JPH09190730A - Manufacture of contact member for vacuum circuit breaker - Google Patents

Manufacture of contact member for vacuum circuit breaker

Info

Publication number
JPH09190730A
JPH09190730A JP182896A JP182896A JPH09190730A JP H09190730 A JPH09190730 A JP H09190730A JP 182896 A JP182896 A JP 182896A JP 182896 A JP182896 A JP 182896A JP H09190730 A JPH09190730 A JP H09190730A
Authority
JP
Japan
Prior art keywords
heating
contact member
vacuum
circuit breaker
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP182896A
Other languages
Japanese (ja)
Inventor
Akihisa Nitta
晃久 新田
Yoshiko Minami
淑子 南
Kunpei Kobayashi
薫平 小林
Hiromichi Horie
宏道 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP182896A priority Critical patent/JPH09190730A/en
Publication of JPH09190730A publication Critical patent/JPH09190730A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a contact member for use in a vacuum circuit breaker, capable of enhancing the reliability of operation of the vacuum circuit breaker since it can prevent time vacuum circuit breaker from deteriorating in interruption and pressure resistance performance because of its small contents of oxygen and metal impurities in the contact member. SOLUTION: Chromium powders as arc-resisting components and copper powders as a high-conductivity components are mixed to prepare a mixture of raw materials, which is molded into a copper-chromium molding. The copper- chromium molding is heated to temperatures less than sintering starting temperature in a hydrogen atmosphere and then heated and baked in a vacuum atmosphere. In this case, the process of heating it in the hydrogen atmosphere and that of heating and baking it in the vacuum atmosphere are performed continuously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は真空遮断器用接点部
材の製造方法に係り、特に酸素や金属不純物の含有量が
少なく真空遮断器の遮断性能および耐圧性能の劣化を防
止することができ、真空遮断器の動作信頼性を向上させ
ることが可能な真空遮断器用接点部材の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a contact member for a vacuum circuit breaker, and particularly to a vacuum circuit breaker having a small content of oxygen and metal impurities and capable of preventing deterioration of the circuit breaker performance and pressure resistance performance. The present invention relates to a method for manufacturing a contact member for a vacuum circuit breaker capable of improving the operational reliability of the circuit breaker.

【0002】[0002]

【従来の技術】遮断器は平常状態の電路を開閉したり、
接地事故や短絡事故などの異常時に,故障状態を検知す
る過電流継電器などと組み合わされて、自動的に瞬時に
電路を遮断するために、電力設備,変電所内機器,高速
鉄道車輌等に広く使用されている。特に真空遮断器は、
10-4Pa程度の高真空に維持した容器(真空バルブ)
内に対向配置した1対の接点部材を開閉することによ
り、電路の開閉を行うものである。
2. Description of the Related Art Circuit breakers open and close electric circuits in a normal state,
Widely used in power equipment, substation equipment, high-speed railway vehicles, etc. to automatically and instantaneously cut off the electric circuit when combined with an overcurrent relay that detects the failure state when an abnormality such as a grounding accident or short circuit accident occurs. Have been. In particular, vacuum circuit breakers
Container (vacuum valve) maintained at high vacuum of about 10 -4 Pa
The electric circuit is opened and closed by opening and closing a pair of contact members that are arranged inside to face each other.

【0003】図2は一般的な真空遮断器の構造例を示す
断面図である。図2において接点の開閉動作が行なわれ
る遮断室1は、絶縁材料から成り略円筒状に形成された
絶縁容器2と,この絶縁容器2の上下端に封止金属3
a,3bを介して設けた金属製の蓋体4a,4bとによ
って区画形成され真空気密に構成されている。遮断室1
内には軸方向に対向するように1対の導電棒5,6が配
置され、その各導電棒5,6の対向する端部に、一対の
電極7,8が取付けられている。図においては上部側の
電極7を固定電極とする一方、下部側の電極8を可動電
極としている。また可動電極8の導電棒6には、伸縮自
在のベローズ9が装着されており、遮断室1内を真空気
密に保持した状態で、可動電極8の軸方向における往復
動を可能にしている。このベローズ9の上部には金属製
のアークシールド10が設けられており、このアークシ
ールド10によってベローズ9がアーク蒸気によって覆
われることを防止している。
FIG. 2 is a sectional view showing a structural example of a general vacuum circuit breaker. In FIG. 2, a shut-off chamber 1 in which the contact is opened and closed includes an insulating container 2 made of an insulating material and formed into a substantially cylindrical shape, and a sealing metal 3 at the upper and lower ends of the insulating container 2.
It is partitioned and formed by metal lids 4a and 4b provided via a and 3b to be vacuum-tight. Isolation room 1
Inside, a pair of conductive rods 5, 6 are arranged so as to face each other in the axial direction, and a pair of electrodes 7, 8 are attached to the ends of the conductive rods 5, 6 facing each other. In the figure, the upper electrode 7 is a fixed electrode, while the lower electrode 8 is a movable electrode. A telescopic bellows 9 is mounted on the conductive rod 6 of the movable electrode 8 to enable the movable electrode 8 to reciprocate in the axial direction while the interior of the shut-off chamber 1 is maintained in a vacuum-tight manner. An arc shield 10 made of metal is provided on the bellows 9 to prevent the bellows 9 from being covered with the arc vapor by the arc shield 10.

【0004】また遮断室1内には、対向する一対の電極
7,8を覆うように金属製のアークシールド11が配設
されており、このアークシールド11によって絶縁容器
2がアーク蒸気によって覆われることが防止される。
A metal arc shield 11 is disposed in the cut-off chamber 1 so as to cover the pair of electrodes 7 and 8 facing each other. The arc shield 11 covers the insulating container 2 with arc vapor. Is prevented.

【0005】また図3に拡大して示すように、電極8は
導電棒6の端部に形成されるろう付け部12に加熱接合
により固定されるか、または、かしめ加工によって圧着
接続される。接点部材13aは電極8の端面中央部にろ
う材14を介して一体に固着されている。なお、図2に
示す固定側接点部材13bも同様に、固定電極7の端面
にろう材を介して一体に接合されている。
Further, as shown in an enlarged manner in FIG. 3, the electrode 8 is fixed to the brazing portion 12 formed at the end of the conductive rod 6 by heat bonding or is crimped by caulking. The contact member 13a is integrally fixed to the center of the end face of the electrode 8 via a brazing material 14. The fixed-side contact member 13b shown in FIG. 2 is also integrally joined to the end face of the fixed electrode 7 via a brazing material.

【0006】上記構成の真空遮断器によれば、高真空中
における高い絶縁耐力を利用できるため、対向する接点
部材の開閉ストロークを短くできる特徴を有している。
According to the vacuum circuit breaker having the above structure, since a high dielectric strength in a high vacuum can be utilized, the opening and closing stroke of the opposed contact member can be shortened.

【0007】上記接点部材としては、高頻度にわたる接
点の開閉時に発生するアークによって溶着しないように
耐アーク性(耐弧性)や耐溶着性が必須となる一方、低
接触抵抗性を維持するために高い導電特性を有すること
が必須の要件とされる。この耐弧性と高導電性とを共に
満たす具体的な接点構成材料としては、例えば、Ag
系,Ag−Cu系材料,Ag−CdO系材料,30%C
u−W系材料,50%Cu−Cr系材料などが使用されて
いる。特にCu−W系接点材料は導電性に優れている一
方、Cu−Cr系接点材料は耐電圧特性に優れているた
め、特に高出力用電気機器の接点材料として普及してい
る。
As the above-mentioned contact member, arc resistance (arc resistance) and welding resistance are indispensable so as not to be welded by an arc generated when a contact is frequently opened and closed, while maintaining low contact resistance. It is an essential requirement to have high conductivity characteristics. As a specific contact constituent material satisfying both the arc resistance and the high conductivity, for example, Ag is used.
System, Ag-Cu system material, Ag-CdO system material, 30% C
u-W based materials, 50% Cu-Cr based materials, etc. are used. In particular, the Cu-W-based contact material has excellent conductivity, while the Cu-Cr-based contact material has excellent withstand voltage characteristics, and thus is widely used as a contact material for high-power electric devices.

【0008】一般に、接点部材には高純度化が要求され
ており、特にアークの不安定化や遮断性能の劣化の原因
となる酸素などのガス状不純物成分や、Na,K,Ba
等のように仕事関係が小さく、電子放射によって耐圧性
能を劣化させるような金属不純物の含有量を可及的に低
減することが大きな技術的課題になっている。
Generally, contact members are required to be highly purified, and in particular gaseous impurity components such as oxygen and Na, K, Ba, which cause instability of the arc and deterioration of the breaking performance, are contained.
It is a major technical issue to reduce the content of metal impurities that have a small work relationship and deteriorate the withstand voltage performance by electron radiation as much as possible.

【0009】前記接点材料のうち、特に高出力用機器の
接点材料として好適なCu−Cr系接点材料は、例えば
Cr粉とCu粉との混合体を粉末冶金法によって焼結体
として形成されたり、多孔質のCr仮焼体にCuを溶浸
させた溶浸材として形成されたものや溶解法によって溶
製材として形成されたものが使用されている。
Among the above-mentioned contact materials, a Cu-Cr-based contact material which is particularly suitable as a contact material for high-power equipment is, for example, a mixture of Cr powder and Cu powder formed as a sintered body by powder metallurgy. A material formed as an infiltrant obtained by infiltrating Cu into a porous Cr calcined body or an ingot formed by a melting method is used.

【0010】特に粉末冶金法においては、最終製品に近
い形状に形成することが可能であり、原料コストを低減
できる利点がある上に、Cu成分およびCr成分の組成
比の配合精度を高くできるという長所がある。その反
面、粉末冶金法においては、固相焼結によって焼結体を
形成する方法であるため、接点部材の構成材料中で最も
融点が低い材料(Cu−Cr系材料の場合はCu)の融
点以上には加熱できない制約がある。そのため、溶解法
や溶浸法と比較して、不純物の揮発による除去が困難で
ある。その結果、接点部材としての純度が、各原料粉末
の純度に大きく左右される欠点がある。そのため、従来
一般的な粉末冶金法による製造工程においては、酸素や
金属不純物による接点材料の再汚染を防止する対策を講
じた上で、さらに再汚染により材料中に混入した不純物
を除去するために、水素還元雰囲気で成形体を焼結した
り、または真空雰囲気中において成形体の焼結を実施し
ていた。
Particularly, in the powder metallurgy method, it is possible to form a shape close to the final product, and it is possible to reduce the raw material cost, and at the same time, it is possible to increase the mixing accuracy of the composition ratio of the Cu component and the Cr component. There are advantages. On the other hand, in the powder metallurgy method, since the sintered body is formed by solid phase sintering, the melting point of the material having the lowest melting point (Cu in the case of Cu-Cr based material) among the constituent materials of the contact member. Above, there is a restriction that can not be heated. Therefore, it is more difficult to remove impurities by volatilization, as compared with the dissolution method or the infiltration method. As a result, there is a drawback that the purity of the contact member is greatly influenced by the purity of each raw material powder. Therefore, in the manufacturing process by the conventional general powder metallurgy method, in order to remove the impurities mixed in the material by recontamination, after taking measures to prevent recontamination of the contact material due to oxygen and metal impurities. The molded body is sintered in a hydrogen reducing atmosphere, or the molded body is sintered in a vacuum atmosphere.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来の
製造方法においては、接点部材に含有される酸素や金属
不純物が、技術的に要求されるレベル以下まで十分に低
減されていたとは言い難い状況であった。この原因は、
成形体の焼結工程において、酸素や金属不純物が十分に
除去されない状態のまま焼結開始温度に達するように昇
温速度が大きく設定されているために、成形体の緻密化
が早期に開始され、焼結体中に多量の酸素や金属不純物
が残留してしまうためである。また焼結工程終了時点に
おいて、焼結体内部に残留した酸素や金属不純物を完全
に除去することは極めて困難である。さらに、水素雰囲
気中で焼結を実施する場合において、焼結体内に多量の
空孔が残存していると、焼結後に水素が空孔内に閉じ込
められる割合が高くなり、その水素成分が真空遮断器の
遮断性能を劣化させるという問題も生じている。
However, in the conventional manufacturing method, it is difficult to say that oxygen and metal impurities contained in the contact member have been sufficiently reduced to a level not technically required. there were. This is because
In the sintering process of the compact, the temperature rising rate is set so high that the sintering start temperature is reached while oxygen and metal impurities are not sufficiently removed, so compaction of the compact is started early. This is because a large amount of oxygen and metal impurities remain in the sintered body. Further, it is extremely difficult to completely remove oxygen and metal impurities remaining inside the sintered body at the end of the sintering process. Furthermore, when sintering is performed in a hydrogen atmosphere, if a large amount of pores remain in the sintered body, the proportion of hydrogen trapped in the pores after sintering increases, and the hydrogen component becomes a vacuum. There is also a problem that the breaking performance of the breaker is deteriorated.

【0012】いずれにしろ、従来の粉末冶金法による接
点部材の製造方法においては、酸素や金属不純物を十分
に低減することが極めて困難であり、この接点部材を使
用して真空遮断器を形成した場合において、十分な遮断
特性および耐圧性能を得ることは困難であった。
In any case, it is extremely difficult to sufficiently reduce oxygen and metal impurities in the conventional method of manufacturing a contact member by powder metallurgy, and a vacuum circuit breaker is formed using this contact member. In some cases, it was difficult to obtain sufficient breaking characteristics and pressure resistance performance.

【0013】本発明は上記課題を解決するためになされ
たものであり、接点部材中の酸素や金属不純物の含有量
が少なく真空遮断器の遮断性能および耐圧性能の劣化を
防止でき、真空遮断器の動作信頼性を向上させることが
可能な真空遮断器用接点部材の製造方法を提供すること
を目的とする。
The present invention has been made to solve the above-mentioned problems, and the content of oxygen and metal impurities in the contact member is small, so that it is possible to prevent deterioration of the breaking performance and pressure resistance of the vacuum circuit breaker, and thus the vacuum circuit breaker can be prevented. It is an object of the present invention to provide a method of manufacturing a contact member for a vacuum circuit breaker, which can improve the operation reliability of the above.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らは接点部材中に残留する酸素や金属不純
物を除去する方法を研究し、特に焼結工程における雰囲
気条件,加熱温度,加熱時間等の条件を種々変えて、そ
れらの条件が、その接点部材を使用した遮断器の遮断性
能や耐圧性能に及ぼす影響を実験により鋭意比較研究し
た結果、以下のような知見を得た。すなわち、最終的に
焼結体としての接点部材に残留する不純物量を可及的に
低減するには、Cu−Cr成形体(圧粉体)の緻密化が
開始される焼結開始温度未満の温度領域において酸素や
金属不純物を十分に除去することが肝要であるという知
見を得た。特に酸素は還元性の強い水素雰囲気中におい
て効果的に除去できる上に、雰囲気中から成形体内部に
混入した水素成分および残余の金属不純物は真空雰囲気
において効率的に除去できるという知見が得られた。す
なわち、同一のCu−Cr成形体に対して加熱雰囲気を
2段階に変えて、所定の温度条件で加熱することによ
り、不純物含有量が少ない接点部材が得られるという知
見を得た。本発明は上記知見に基づいて完成されたもの
である。
In order to achieve the above object, the present inventors have researched a method for removing oxygen and metal impurities remaining in a contact member, and particularly, atmospheric conditions, heating temperature, The following findings were obtained as a result of various experiments conducted by variously changing the conditions such as the heating time and the effect of these conditions on the breaking performance and pressure resistance of the circuit breaker using the contact member. That is, in order to reduce the amount of impurities remaining in the contact member as a sintered body as much as possible, a temperature lower than the sintering start temperature at which the densification of the Cu—Cr compact (compacted powder) is started is performed. We have found that it is essential to sufficiently remove oxygen and metal impurities in the temperature range. In particular, it was found that oxygen can be effectively removed in a highly reducing hydrogen atmosphere, and that hydrogen components and residual metal impurities mixed in the compact from the atmosphere can be efficiently removed in a vacuum atmosphere. . That is, it was found that a contact member having a low impurity content can be obtained by changing the heating atmosphere in two stages for the same Cu-Cr molded body and heating it under a predetermined temperature condition. The present invention has been completed based on the above findings.

【0015】すなわち本発明に係る真空遮断器用接点部
材の製造方法は、耐弧成分としてのクロム粉末と高導電
成分としての銅粉末とを混合して原料混合体を調製する
工程と,上記原料混合体を成形して銅−クロム成形体を
形成する工程と,上記銅−クロム成形体を水素雰囲気中
で、焼結開始温度未満の温度に加熱する工程と、この銅
−クロム成形体を真空雰囲気中で加熱焼成する工程とを
備え、上記水素雰囲気中で加熱する工程と真空雰囲気中
で加熱焼成する工程とを連続して実施することを特徴と
する。さらに水素雰囲気中で加熱する工程と真空雰囲気
中で加熱焼成する工程とを同一の加熱炉において成形体
を酸化性雰囲気にさらすことなく実施するとよい。ま
た、水素雰囲気中における加熱温度は100〜750℃
に設定される。さらに、水素雰囲気中における加熱時間
は0.5時間以上とする。また水素雰囲気中で成形体を
加熱する工程は、加熱炉内を均一温度にした後に、成形
体を所定の加熱温度に0.5時間以上保持することを特
徴とする。さらに原料混合体のクロム粉末含有量を20
〜80重量%の範囲に設定するとよい。
That is, the method for manufacturing a contact member for a vacuum circuit breaker according to the present invention comprises a step of preparing a raw material mixture by mixing chromium powder as an arc resistant component and copper powder as a highly conductive component, and the above raw material mixture. Forming a copper-chromium compact to form a copper-chromium compact, heating the copper-chromium compact to a temperature lower than the sintering start temperature in a hydrogen atmosphere, and vacuum-heating the copper-chromium compact And a step of heating and firing in a vacuum atmosphere, and the step of heating in the hydrogen atmosphere and the step of heating and firing in a vacuum atmosphere are continuously performed. Further, the step of heating in a hydrogen atmosphere and the step of heating and baking in a vacuum atmosphere may be performed in the same heating furnace without exposing the compact to an oxidizing atmosphere. The heating temperature in the hydrogen atmosphere is 100 to 750 ° C.
Is set to Furthermore, the heating time in a hydrogen atmosphere is 0.5 hours or more. The step of heating the molded body in a hydrogen atmosphere is characterized in that the molded body is kept at a predetermined heating temperature for 0.5 hours or more after the inside of the heating furnace is heated to a uniform temperature. Further, the content of chromium powder in the raw material mixture is set to 20
It is advisable to set it in the range of up to 80% by weight.

【0016】すなわち本発明方法が指向するCu−Cr
系接点部材は、Cu粉末とCr粉末とから成る原料混合
体から形成された成形体について、雰囲気条件を水素雰
囲気から真空雰囲気へと2段階に変えて連続的に加熱焼
成処理することにより製造される。
That is, the Cu--Cr to which the method of the present invention is directed
The system contact member is manufactured by continuously heating and firing a molded body formed of a raw material mixture composed of Cu powder and Cr powder by changing the atmospheric condition from a hydrogen atmosphere to a vacuum atmosphere in two stages. It

【0017】ここで耐弧成分としてのCrは、耐アーク
性および耐溶着性に優れ、接点の長寿命化を図るための
成分であり、原料混合体中に20〜80重量%の範囲で
含有される。含有量が20wt%未満においては、耐弧
性が低下して接点の長寿命化が困難である。一方、含有
量が80重量%を超える場合には、後述する高導電成分
としてのCuの含有量の相対的低下を招き、接触抵抗の
増大により接点としての通電機能が低下してしまう。
Here, Cr as an arc-resistant component is a component that is excellent in arc resistance and welding resistance and extends the life of the contact, and is contained in the raw material mixture in the range of 20 to 80% by weight. To be done. If the content is less than 20 wt%, the arc resistance is reduced and it is difficult to extend the life of the contact. On the other hand, when the content exceeds 80% by weight, the content of Cu as a high conductive component described later is relatively reduced, and the contact function is reduced due to an increase in contact resistance.

【0018】また高導電成分としてのCuは高い導電率
を有し、接点の接触抵抗値を下げるために上記Cr成分
を除く残余成分として80〜20重量%(wt%)含有
される。Cu含有量が20wt%未満の場合には導電性
が低下し接触抵抗が増大し接点材料としての機能が低下
する。一方、含有量が80wt%を超える場合は、前記
耐弧成分の含有量が相対的に低下し接点開閉動作時に発
生するアーク(電弧)によって接点が溶着し易くなり耐
消耗性が低下してしまう。
Cu, which has a high conductivity, has a high conductivity, and is contained in an amount of 80 to 20% by weight (wt%) as a residual component excluding the Cr component in order to reduce the contact resistance value of the contact. If the Cu content is less than 20% by weight, the conductivity decreases, the contact resistance increases, and the function as a contact material decreases. On the other hand, if the content exceeds 80 wt%, the content of the arc resistant component relatively decreases, and the arc (electric arc) generated at the time of the contact opening / closing operation causes the contacts to be easily welded, resulting in reduced wear resistance. .

【0019】ここで上記Cu粉末としては、電解法によ
って製造されたCu粉末やアトマイズ法で製造されたC
u粉末を使用することができる。これらの製法で得られ
たCu粉末は、純度が良好であり、一般に高純度材とし
ての特性が要求される接点部材には好適なCu粉末材料
である。ここで使用するCu粉末の平均粒径は、Cr粉
末の平均粒径の1/20〜1/3の範囲であり、この粒
径範囲に調整することにより、Cu粉末とCr粉末とが
均一に分散した原料混合体が得られ易くなる。すなわ
ち、混合操作後におけるCu粉末の平均粒径がCr粉末
の平均粒径の1/3を超えるように粗大となる場合に
は、Cr粉末表面にCu粉末を均一に付着配置すること
が困難になる一方、1/20未満の微細粉となる場合に
は、Cu粉末の再凝集が起こり易くなり、いずれにして
も各成分が均一に分散した状態が得られにくくなる。よ
り好ましい粒径比率は1/10〜1/5の範囲である。
Here, the Cu powder may be Cu powder produced by an electrolytic method or C powder produced by an atomizing method.
u powder can be used. The Cu powder obtained by these manufacturing methods has a high purity, and is generally a Cu powder material suitable for a contact member requiring characteristics as a high-purity material. The average particle size of the Cu powder used here is in the range of 1/20 to 1/3 of the average particle size of the Cr powder, and by adjusting to this particle size range, the Cu powder and the Cr powder can be uniformly formed. A dispersed raw material mixture is easily obtained. That is, when the average particle size of the Cu powder after the mixing operation becomes coarse so as to exceed 1/3 of the average particle size of the Cr powder, it becomes difficult to uniformly deposit and arrange the Cu powder on the surface of the Cr powder. On the other hand, when the fine powder is less than 1/20, re-aggregation of the Cu powder is likely to occur, and in any case, it becomes difficult to obtain a state in which each component is uniformly dispersed. A more preferable particle size ratio is in the range of 1/10 to 1/5.

【0020】原料混合体の調製工程において、上記Cu
粉末はボールミル等の機械的混合機によって所定のエネ
ルギー(衝撃力)を与えながらCr粉末と混合される。
上記所定のエネルギーとは、電解Cu粉末の場合と同様
に、Cuの延性を利用してCu粉末をCr粉末表面上に
弱い結合力で付着させることが可能なエネルギーよりも
大きく,かつCu粉末を凝集・粗大化させたり、Cr粉
末をも粉砕するエネルギーよりも小さいエネルギーに設
定される。このエネルギーの大きさは、ボールミルのポ
ット材質,回転速度,回転時間,ボール径等を変えるこ
とにより調整でき、原料混合体中のCu粉末の粒度・形
態を勘案して最適化される。
In the step of preparing the raw material mixture, the Cu
The powder is mixed with Cr powder while applying a predetermined energy (impact force) by a mechanical mixer such as a ball mill.
As in the case of the electrolytic Cu powder, the predetermined energy is larger than the energy at which the Cu powder can be attached to the surface of the Cr powder with a weak bonding force by utilizing the ductility of Cu, and The energy is set to be smaller than the energy for agglomeration / coarsening or crushing Cr powder. The magnitude of this energy can be adjusted by changing the pot material, rotation speed, rotation time, ball diameter, etc. of the ball mill, and is optimized in consideration of the particle size and morphology of the Cu powder in the raw material mixture.

【0021】上記混合工程によってCr粉末の粒子間に
微細なCuの解砕粉末が入り込み、Cr粉末同士の凝集
が起らず、均一な組成の原料混合体が得られる。この原
料混合体を成形機の金型に充填する際においても、Cr
粉末の各粒子の周囲表面に微細なCuの解砕粉末が付着
したり、あるいはまとわり付くように均一に付着してい
るため、Cu粉末とCr粉末との再分離が効果的に防止
できる。
By the above mixing step, finely divided Cu powder is introduced between the particles of the Cr powder, and the Cr powders do not aggregate with each other, so that a raw material mixture having a uniform composition can be obtained. Even when the mold of the molding machine is filled with this raw material mixture, the Cr
Fine Cu crushed powder adheres to the peripheral surface of each particle of the powder, or evenly adheres so as to cling to each other, so that re-separation of Cu powder and Cr powder can be effectively prevented. .

【0022】次に調製した原料混合体をプレス成形機の
金型に充填し、600〜1000MPa程度の加圧力で
プレス成形し、所定形状のCu−Cr成形体を調製す
る。
Next, the prepared raw material mixture is filled in a mold of a press molding machine and press-molded under a pressure of about 600 to 1000 MPa to prepare a Cu-Cr molded body having a predetermined shape.

【0023】次に得られたCu−Cr成形体を水素雰囲
気中で焼結開始温度未満の温度に加熱して主として酸素
や金属不純物を除去する工程に移る。ここでCu−Cr
系材料から成る接点部材の焼結操作においては、実質的
にはCrの焼結温度より低い融点を有するCuの固相焼
結が主体になる。Cuの焼結開始温度は約650〜75
0℃であるから、酸素および金属不純物の除去操作は7
50℃以下の温度領域で実施される。この不純物を除去
するときの雰囲気温度はCuの焼結開始温度未満であれ
ば、特に限定されるものではなく、100℃以上であれ
ば、ある程度の不純物除去作用は進行する。しかしなが
ら、温度が低くなると処理時間が長期化するとともに除
去量が減少し、さらに汎用の焼成設備では水素雰囲気条
件の設定が煩雑になる弊害が顕著になるため、実用的に
は550〜750℃の範囲、さらに好ましくは600〜
650℃の温度領域で処理することが望ましい。
Next, the Cu-Cr compact thus obtained is heated in a hydrogen atmosphere to a temperature lower than the sintering start temperature to remove oxygen and metal impurities. Where Cu-Cr
In the sintering operation of the contact member made of a system material, the solid phase sintering of Cu having a melting point lower than the sintering temperature of Cr is mainly used. The sintering start temperature of Cu is about 650-75.
Since the temperature is 0 ° C, the operation for removing oxygen and metal impurities is 7
It is carried out in a temperature range of 50 ° C. or lower. The atmosphere temperature at the time of removing the impurities is not particularly limited as long as it is lower than the sintering start temperature of Cu, and if it is 100 ° C. or higher, the impurity removing action proceeds to some extent. However, when the temperature becomes lower, the treatment time becomes longer and the removal amount decreases, and further, the problem that the setting of the hydrogen atmosphere conditions becomes complicated in a general-purpose firing facility becomes remarkable, so that the temperature of 550 to 750 ° C. is practically used. Range, more preferably 600 to
It is desirable to process in the temperature range of 650 ° C.

【0024】水素雰囲気条件は成形体中に含まれる酸素
量および不純物量によって異なるが、加熱温度を650
℃付近に設定した場合、酸素および金属不純物を効果的
に除去できる条件を以下に述べる。すなわち、650℃
付近の温度領域においてCu酸化物の還元反応を円滑に
進行させるためには、水素雰囲気中の水素と水蒸気との
分圧比PH2/PH20 が104 以上となるように水素を雰
囲気中に導入することが肝要である。分圧比が104
満の場合にはCu酸化物の水素還元が困難になり、酸素
含有量の多い接点部材となる。
The hydrogen atmosphere conditions differ depending on the amount of oxygen and the amount of impurities contained in the compact, but the heating temperature is 650.
The conditions under which oxygen and metal impurities can be effectively removed when the temperature is set to around ℃ are described below. That is, 650 ° C
In order to allow the reduction reaction of the Cu oxide to proceed smoothly in the vicinity temperature range, hydrogen is introduced into the atmosphere so that the partial pressure ratio P H2 / P H20 between hydrogen and water vapor in the hydrogen atmosphere is 10 4 or more. It is essential to do this. When the partial pressure ratio is less than 10 4 , it becomes difficult to reduce the Cu oxide to hydrogen, resulting in a contact member having a high oxygen content.

【0025】水素雰囲気中における加熱時間は、接点部
材の大きさや不純物含有量によって異なるが、0.5時
間以上は必要である。加熱時間が0.5時間未満の場合
には不純物を十分に除去することが困難である。加熱時
間の好ましい範囲は2〜5時間である。特に水素雰囲気
中で成形体を加熱する工程において、まず加熱炉内を均
一温度にした後に、成形体を上記所定の加熱温度に0.
5時間以上保持することにより、成形体を均一に加熱す
ることができ、むらの少ない成形体が得られる。
The heating time in the hydrogen atmosphere varies depending on the size of the contact member and the content of impurities, but it is required to be 0.5 hours or more. If the heating time is less than 0.5 hours, it is difficult to remove impurities sufficiently. The preferred range of heating time is 2 to 5 hours. Particularly, in the step of heating the molded body in a hydrogen atmosphere, first, the temperature inside the heating furnace is made uniform, and then the molded body is heated to the predetermined heating temperature of 0.
By holding the molded product for 5 hours or more, the molded product can be uniformly heated, and a molded product with less unevenness can be obtained.

【0026】次に焼結開始温度未満の温度で加熱処理し
たCu−Cr成形体を焼成する焼結工程に移る。すなわ
ち、得られたCu−Cr成形体は、真空度(真空圧力)
が10-3Pa〜10-7Paの範囲の真空雰囲気に調整さ
れた焼成炉において900〜1082℃に加熱され、
0.5時間以上の保持条件で焼成されてCu−Cr焼結
体となる。
Next, a sintering step of firing the Cu-Cr compact which has been heat-treated at a temperature lower than the sintering start temperature is started. That is, the obtained Cu-Cr compact has a vacuum degree (vacuum pressure).
Is heated to 900 to 1082 ° C. in a firing furnace adjusted to a vacuum atmosphere in the range of 10 −3 Pa to 10 −7 Pa,
It is fired under a holding condition of 0.5 hours or more to form a Cu-Cr sintered body.

【0027】上記真空度が10-3Paを超える低真空下
では金属不純物や空孔内に侵入した水素の除去が困難と
なる。一方、真空度が10-7Pa未満の高真空下ではC
uの蒸発揮散が起こり易くなる。そのため真空度は10
-3〜10-7Paの範囲に設定されるが、10-4〜10-7
Paの範囲がより好ましい。
Under a low vacuum with the degree of vacuum exceeding 10 -3 Pa, it becomes difficult to remove metal impurities and hydrogen that has penetrated into the pores. On the other hand, under high vacuum with a degree of vacuum of less than 10 -7 Pa, C
The evaporation of u is likely to occur. Therefore, the degree of vacuum is 10
It is set in the range of -3 to 10 -7 Pa, but 10 -4 to 10 -7
The range of Pa is more preferable.

【0028】なお、上記水素による還元雰囲気条件と真
空雰囲気条件とを同時に実現できれば、酸素と金属不純
物とを同時に除去できるが、実際には空孔内への水素の
残留を防止するために、雰囲気温度を600〜650℃
の範囲に設定して水素雰囲気中でCu酸化物を還元して
酸素不純物を除去した後に、引き続いて焼成炉内を10
-4〜10-7Pa程度の真空雰囲気にして金属不純物を除
去することが好適な手段である。
It should be noted that oxygen and metal impurities can be removed at the same time if both the reducing atmosphere condition with hydrogen and the vacuum atmosphere condition can be realized at the same time. However, in reality, in order to prevent hydrogen from remaining in the holes, the atmosphere is reduced. Temperature is 600-650 ℃
To reduce the Cu oxides in a hydrogen atmosphere to remove oxygen impurities, and then the temperature inside the firing furnace is set to 10
A suitable means is to remove the metal impurities in a vacuum atmosphere of about −4 to 10 −7 Pa.

【0029】上記焼結温度が900℃未満の場合では、
たとえ保持時間を0.5時間以上に設定しても、接点部
材の固相焼結を十分に進行させることが困難になる。一
方、焼結温度が銅の融点(約1084℃)を超えると、
固相焼結を行うことが事実上不可能になる。また保持時
間が0.5時間未満では、接点部材の固相焼結が十分に
進行せず、組織上均一な接点部材を得ることができな
い。従って焼結工程における処理温度は900℃〜銅の
融点直下の温度の範囲および保持時間は0.5時間以上
に設定されるが、処理温度1050℃以上とし、保持時
間を2〜5時間の範囲に設定することが、より好まし
い。
When the sintering temperature is lower than 900 ° C.,
Even if the holding time is set to 0.5 hours or more, it becomes difficult to sufficiently proceed the solid phase sintering of the contact member. On the other hand, if the sintering temperature exceeds the melting point of copper (about 1084 ° C),
It becomes virtually impossible to perform solid phase sintering. If the holding time is less than 0.5 hours, solid-phase sintering of the contact member does not proceed sufficiently, and a contact member having a uniform structure cannot be obtained. Therefore, the processing temperature in the sintering step is set to 900 ° C to a temperature just below the melting point of copper and the holding time is set to 0.5 hours or more, but the processing temperature is set to 1050 ° C or more and the holding time is set to 2 to 5 hours. It is more preferable to set to.

【0030】ここで水素雰囲気中で加熱する工程と真空
雰囲気中で加熱焼成する工程とを同一の加熱炉において
成形体を酸化性雰囲気にさらすことなく実施することに
より、より不純物含有量が少ないCu−Cr焼結体が得
られるので好ましい。
By carrying out the step of heating in a hydrogen atmosphere and the step of heating and baking in a vacuum atmosphere in the same heating furnace without exposing the compact to an oxidizing atmosphere, Cu containing a smaller amount of impurities can be obtained. It is preferable because a -Cr sintered body can be obtained.

【0031】こうして調整したCu−Cr焼結体を所定
形状に加工して接点部材とし、この接点部材を、対向す
る電極の端面にろう材を使用して接合し、さらに接点部
材をそれぞれ接合した電極を導電棒の端部に接合するこ
とにより、図2〜3に示すような、真空遮断器が組み立
てられる。
The Cu--Cr sintered body thus prepared was processed into a predetermined shape to form a contact member, and the contact member was joined to the end faces of the opposing electrodes by using a brazing material, and further the contact members were joined together. By joining the electrodes to the ends of the conductive rod, a vacuum circuit breaker as shown in FIGS. 2-3 is assembled.

【0032】上記構成に係る真空遮断器用接点部材の製
造方法によれば、まず水素雰囲気中で成形体を焼結開始
温度未満の温度で加熱して成形体内部に含有される酸化
物を還元し酸素不純物を効果的に除去している。しかる
後に真空雰囲気において成形体を加熱焼成して金属不純
物を揮散除去するとともに、水素雰囲気中で加熱する際
に成形体の空孔部に侵入した水素を効果的に除去してい
る。その結果、酸素や金属不純物の含有量が少なく、ま
た水素の残留が少ない高純度の接点部材が得られる。従
って、この接点部材を使用して真空遮断器を形成するこ
とにより、遮断性能や耐圧性能の劣化が少なく、特性が
安定した信頼性の高い真空遮断器を形成することができ
る。
According to the method of manufacturing a contact member for a vacuum circuit breaker having the above-mentioned structure, first, the molded body is heated in a hydrogen atmosphere at a temperature lower than the sintering start temperature to reduce the oxide contained in the molded body. Effectively removes oxygen impurities. Thereafter, the molded body is heated and fired in a vacuum atmosphere to volatilize and remove metal impurities, and at the same time, the hydrogen that has penetrated into the pores of the molded body when heated in a hydrogen atmosphere is effectively removed. As a result, it is possible to obtain a high-purity contact member having a small content of oxygen and metal impurities and a small amount of residual hydrogen. Therefore, by forming a vacuum circuit breaker using this contact member, it is possible to form a highly reliable vacuum circuit breaker with stable characteristics and less deterioration in breaking performance and pressure resistance.

【0033】[0033]

【発明の実施の形態】次に本発明の実施形態について、
以下の実施例を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described.
A description will be given with reference to the following examples.

【0034】実施例1 平均粒径が110μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としての電解
Cu粉とを、50:50の重量比でそれぞれ秤量した。
そしてボールミルのポットに、混合用ボールとともに秤
量したCr粉と電解Cu粉とを投入して、不活性ガス雰
囲気中で回転混合して原料混合体とした。次に、この原
料混合体を金型プレス機に充填し、700MPaの加圧
力でプレス成形してCu−Cr成形体とした。さらに、
このCu−Cr成形体を加熱炉に挿入し、図1に示すよ
うに真空雰囲気中で温度600℃まで加熱昇温した。次
に水素と水蒸気との分圧比PH2/PH20 が104 となる
ように加熱炉内を水素雰囲気に置換し、温度600℃で
4時間保持した。しかる後に、水素を加熱炉から排気し
て、真空度が約2×10-4Paとなるように真空雰囲気
に調整し、温度600℃で4時間保持した。この後、真
空度が約3×10-1Paの真空雰囲気中において成形体
を、温度1050℃まで加熱し、3時間保持して焼成し
た後に炉冷し、加熱炉から取り出した。取り出した接点
素材を所定の接点形状に加工することにより、実施例1
に係る接点部材を多数調製した。
Example 1 Cr powder as an arc-resistant component having an average particle size of 110 μm and electrolytic Cu powder as a highly conductive component having an average particle size of 50 μm were weighed at a weight ratio of 50:50. .
The Cr powder and the electrolytic Cu powder weighed together with the mixing balls were put into a ball mill pot, and the mixture was rotated and mixed in an inert gas atmosphere to obtain a raw material mixture. Next, this raw material mixture was filled in a die press and press-molded under a pressure of 700 MPa to obtain a Cu-Cr compact. further,
This Cu—Cr compact was inserted into a heating furnace and heated to a temperature of 600 ° C. in a vacuum atmosphere as shown in FIG. Next, the inside of the heating furnace was replaced with a hydrogen atmosphere so that the partial pressure ratio P H2 / P H20 of hydrogen and water vapor was 10 4, and the temperature was kept at 600 ° C. for 4 hours. After that, hydrogen was exhausted from the heating furnace, a vacuum atmosphere was adjusted so that the degree of vacuum was about 2 × 10 −4 Pa, and the temperature was kept at 600 ° C. for 4 hours. Thereafter, the molded body was heated to a temperature of 1050 ° C. in a vacuum atmosphere having a degree of vacuum of about 3 × 10 −1 Pa, held for 3 hours, baked, cooled in a furnace, and taken out from the heating furnace. By processing the taken out contact material into a predetermined contact shape, Example 1
A large number of contact members according to the present invention were prepared.

【0035】比較例1 平均粒径が110μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としての電解
Cu粉とを、50:50の重量比でそれぞれ秤量した。
そして秤量したCr粉末とCu粉末とをボールミルで均
一に混合して原料混合体とした。次に、原料混合体を金
型プレス機に充填し、700MPaの加圧力でプレス成
形して実施例1と同様にCu−Cr成形体とした。さら
に、このCu−Cr成形体を水素雰囲気中で加熱するこ
となく、真空度が3×10-1Paの真空雰囲気中にて5
℃/minの昇温速度によって温度1050℃まで加熱
し、3時間保持して焼成した後に炉冷し、加熱炉から取
り出した。取り出した接点素材を所定の接点形状に加工
することにより、比較例1に係る接点部材を多数調製し
た。
Comparative Example 1 Cr powder as an arc-resistant component having an average particle size of 110 μm and electrolytic Cu powder as a highly conductive component having an average particle size of 50 μm were weighed at a weight ratio of 50:50, respectively. .
Then, the weighed Cr powder and Cu powder were uniformly mixed with a ball mill to obtain a raw material mixture. Next, the raw material mixture was filled in a die pressing machine and press-molded under a pressure of 700 MPa to obtain a Cu-Cr compact as in Example 1. Furthermore, without heating this Cu—Cr compact in a hydrogen atmosphere, the degree of vacuum is 5 × 5 in a vacuum atmosphere of 3 × 10 −1 Pa.
The sample was heated to a temperature of 1050 ° C. at a temperature rising rate of ° C./min, held for 3 hours, baked, cooled in the furnace, and taken out from the heating furnace. A large number of contact members according to Comparative Example 1 were prepared by processing the taken out contact material into a predetermined contact shape.

【0036】比較例2 平均粒径が110μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としての電解
Cu粉とを、50:50の重量比でそれぞれ秤量し、ボ
ールミルで均一に混合して原料混合体とした。次に、原
料混合体を金型プレス機に充填し、700MPaの加圧
力でプレス成形して実施例1と同様のCu−Cr成形体
とした。さらに、このCu−Cr成形体を、水素と水蒸
気の分圧比PH2/PH20 が530である水素雰囲気中に
て5℃/minの昇温速度によって温度1050℃まで
加熱し、3時間保持して焼成した後に炉冷し、加熱炉か
ら取り出した。取り出した接点素材を所定の接点形状に
加工することにより、比較例2に係る接点部材を多数調
製した。
Comparative Example 2 Cr powder as an arc-resistant component having an average particle size of 110 μm and electrolytic Cu powder as a highly conductive component having an average particle size of 50 μm were weighed at a weight ratio of 50:50. Then, the mixture was uniformly mixed with a ball mill to obtain a raw material mixture. Next, the raw material mixture was filled in a die press and press-molded under a pressure of 700 MPa to obtain a Cu-Cr compact similar to that in Example 1. Further, this Cu-Cr compact is heated to a temperature of 1050 ° C at a temperature rising rate of 5 ° C / min in a hydrogen atmosphere having a hydrogen / steam partial pressure ratio P H2 / P H20 of 530, and held for 3 hours. After firing, the furnace was cooled and taken out of the heating furnace. A large number of contact members according to Comparative Example 2 were prepared by processing the taken out contact material into a predetermined contact shape.

【0037】こうして調製した実施例および各比較例に
係る接点部材について、ICP発光分析機(SEIKO
社製 SPS−1100A)を使用してBa含有量を測
定する一方、フレーム原子吸光分析機(パーキンエルマ
ー社製 3100型)を使用してNaおよびK含有量を
それぞれ測定し、さらに赤外線吸収分析機(LECO社
製 TC−436)を使用して酸素含有量を測定すると
ともに、焼結工程前の成形体(圧粉体)中の各不純物含
有量を測定し、焼結工程前の値に対する焼結工程後の値
の比率を不純物の低減効果として算出した。算出結果を
下記表1に示す。
Regarding the contact members according to the examples and the comparative examples thus prepared, an ICP emission spectrometer (SEIKO) was used.
Ba content is measured using SPS-1100A manufactured by Co., Ltd., while Na and K contents are measured using a flame atomic absorption spectrometer (Model 3100 manufactured by Perkin Elmer Co., Ltd.), and an infrared absorption spectrometer is further used. (LECO Co., Ltd. TC-436) is used to measure the oxygen content, and the content of each impurity in the compact (compacted powder) before the sintering step is measured, and the sintering is performed with respect to the value before the sintering step. The ratio of the values after the binding step was calculated as the effect of reducing impurities. The calculation results are shown in Table 1 below.

【0038】また調製した実施例および比較例に係る各
接点部材13a,13bを図3に示すように、Agろう
材14を使用して、それぞれ電極7,8の端面中央部に
真空ろう付けした。一方、電極7,8を導電棒5,6の
端面にろう付け部12を介して一体に接合した。さら
に、各接点部材13a,13bをろう付け接合した電極
7,8を使用して図2に示すような真空遮断器をそれぞ
れ10台ずつ組み立て、遮断特性の良否を比較した。す
なわち所定の電圧、電流値の回路を2万回遮断したとき
の再点弧発生頻度のばらつき幅(最小値〜最大値)を測
定して、下記表1に示す結果を得た。
As shown in FIG. 3, the prepared contact members 13a and 13b according to the example and the comparative example were vacuum-brazed to the center portions of the end faces of the electrodes 7 and 8 using Ag brazing material 14, respectively. . On the other hand, the electrodes 7, 8 were integrally joined to the end surfaces of the conductive rods 5, 6 via a brazing portion 12. Further, 10 vacuum circuit breakers as shown in FIG. 2 were assembled using the electrodes 7 and 8 in which the contact members 13a and 13b were brazed and joined, and the quality of the breaking characteristics was compared. That is, the variation width (minimum value-maximum value) of the frequency of re-ignition when a circuit having a predetermined voltage and current value was interrupted 20,000 times was measured, and the results shown in Table 1 below were obtained.

【0039】[0039]

【表1】 [Table 1]

【0040】上記表1に示す結果から明らかなように、
実施例1に係る製造方法に従って加熱焼成雰囲気を2段
階に分けて製造された接点部材では、酸素および金属不
純物の低減効果が顕著であり、残留する不純物量が各比
較例のものと比較して1/10以下に減少しており、極
めて高純度であることが判明した。
As is clear from the results shown in Table 1 above,
In the contact member manufactured by dividing the heating and firing atmosphere into two stages according to the manufacturing method according to Example 1, the effect of reducing oxygen and metal impurities is remarkable, and the amount of remaining impurities is larger than that of each comparative example. It was reduced to 1/10 or less, and it was revealed that the purity was extremely high.

【0041】一方、水素還元雰囲気中で加熱処理を実施
しない比較例1に係る接点部材では、酸素の除去率が3
5〜50%程度である。また、真空雰囲気中で加熱処理
を実施していない比較例2に係る接点部材では、Na,
K,Baなどの金属不純物の低減効果が少ないことが改
めて確認された。
On the other hand, in the contact member according to Comparative Example 1 in which the heat treatment was not performed in the hydrogen reducing atmosphere, the oxygen removal rate was 3%.
It is about 5 to 50%. In the contact member according to Comparative Example 2 in which the heat treatment was not performed in the vacuum atmosphere, Na,
It was again confirmed that the effect of reducing metallic impurities such as K and Ba was small.

【0042】なお、表1においては、金属不純物として
特に接点特性に及ぼす影響が大きく、仕事関数が小さな
Na,K,Baについて例示しているが、本実施例の製
造方法によれば、他の不純物元素についても同様な低減
効果が得られることが確認された。
Although Table 1 exemplifies Na, K, and Ba, which have a large influence as a metal impurity on contact characteristics and have a small work function, other materials can be used according to the manufacturing method of this embodiment. It was confirmed that the same reduction effect can be obtained for the impurity element.

【0043】また、実施例に係る接点部材を組み込んだ
真空遮断器は、各比較例に係る接点部材を組み込んだ真
空遮断器と比較して再点弧発生頻度のばらつきが極めて
少ないことが確認でき、アークの安定性および遮断性能
を飛躍的に向上させることができた。
Further, it can be confirmed that the vacuum circuit breakers incorporating the contact members according to the examples have very few variations in the re-ignition occurrence frequency as compared with the vacuum circuit breakers incorporating the contact members according to the respective comparative examples. , The stability of the arc and the breaking performance were dramatically improved.

【0044】なお、上記実施例においては、図1に示す
ように、水素雰囲気および真空雰囲気において、焼結開
始温度未満の所定温度域でそれぞれ4時間ずつ保持して
いるが、図1において一点鎖線で示すように、室温から
所定の焼結温度まで一定の昇温速度で加熱してもよい。
In the above-described embodiment, as shown in FIG. 1, the hydrogen atmosphere and the vacuum atmosphere are held in the predetermined temperature range below the sintering start temperature for 4 hours, respectively. As shown in, the heating may be performed from room temperature to a predetermined sintering temperature at a constant heating rate.

【0045】また、上記実施例においては、図2に示す
ように、対向する一対の電極7,8にそれぞれ実施例で
製造された接点部材13a,13bをろう付け接合して
真空遮断器を形成したが、一方の電極にのみ本実施例に
係る接点部材を接合した場合においても、同様に高い遮
断特性が発揮されることが確認できた。
Further, in the above embodiment, as shown in FIG. 2, the contact members 13a and 13b manufactured in the embodiment are brazed to the pair of electrodes 7 and 8 facing each other to form a vacuum circuit breaker. However, it was confirmed that even when the contact member according to the present example was joined to only one of the electrodes, similarly high breaking characteristics were exhibited.

【0046】[0046]

【発明の効果】以上説明の通り、本発明に係る真空遮断
器用接点部材の製造方法によれば、まず水素雰囲気中で
成形体を焼結開始温度未満の温度で加熱して成形体内部
に含有される酸化物を還元し酸素不純物を効果的に除去
している。しかる後に真空雰囲気において成形体を加熱
焼成して金属不純物を揮散除去するとともに、水素雰囲
気中で加熱する際に成形体の空孔部に侵入した水素を効
果的に除去している。その結果、酸素や金属不純物の含
有量が少なく、また水素の残留が少ない高純度の接点部
材が得られる。従って、この接点部材を使用して真空遮
断器を形成することにより、遮断性能や耐圧性能の劣化
が少なく、特性が安定した信頼性の高い真空遮断器を形
成することができる。
As described above, according to the method for manufacturing a contact member for a vacuum circuit breaker according to the present invention, the compact is first heated in a hydrogen atmosphere at a temperature lower than the sintering start temperature and contained in the compact. The resulting oxide is reduced to effectively remove oxygen impurities. Thereafter, the molded body is heated and fired in a vacuum atmosphere to volatilize and remove metal impurities, and at the same time, the hydrogen that has penetrated into the pores of the molded body when heated in a hydrogen atmosphere is effectively removed. As a result, it is possible to obtain a high-purity contact member having a small content of oxygen and metal impurities and a small amount of residual hydrogen. Therefore, by forming a vacuum circuit breaker using this contact member, it is possible to form a highly reliable vacuum circuit breaker with stable characteristics and less deterioration in breaking performance and pressure resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法における加熱時間と加熱温度との関
係を示すグラフ。
FIG. 1 is a graph showing the relationship between heating time and heating temperature in the method of the present invention.

【図2】本発明方法によって製造した接点部材を使用し
た真空遮断器の構造を示す断面図。
FIG. 2 is a sectional view showing the structure of a vacuum circuit breaker using a contact member manufactured by the method of the present invention.

【図3】図2に示す接点および電極部を拡大して示す断
面図。
FIG. 3 is an enlarged cross-sectional view showing a contact and an electrode portion shown in FIG.

【符号の説明】[Explanation of symbols]

1 遮断室 2 絶縁容器 3a,3b 封止金属 4a,4b 蓋体 5 導電棒 6 導電棒 7 電極(固定電極) 8 電極(可動電極) 9 ベローズ 10 アークシールド 11 アークシールド 12 ろう付け部 13a,13b 接点部材 14 ろう材(Agろう材) DESCRIPTION OF SYMBOLS 1 Isolation chamber 2 Insulating container 3a, 3b Sealing metal 4a, 4b Lid 5 Conductive rod 6 Conductive rod 7 Electrode (fixed electrode) 8 Electrode (movable electrode) 9 Bellows 10 Arc shield 11 Arc shield 12 Brazing parts 13a, 13b Contact member 14 Brazing material (Ag brazing material)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀江 宏道 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromichi Horie Inventor Hiromichi Horie 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Toshiba Corporation Yokohama Office

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 耐弧成分としてのクロム粉末と高導電成
分としての銅粉末とを混合して原料混合体を調製する工
程と,上記原料混合体を成形して銅−クロム成形体を形
成する工程と,上記銅−クロム成形体を水素雰囲気中
で、焼結開始温度未満の温度に加熱する工程と、この銅
−クロム成形体を真空雰囲気中で加熱焼成する工程とを
備え、上記水素雰囲気中で加熱する工程と真空雰囲気中
で加熱焼成する工程とを連続して実施することを特徴と
する真空遮断器用接点部材の製造方法。
1. A step of preparing a raw material mixture by mixing chromium powder as an arc-resistant component and copper powder as a highly conductive component, and forming the raw material mixture to form a copper-chromium compact. A hydrogen atmosphere, the step of heating the copper-chromium compact to a temperature lower than the sintering start temperature, and the step of heating and baking the copper-chromium compact in a vacuum atmosphere; A method of manufacturing a contact member for a vacuum circuit breaker, which comprises continuously performing a step of heating in a vacuum and a step of heating and firing in a vacuum atmosphere.
【請求項2】 水素雰囲気中で加熱する工程と真空雰囲
気中で加熱焼成する工程とを同一の加熱炉において成形
体を酸化性雰囲気にさらすことなく実施することを特徴
とする請求項1記載の真空遮断器用接点部材の製造方
法。
2. The method according to claim 1, wherein the step of heating in a hydrogen atmosphere and the step of heating and firing in a vacuum atmosphere are carried out in the same heating furnace without exposing the molded body to an oxidizing atmosphere. A method for manufacturing a contact member for a vacuum circuit breaker.
【請求項3】 水素雰囲気中における加熱温度が100
〜750℃であることを特徴とする請求項1記載の真空
遮断器用接点部材の製造方法。
3. The heating temperature in a hydrogen atmosphere is 100.
It is -750 degreeC, The manufacturing method of the contact member for vacuum circuit breakers of Claim 1 characterized by the above-mentioned.
【請求項4】 水素雰囲気中における加熱時間を0.5
時間以上とすることを特徴とする請求項1記載の真空遮
断器用接点部材の製造方法。
4. The heating time in a hydrogen atmosphere is 0.5.
The method for producing a contact member for a vacuum circuit breaker according to claim 1, wherein the contact time is not less than time.
【請求項5】 水素雰囲気中で成形体を加熱する工程
は、加熱炉内を均一温度にした後に、成形体を所定の加
熱温度に0.5時間以上保持することを特徴とする請求
項1記載の真空遮断器用接点部材の製造方法。
5. The step of heating the molded body in a hydrogen atmosphere is characterized in that the molded body is kept at a predetermined heating temperature for 0.5 hours or more after the inside of the heating furnace is heated to a uniform temperature. A method for manufacturing a contact member for a vacuum circuit breaker according to claim 1.
【請求項6】 原料混合体のクロム粉末含有量を20〜
80重量%の範囲に設定することを特徴とする請求項1
記載の真空遮断器用接点部材の製造方法。
6. The content of chromium powder in the raw material mixture is 20 to
The range of 80% by weight is set.
A method for manufacturing a contact member for a vacuum circuit breaker according to claim 1.
JP182896A 1996-01-09 1996-01-09 Manufacture of contact member for vacuum circuit breaker Pending JPH09190730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP182896A JPH09190730A (en) 1996-01-09 1996-01-09 Manufacture of contact member for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP182896A JPH09190730A (en) 1996-01-09 1996-01-09 Manufacture of contact member for vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPH09190730A true JPH09190730A (en) 1997-07-22

Family

ID=11512434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP182896A Pending JPH09190730A (en) 1996-01-09 1996-01-09 Manufacture of contact member for vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH09190730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400354B1 (en) * 2000-12-07 2003-10-04 한국과학기술연구원 Fabrication Method of Cu-Cr Contact Materials for Vacuum Switches
JP2015107896A (en) * 2013-12-05 2015-06-11 信越半導体株式会社 Manufacturing method of silicon carbide-coated graphite member, silicon carbide coated graphite member, and manufacturing method of silicon crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400354B1 (en) * 2000-12-07 2003-10-04 한국과학기술연구원 Fabrication Method of Cu-Cr Contact Materials for Vacuum Switches
JP2015107896A (en) * 2013-12-05 2015-06-11 信越半導体株式会社 Manufacturing method of silicon carbide-coated graphite member, silicon carbide coated graphite member, and manufacturing method of silicon crystal

Similar Documents

Publication Publication Date Title
US4032301A (en) Composite metal as a contact material for vacuum switches
JP2705998B2 (en) Manufacturing method of electrical contact material
JPH056780B2 (en)
EP0521274B1 (en) Process for manufacturing a contact material for vacuum circuit breakers
US4419551A (en) Vacuum circuit interrupter and method of producing the same
JP2020509163A (en) Improved electrical contact alloy for vacuum contactors
JP2002313196A (en) Electric contact member and manufacturing method for the same
JP4620071B2 (en) Contact materials for vacuum circuit breakers
JP6253494B2 (en) Contact material for vacuum valve and vacuum valve
JPH09190730A (en) Manufacture of contact member for vacuum circuit breaker
EP3187287B1 (en) Method for manufacturing electrode material
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
EP0426490B1 (en) Vacuum switch contact material and method of manufacturing it
JPH05217473A (en) Manufacture of electrode material
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker
JPH05101750A (en) Manufacture of electrode material
JPH0682532B2 (en) Method for manufacturing contact alloy for vacuum valve
JPH09167534A (en) Contact member for vacuum breaker and its manufacture
JP3106605B2 (en) Manufacturing method of electrode material
JPH11176298A (en) Contact material for vacuum circuit breaker, manufacture of the contact material, and vacuum circuit breaker
JP2002208335A (en) Vacuum bulb contact point and its manufacturing method
JPH1031942A (en) Contact material for vacuum circuit-breaker and its manufacture
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JPH1150176A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
US5225381A (en) Vacuum switch contact material and method of manufacturing it