact material for vacuum valve, and vacuum valve
JP2005310608A (en) * 2004-04-23 2005-11-04 Shibafu Engineering Corp Vacuum valve
JP2011113887A (en) * 2009-11-27 2011-06-09 Toshiba Corp Contact for vacuum valve, and its manufacturing method
JP6983370B1 (en) * 2020-12-18 2021-12-17 三菱電機株式会社 Manufacturing method of electrical contacts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273342A (en) * 2003-03-11 2004-09-30 Toshiba Corp Contact material for vacuum valve, and vacuum valve
JP2005310608A (en) * 2004-04-23 2005-11-04 Shibafu Engineering Corp Vacuum valve
JP2011113887A (en) * 2009-11-27 2011-06-09 Toshiba Corp Contact for vacuum valve, and its manufacturing method
JP6983370B1 (en) * 2020-12-18 2021-12-17 三菱電機株式会社 Manufacturing method of electrical contacts
WO2022130604A1 (en) * 2020-12-18 2022-06-23 三菱電機株式会社 Method for producing electrical contact, electrical contact, and vacuum valve

Similar Documents

Publication Publication Date Title
JPH0151844B2 (en)
EP1528581B1 (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
US10086433B2 (en) Process for producing electrode material, and electrode material
EP3187287B1 (en) Method for manufacturing electrode material
KR19980087242A (en) Manufacturing Method of Base Material of Vacuum Valve
WO2021038706A1 (en) Electrical contact, vacuum valve comprising electrical contact, and method for manufacturing electrical contact
JP3909804B2 (en) Contact material for vacuum valves
JP3106598B2 (en) Manufacturing method of electrode material
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
JP2003223834A (en) Electrical contact member and manufacturing method therefor
JP2006233298A (en) Contact material for vacuum valve and its production method
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
JP6398530B2 (en) Method for producing electrode material
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JP2004211173A (en) Manufacturing method of contact material for vacuum valve
JP2004273342A (en) Contact material for vacuum valve, and vacuum valve
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JP2853308B2 (en) Manufacturing method of electrode material
JP3039552B2 (en) Electrode material for vacuum interrupter and method for manufacturing the same
JPH05101749A (en) Manufacture of electrode material
JPH09190730A (en) Manufacture of contact member for vacuum circuit breaker

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606