JPH1040761A - Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker - Google Patents

Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker

Info

Publication number
JPH1040761A
JPH1040761A JP8199052A JP19905296A JPH1040761A JP H1040761 A JPH1040761 A JP H1040761A JP 8199052 A JP8199052 A JP 8199052A JP 19905296 A JP19905296 A JP 19905296A JP H1040761 A JPH1040761 A JP H1040761A
Authority
JP
Japan
Prior art keywords
circuit breaker
contact material
vacuum circuit
contact
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8199052A
Other languages
Japanese (ja)
Inventor
Akihisa Nitta
晃久 新田
Yoshiko Minami
淑子 南
Hiromichi Horie
宏道 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8199052A priority Critical patent/JPH1040761A/en
Publication of JPH1040761A publication Critical patent/JPH1040761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen the contact resistance and improve a large current breaking property, withstand voltage, and melting and depositing resistance by adjusting surface roughness of a contact material to have specified values as the maxi mum height and the mathematical average roughness, respectively. SOLUTION: Respective contact materials 13a, 13b are vacuum-brazed in the center parts of the end faces of electrodes 7, 8, respectively. The roughness of the contact materials is controlled to be 12μm or lower as the maximum height Ry defined as JIS B0601 and 4μm or lower as the mathematical average roughness Ra. In the case the surface roughness exceeds 12μm (Ry) or 4μm (Ra), the contact resistance of the contact points increases and due to excess Joule heat generation, the large current breaking property is deteriorated. Moreover, an electric field is concentrated on a part where a projected part is formed and withstand voltage is therefore decreased and at the same time, partial melting and deposition easily occur and thus the melting and depositing resistance of the contact points is deteriorated and a vacuum circuit breaker having excellent durability is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は真空遮断器用接点材
料等に係り、特に真空遮断器の接点(接触子)として使
用した場合に大電流遮断性,耐圧性および耐溶着性を大
幅に改善することが可能な真空遮断器用接点材料,その
製造方法および真空遮断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact material for a vacuum circuit breaker and the like, and in particular, when used as a contact (contact) of a vacuum circuit breaker, greatly improves a large current breaking property, pressure resistance and welding resistance. The present invention relates to a contact material for a vacuum circuit breaker, a method of manufacturing the same, and a vacuum circuit breaker.

【0002】[0002]

【従来の技術】遮断器は平常状態の電路を開閉したり、
接地事故や短絡事故などの異常時に,故障状態を検知す
る過電流継電器などと組み合わされて、自動的に瞬時に
電路を遮断するために、電力設備,変電所内機器,高速
鉄道車輌等に広く使用されている。特に真空遮断器は、
10-4Pa程度の高真空に維持した容器(真空バルブ)
内に対向配置した1対の接点部材を開閉することによ
り、電路の開閉を行うものである。
2. Description of the Related Art Circuit breakers open and close electric circuits in a normal state,
Widely used in power equipment, substation equipment, high-speed railway vehicles, etc. to automatically and instantaneously cut off the electric circuit when combined with an overcurrent relay that detects the failure state when an abnormality such as a grounding accident or short circuit accident occurs. Have been. In particular, vacuum circuit breakers
Container (vacuum valve) maintained at a high vacuum of about 10 -4 Pa
The electric circuit is opened and closed by opening and closing a pair of contact members disposed opposite to each other.

【0003】図1は一般的な真空遮断器の構造例を示す
断面図である。図1において接点の開閉動作が行われる
遮断室1は、絶縁材料から成り略円筒状に形成された絶
縁容器2と,この絶縁容器2の上下端に封止金属3a,
3bを介して設けた金属製の蓋体4a,4bとによって
区画形成され真空気密に構成されている。遮断室1内に
は軸方向に対向するように1対の導電棒5,6が配置さ
れ、その各導電棒5,6の対向する端部に、一対の電極
7,8が取付けられている。図においては上部側の電極
7を固定電極とする一方、下部側の電極8を可動電極と
している。また可動電極8の導電棒6には、伸縮自在の
ベローズ9が装着されており、遮断室1内を真空気密に
保持した状態で、可動電極8の軸方向における往復動を
可能にしている。このベローズ9の上部には金属製のア
ークシールド10が設けられており、このアークシール
ド10によってベローズ9がアーク蒸気によって覆われ
ることを防止している。
FIG. 1 is a sectional view showing an example of the structure of a general vacuum circuit breaker. In FIG. 1, a shut-off chamber 1 in which contact opening and closing operations are performed includes an insulating container 2 made of an insulating material and formed in a substantially cylindrical shape, and sealing metals 3 a at upper and lower ends of the insulating container 2.
It is partitioned and formed by metal lids 4a and 4b provided via the base 3b, and is formed in a vacuum-tight manner. A pair of conductive rods 5 and 6 are arranged in the blocking chamber 1 so as to face each other in the axial direction, and a pair of electrodes 7 and 8 are attached to opposing ends of the conductive rods 5 and 6. . In the figure, the upper electrode 7 is a fixed electrode, while the lower electrode 8 is a movable electrode. A telescopic bellows 9 is mounted on the conductive rod 6 of the movable electrode 8 to enable the movable electrode 8 to reciprocate in the axial direction while the interior of the shut-off chamber 1 is maintained in a vacuum-tight manner. An arc shield 10 made of metal is provided on the bellows 9 to prevent the bellows 9 from being covered with the arc vapor by the arc shield 10.

【0004】また遮断室1内には、対向する一対の電極
7,8を覆うように金属製のアークシールド11が配設
されており、このアークシールド11によって絶縁容器
2がアーク蒸気によって覆われることが防止される。
A metal arc shield 11 is disposed in the cut-off chamber 1 so as to cover the pair of electrodes 7 and 8 facing each other. The arc shield 11 covers the insulating container 2 with arc vapor. Is prevented.

【0005】また図2に拡大して示すように、電極8は
導電棒6の端部に形成されるろう付け部12に加熱接合
により固定されるか、または、かしめ加工によって圧着
接続される。接点部材13aは電極8の端面中央部にろ
う材14を介して一体に固着されている。なお、図2に
示す固定側接点部材13bも同様に、固定電極7の端面
にろう材を介して一体に接合されている。
As shown in FIG. 2 in an enlarged manner, the electrode 8 is fixed to a brazing portion 12 formed at the end of the conductive rod 6 by heat bonding or crimped by crimping. The contact member 13a is integrally fixed to the center of the end face of the electrode 8 via a brazing material 14. The fixed-side contact member 13b shown in FIG. 2 is also integrally joined to the end face of the fixed electrode 7 via a brazing material.

【0006】上記構成の真空遮断器によれば、高真空中
における高い絶縁耐力を利用できるため、対向する接点
部材の開閉ストロークを短くできる特徴を有している。
According to the vacuum circuit breaker having the above structure, since a high dielectric strength in a high vacuum can be utilized, the opening and closing stroke of the opposed contact member can be shortened.

【0007】上記接点部材としては、高頻度にわたる接
点の開閉時に発生するアークによって溶着しないように
耐アーク性(耐弧性)や耐溶着性が必須となる一方、低
接触抵抗性を維持するために高い導電特性を有すること
が必須の要件とされる。この耐弧性と高導電性とを共に
満たす具体的な接点構成材料としては、例えば、Ag
系,Ag−Cu系材料,Ag−CdO系材料,30%C
u−W系材料,50%Cu−Cr系材料などが使用され
ている。特にCu−W系接点材料は導電性に優れている
一方、Cu−Cr系接点材料は耐電圧特性に優れている
ため、特に高出力用電気機器の接点材料として普及して
いる。
The above-mentioned contact member must have arc resistance (arc resistance) or welding resistance so as not to be welded by an arc generated when the contacts are frequently opened and closed, while maintaining low contact resistance. It is indispensable to have high conductive properties. Specific contact forming materials satisfying both the arc resistance and the high conductivity include, for example, Ag
System, Ag-Cu material, Ag-CdO material, 30% C
u-W materials, 50% Cu-Cr materials and the like are used. Particularly, Cu-W-based contact materials have excellent conductivity, while Cu-Cr-based contact materials have excellent withstand voltage characteristics. Therefore, Cu-W-based contact materials have become widespread particularly as contact materials for high-output electrical equipment.

【0008】このCu−Cr系接点材料は、高い導電性
を有する銅(Cu)と、高融点を有し耐弧性および耐圧
性に優れたクロム(Cr)とを主体にして構成されてお
り、高耐圧性と大電流遮断性とを両立させた接点材料で
ある。しかしながら、この接点材料には耐溶着性が劣る
という欠点がある。そこで、従来のCu−Cr系接点材
料に、BiやTe等の溶着防止金属を第3成分として添
加した接点材料も広く使用されている。
This Cu-Cr contact material is mainly composed of copper (Cu) having high conductivity and chromium (Cr) having a high melting point and excellent arc resistance and pressure resistance. It is a contact material that achieves both high withstand voltage and large current interrupting properties. However, this contact material has a disadvantage that the welding resistance is poor. Therefore, a contact material obtained by adding a welding prevention metal such as Bi or Te as a third component to a conventional Cu-Cr-based contact material is also widely used.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、Cu−
Cr系材料に、BiやTe等の溶着防止金属を第3成分
として添加した接点材料においては、耐圧性が著しく劣
化するという問題点があった。よって現状では溶着性や
耐圧性の要求度に応じて用途に合せた各種成分系の接点
材料を使い分けている。
However, Cu-
In a contact material in which a welding prevention metal such as Bi or Te is added as a third component to a Cr-based material, there is a problem that the pressure resistance is significantly deteriorated. Therefore, at present, contact materials of various component systems are selectively used according to the application in accordance with the degree of demand for welding property and pressure resistance.

【0010】これらのCu−Cr系接点材料は、真空遮
断器の接点(接触子)を構成する材料として、今後も使
用の拡大が予想されている。しかも、真空遮断器の小型
化に対する技術的要求も高まり、より一層の耐圧性,大
電流遮断性および耐溶着性の向上が求められている。し
かしながら、小型化が進展するとともに、密度,種類,
組成比,結晶組織,不純物等を同一に設定した接点材料
を使用した場合においても、各真空遮断器の性能のばら
つきが接点材料毎に大きく変化し、性能が安定した真空
遮断器を量産することが困難になるという問題点があっ
た。
[0010] These Cu-Cr-based contact materials are expected to be used more and more in the future as materials for forming contacts (contacts) of vacuum circuit breakers. In addition, technical requirements for miniaturization of the vacuum circuit breaker are also increasing, and further improvement in pressure resistance, large current interrupting property and welding resistance is required. However, as miniaturization progresses, density, type,
Even when using contact materials with the same composition ratio, crystal structure, impurities, etc., variations in the performance of each vacuum circuit breaker vary greatly from contact material to mass production of vacuum breakers with stable performance. There is a problem that it becomes difficult.

【0011】本発明は上記問題点を解決するためになさ
れたものであり、真空遮断器の接点として使用した場合
に大電流遮断性,耐圧性および耐溶着性を大幅に改善で
き、遮断性能が安定した真空遮断器を量産することが可
能な真空遮断器用接点材料を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and when used as a contact of a vacuum circuit breaker, a large current interrupting property, a pressure resistance and a welding resistance can be greatly improved, and the interrupting performance is improved. An object of the present invention is to provide a contact material for a vacuum circuit breaker capable of mass-producing a stable vacuum circuit breaker.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らは、真空遮断器内において対向して配置
される一対の接点材料の接触面の性状に着目した。すな
わち接点材料の表面加工時に生成する凹凸の有無が接点
材料の電流遮断特性に及ぼす影響について鋭意研究を行
った結果、以下に示すような知見を得た。
Means for Solving the Problems In order to achieve the above object, the present inventors have paid attention to the properties of the contact surfaces of a pair of contact materials which are arranged to face each other in a vacuum circuit breaker. That is, as a result of earnestly studying the influence of the presence or absence of unevenness generated during the surface processing of the contact material on the current interruption characteristics of the contact material, the following findings were obtained.

【0013】すなわち、真空遮断器において接点材料の
表面粗さは、接点の接触抵抗と密接な関係を有してい
る。すなわち、接点材料の表面に凹凸が多く表面粗さが
大きいと、接点の接触抵抗が増大し、ジュール熱が発生
することになり遮断器の大電流遮断性が劣化する。一
方、材料表面に突起物が形成されていると、その部分に
電界集中が起こり耐電圧性が低下する上に、さらに接点
の局部的な溶融が生じ易くなるため、耐溶着性が劣化し
てしまうことが判明した。
That is, in the vacuum circuit breaker, the surface roughness of the contact material has a close relationship with the contact resistance of the contact. That is, if the surface of the contact material has many irregularities and large surface roughness, the contact resistance of the contact increases, Joule heat is generated, and the large current interrupting ability of the circuit breaker deteriorates. On the other hand, if protrusions are formed on the surface of the material, electric field concentration occurs at that portion, withstanding voltage decreases, and furthermore, local melting of the contact is more likely to occur, so that welding resistance deteriorates. It turned out to be.

【0014】また近年の接点材の小型化に伴う単位面積
当りの負荷電流の増大が、上記接点材表面の凹凸が引き
起こす弊害をより一層顕著にしたものと考えられる。
It is also considered that the increase in load current per unit area accompanying the recent miniaturization of the contact material has made the adverse effects caused by the unevenness of the contact material surface more remarkable.

【0015】そこで本願発明者らは、接点材料の接触面
の粗さを、従来と比較してさらに平滑化することによ
り、接点材料の遮断特性,耐電圧特性,耐溶着性を大幅
に改善できるという知見を得た。具体的には、接点材料
の表面粗さを日本工業規格(JIS B 0601)で
規定する最大高さ(Ry)で12μm以下または算術平
均粗さ(Ra)で4μm以下にすることにより、この接
点材料を使用した遮断器の特性を大幅に改善できるとい
う知見が得られた。さらに接点材料の表面粗さが上記最
大高さ(Ry)で12μm以下にすると同時に算術平均
粗さ(Ra)で4μm以下にすることによって、その接
点材料を遮断器に使用した場合に、さらに遮断特性を向
上させることが可能になるという知見も得られた。本発
明は上記知見に基づいて完成されたものである。
The inventors of the present invention can greatly improve the breaking characteristics, withstand voltage characteristics and welding resistance of the contact material by further smoothing the roughness of the contact surface of the contact material as compared with the conventional one. I got the knowledge. More specifically, the contact material is made to have a surface roughness of 12 μm or less in maximum height (Ry) or 4 μm or less in arithmetic average roughness (Ra) specified in Japanese Industrial Standards (JIS B0601). It has been found that the characteristics of circuit breakers using materials can be greatly improved. Further, by making the surface roughness of the contact material 12 μm or less at the maximum height (Ry) and at the same time 4 μm or less at the arithmetic mean roughness (Ra), when the contact material is used for a circuit breaker, the circuit breaks further. It has also been found that the characteristics can be improved. The present invention has been completed based on the above findings.

【0016】すなわち、本発明に係る真空遮断器用接点
材料は、高導電成分としての銅と耐弧成分としてのクロ
ムとから成る真空遮断器用接点材料であり、接点材料の
表面粗さがJIS B 0601で規定する最大高さ
(Ry)で12μm以下であることを特徴とする。また
高導電成分としての銅と耐弧成分としてのクロムとから
成る真空遮断器用接点材料であり、接点材料の表面粗さ
がJIS B 0601で規定する算術平均粗さ(R
a)で4μm以下であることを特徴とする。さらに、高
導電成分としての銅と耐弧成分としてのクロムとから成
る真空遮断器用接点材料であり、接点材料の表面粗さが
JIS B 0601で規定する最大高さ(Ry)で1
2μm以下であり、かつ算術平均粗さ(Ra)で4μm
以下であることを特徴とする。さらに耐弧成分としての
クロムの含有量が10〜80重量%であることを特徴と
する。
That is, the contact material for a vacuum circuit breaker according to the present invention is a contact material for a vacuum circuit breaker comprising copper as a highly conductive component and chromium as an arc resistant component, and has a surface roughness of JIS B 0601. The maximum height (Ry) specified by the formula (1) is 12 μm or less. The contact material for a vacuum circuit breaker is composed of copper as a highly conductive component and chromium as an arc-resistant component. The surface roughness of the contact material has an arithmetic average roughness (R) defined by JIS B0601.
In a), it is 4 μm or less. Further, the present invention is a contact material for a vacuum circuit breaker comprising copper as a highly conductive component and chromium as an arc-resistant component, and has a surface roughness of 1 at a maximum height (Ry) specified in JIS B 0601.
2 μm or less and 4 μm in arithmetic average roughness (Ra)
It is characterized by the following. Further, the chromium content as an arc-resistant component is 10 to 80% by weight.

【0017】ここで耐弧成分としてのCrは、耐弧性お
よび耐溶着性に優れ、接点の長寿命化を図るための成分
であり、原料混合体中に10〜80重量%の範囲で含有
される。含有量が10wt%未満においては、耐弧性が
低下して接点の長寿命化が困難である。一方、含有量が
80重量%を超える場合には、後述する高導電成分とし
てのCuの含有量の相対的低下を招き、接触抵抗の増大
により接点としての通電機能が低下してしまう。
Here, Cr as an arc-resistant component is a component that is excellent in arc resistance and welding resistance and extends the life of the contact, and is contained in the raw material mixture in the range of 10 to 80% by weight. Is done. If the content is less than 10 wt%, the arc resistance is reduced and it is difficult to extend the life of the contact. On the other hand, when the content exceeds 80% by weight, the content of Cu as a high conductive component described later is relatively reduced, and the contact function is reduced due to an increase in contact resistance.

【0018】また高導電成分としてのCuは高い導電率
を有し、接点の接触抵抗値を下げるために上記Cr成分
を除く残余成分として90〜20重量%(wt%)含有
される。Cu含有量が20wt%未満の場合には導電性
が低下し接触抵抗が増大し接点材料としての機能が低下
する。一方、含有量が90wt%を超える場合は、前記
耐弧成分の含有量が相対的に低下し接点開閉動作時に発
生するアーク(電弧)によって接点が溶着し易くなり耐
消耗性が低下してしまう。
Further, Cu as a high conductive component has a high conductivity and is contained in an amount of 90 to 20% by weight (wt%) as a residual component excluding the Cr component in order to reduce the contact resistance value of the contact. If the Cu content is less than 20% by weight, the conductivity decreases, the contact resistance increases, and the function as a contact material decreases. On the other hand, when the content exceeds 90 wt%, the content of the arc resistant component relatively decreases, and the arc (electric arc) generated during the contact opening / closing operation causes the contacts to be easily welded, resulting in reduced wear resistance. .

【0019】ここで上記Cu粉末としては、電解法によ
って製造されたCu粉末やアトマイズ法で製造されたC
u粉末を使用することができる。これらの製法で得られ
たCu粉末は、純度が良好であり、一般に高純度材とし
ての特性が要求される接点部材には好適なCu粉末材料
である。ここで使用するCu粉末の平均粒径は、Cr粉
末の平均粒径の1/20〜1/3の範囲であり、この粒
径範囲に調整することにより、Cu粉末とCr粉末とが
均一に分散した原料混合体が得られ易くなる。すなわ
ち、混合操作後におけるCu粉末の平均粒径がCr粉末
の平均粒径の1/3を超えるように粗大となる場合に
は、Cr粉末表面にCu粉末を均一に付着配置すること
が困難になる一方、1/20未満の微細粉となる場合に
は、Cu粉末の再凝集が起こり易くなり、いずれにして
も各成分が均一に分散した状態が得られにくくなる。よ
り好ましい粒径比率は1/10〜1/5の範囲である。
Here, the Cu powder may be Cu powder produced by an electrolytic method or C powder produced by an atomizing method.
u powder can be used. The Cu powder obtained by these manufacturing methods has a high purity, and is generally a Cu powder material suitable for a contact member requiring characteristics as a high-purity material. The average particle size of the Cu powder used here is in the range of 1/20 to 1/3 of the average particle size of the Cr powder, and by adjusting to this particle size range, the Cu powder and the Cr powder can be uniformly formed. A dispersed raw material mixture is easily obtained. That is, when the average particle size of the Cu powder after the mixing operation is so coarse that it exceeds one-third of the average particle size of the Cr powder, it is difficult to uniformly attach and arrange the Cu powder on the surface of the Cr powder. On the other hand, in the case of a fine powder of less than 1/20, reagglomeration of the Cu powder is likely to occur, and in any case, it is difficult to obtain a state in which the components are uniformly dispersed. A more preferred particle size ratio is in the range of 1/10 to 1/5.

【0020】本発明に係る真空遮断器用接点材料は上記
Cu粉末およびCr粉末を原材料として粉末冶金法,溶
浸法や溶解法等によりCu−Cr材料を調製し、得られ
たCu−Cr材料の表面を切削法,研磨法,ブラスト法
等により所定の表面粗さとなるように加工して製造され
る。
The contact material for a vacuum circuit breaker according to the present invention is prepared by preparing a Cu-Cr material by powder metallurgy, infiltration or melting using the above-mentioned Cu powder and Cr powder as raw materials. It is manufactured by processing the surface to a predetermined surface roughness by a cutting method, a polishing method, a blast method or the like.

【0021】粉末冶金法においては、耐弧成分としての
Cr粉末と高導電粉末としてのCu粉とを、例えばボー
ルミルのような機械的混合機を使用して原料混合体を調
製する工程と、上記原料混合体をプレス成形機の金型に
充填し、600〜1000MPa程度の加圧力でプレス
成形し、所定形状のCu−Cr成形体を形成する工程
と、得られた成形体を窒素ガスや不活性ガスなどの非酸
化性雰囲気中で温度900〜1050℃で0.5〜3時
間加熱焼結する工程とから成る。
In the powder metallurgy method, a step of preparing a raw material mixture by using a mechanical mixer such as a ball mill with a Cr powder as an arc resistant component and a Cu powder as a highly conductive powder; A step of filling the raw material mixture into a mold of a press molding machine and press-molding the same under a pressure of about 600 to 1000 MPa to form a Cu-Cr molded body having a predetermined shape; Heating and sintering at a temperature of 900 to 1050 ° C. for 0.5 to 3 hours in a non-oxidizing atmosphere such as an active gas.

【0022】一方、溶浸法は、多孔質のCr仮焼体の空
孔中に溶融したCuを溶浸せしめてCu−Cr合金材を
形成する方法である。また溶解法はCr材料とCu材料
とを溶解後、凝固せしめてCu−Cr合金材を形成する
方法である。
On the other hand, the infiltration method is a method in which molten Cu is infiltrated into pores of a porous Cr calcined body to form a Cu—Cr alloy material. The melting method is a method in which a Cr material and a Cu material are melted and then solidified to form a Cu—Cr alloy material.

【0023】接点材料の表面粗さは、真空遮断器の遮断
特性に大きな影響を及ぼす因子であり、本発明ではJI
S B 0601で規定する最大高さ(Ry)で12μ
m以下、または算術平均粗さ(Ra)で4μm以下とす
る。この表面粗さが12μm(Ry)または4μm(R
a)を超える場合には、接点の接触抵抗が増大し過大な
ジュール熱の発生により、遮断器の大電流遮断性が低下
する。また突起物が形成された部位に電界集中が起こ
り、耐電圧特性が低下するとともに、部分的に溶着が生
じ易くなり、接点の耐溶着性が劣化し、耐久性に優れた
真空遮断器が得られない。したがって、接点材料の表面
粗さは上記範囲とする。
The surface roughness of the contact material is a factor that greatly affects the breaking characteristics of the vacuum circuit breaker.
12 μm at the maximum height (Ry) specified by SB0601
m or 4 μm or less in arithmetic average roughness (Ra). This surface roughness is 12 μm (Ry) or 4 μm (R
When the value exceeds a), the contact resistance of the contact increases, and excessive Joule heat is generated, so that the large current interrupting ability of the circuit breaker is reduced. In addition, electric field concentration occurs at the portion where the protrusions are formed, and the withstand voltage characteristics are reduced, welding is also likely to occur partially, the welding resistance of the contacts is deteriorated, and a vacuum circuit breaker with excellent durability is obtained. I can't. Therefore, the surface roughness of the contact material is in the above range.

【0024】上記のような表面粗さを得るための加工法
は、特に限定されないが、下記のような切削法,研磨法
またはブラスト法を採用することができる。
The processing method for obtaining the surface roughness as described above is not particularly limited, but the following cutting method, polishing method or blasting method can be employed.

【0025】すなわち切削法により表面加工を行う場合
には、切削工具としてのバイトの送り速度,削り代(取
り代),ワークとしての接点素材の回転速度,バイトの
材質・形状等を最適化することにより、所定の表面粗さ
が得られる。一般に表面粗さが小さい平滑面を得るため
には、上記送り速度を小さくするとともに削り代を少な
くすればよいが、一方で加工時間が延びて生産性が低下
する問題を生じる。そこで、接点素材の切削面を冷却し
低温下で切削することにより、被削性が向上し、接点材
の加工性および生産性を向上させることができる。
That is, when the surface is processed by the cutting method, the feed speed of the cutting tool as a cutting tool, the cutting allowance (cut allowance), the rotation speed of the contact material as the work, the material and shape of the cutting tool, etc. are optimized. Thereby, a predetermined surface roughness is obtained. Generally, in order to obtain a smooth surface having a small surface roughness, the feed rate may be reduced and the cutting allowance may be reduced. Therefore, by cutting the cut surface of the contact material and cutting at a low temperature, machinability is improved, and workability and productivity of the contact material can be improved.

【0026】一方、接点素材表面に研磨液を散布しなが
ら研磨する研磨法によれば、所定の平滑面が容易に得ら
れる。但し、接点素材の表面に研磨液が残留した場合に
は、遮断操作時に研磨液成分が揮発して真空遮断器の遮
断性能を大幅に劣化させる危険性が高い。したがって、
研磨加工後において接点材料から研磨液成分を可能な限
り除去しておくことが肝要である。
On the other hand, according to the polishing method of polishing while spraying a polishing liquid on the surface of the contact material, a predetermined smooth surface can be easily obtained. However, if the polishing liquid remains on the surface of the contact material, there is a high risk that the polishing liquid components volatilize during the shut-off operation, thereby significantly deteriorating the shut-off performance of the vacuum circuit breaker. Therefore,
It is important to remove the polishing liquid component from the contact material as much as possible after the polishing process.

【0027】また高硬度の砥粒微粒子を空気等の噴射媒
体とともに高速で接点素材表面に吹き付けるブラスト法
も表面粗さを調整する方法として有効である。但し、こ
のブラスト法においても、処理後に接点材料表面に砥粒
成分が残留しないように可能な限り除去する操作が必要
である。
A blast method in which high-hardness abrasive particles are sprayed onto the surface of the contact material at high speed together with an injection medium such as air is also effective as a method for adjusting the surface roughness. However, even in the blast method, it is necessary to remove the abrasive component as much as possible so as not to remain on the surface of the contact material after the treatment.

【0028】なおブラスト法で用いる高硬度の微粒子と
してドライアイスの細片を使用することが極めて有効で
あることが本願発明者らによる実験により確認されてい
る。ドライアイスの細片を使用してブラスト処理を実施
した後においては、ドライアイスは完全に気化(昇華)
して消失するため、接点材料表面に異物が残留するおそ
れは少ない。
It has been confirmed by experiments by the present inventors that it is extremely effective to use dry ice flakes as high hardness fine particles used in the blast method. After blasting using dry ice strips, dry ice is completely vaporized (sublimated)
Therefore, there is little possibility that foreign matter remains on the surface of the contact material.

【0029】上記構成に係る真空遮断器用接点材料によ
れば、表面粗さをJIS B 0601で規定する最大
高さ(Ry)で12μm以下または算術平均粗さ(R
a)で4μm以下にしているため、真空遮断器の接点部
材として使用した場合に接点における接触抵抗が減少
し、大電流遮断性,耐電圧性,耐溶着性を大幅に改善す
ることができる。したがって、小型化した真空遮断器に
おいても、遮断性能が良好であり、耐久性が優れた真空
遮断器を量産することができる。
According to the contact material for a vacuum circuit breaker according to the above configuration, the surface roughness is 12 μm or less at the maximum height (Ry) specified by JIS B0601, or the arithmetic average roughness (R).
Since it is 4 μm or less in a), when used as a contact member of a vacuum circuit breaker, the contact resistance at the contact is reduced, and the large current interrupting property, voltage resistance, and welding resistance can be significantly improved. Therefore, even in a miniaturized vacuum circuit breaker, it is possible to mass-produce a vacuum circuit breaker having good breaking performance and excellent durability.

【0030】[0030]

【発明の実施の形態】次に本発明の実施形態について、
以下の実施例を参照して説明する。
Next, an embodiment of the present invention will be described.
This will be described with reference to the following examples.

【0031】実施例1〜12 平均粒径が110μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としての電解
Cu粉とを、表1に示す組成比となるようにそれぞれ秤
量した。そしてボールミルのポットに、混合用ボールと
ともに秤量したCr粉と電解Cu粉とを投入して、不活
性ガス雰囲気中で回転混合して原料混合体とした。次
に、この原料混合体を金型プレス機に充填し、700M
Paの加圧力でプレス成形してCu−Cr成形体とし
た。さらに、このCu−Cr成形体を加熱炉に挿入し、
窒素ガス雰囲気中において成形体を、温度1050℃ま
で加熱し、3時間保持して焼成した後に炉冷し、加熱炉
から取り出した。
Examples 1 to 12 The composition ratios of Cr powder as an arc resistant component having an average particle size of 110 μm and electrolytic Cu powder as a highly conductive component having an average particle size of 50 μm are shown in Table 1. Were weighed as follows. The Cr powder and the electrolytic Cu powder weighed together with the mixing balls were put into a ball mill pot, and the mixture was rotated and mixed in an inert gas atmosphere to obtain a raw material mixture. Next, this raw material mixture was filled in a mold press machine, and 700M
Press molding was performed with a pressing force of Pa to obtain a Cu-Cr molded body. Furthermore, this Cu-Cr compact was inserted into a heating furnace,
The molded body was heated to 1050 ° C. in a nitrogen gas atmosphere, held for 3 hours, fired, cooled in a furnace, and taken out of the heating furnace.

【0032】次に取り出したCu−Cr焼結体表面を切
削法または研磨法を使用して表1に示す表面粗さを有す
るように切削・研磨加工し、さらに所定の接点形状に切
削加工することにより、それぞれ実施例1〜12に係る
接点材料を多数調製した。
Next, the surface of the Cu-Cr sintered body taken out is cut and polished by a cutting method or a polishing method so as to have the surface roughness shown in Table 1, and further cut into a predetermined contact shape. Thereby, many contact materials according to Examples 1 to 12 were prepared.

【0033】従来例1〜3 実施例1,5,9において調製したCu−Cr焼結体表
面を、研磨法を使用して表1に示す表面粗さとなるよう
に研磨加工して、それぞれ従来例1〜3に係る接点材料
を多数調製した。
Conventional Examples 1 to 3 The surfaces of the Cu—Cr sintered bodies prepared in Examples 1 , 5 and 9 were polished to a surface roughness shown in Table 1 using a polishing method. Many contact materials according to Examples 1 to 3 were prepared.

【0034】比較例1〜6 実施例3,4,7,8,11,12において調製したC
u−Cr焼結体表面を、研磨法を使用して表1に示す表
面粗さとなるように研磨加工して、それぞれ比較例1〜
6に係る接点材料を多数調製した。
Comparative Examples 1 to 6 C prepared in Examples 3, 4, 7, 8, 11, and 12
The surface of the u-Cr sintered body was polished by using a polishing method so as to have a surface roughness shown in Table 1, and each of Comparative Examples 1 to
Many contact materials according to No. 6 were prepared.

【0035】こうして調製した各実施例,従来例および
比較例に係る接点材料の遮断特性を評価するために、各
接点部材を真空バルブ内に組み込み、図1〜2に示すよ
うな真空遮断器をそれぞれ製造した。
In order to evaluate the breaking characteristics of the contact materials according to the examples, the conventional examples and the comparative examples thus prepared, each contact member was incorporated in a vacuum valve, and a vacuum circuit breaker as shown in FIGS. Each was manufactured.

【0036】すなわち各実施例,従来例および比較例に
係る各接点部材13a,13bを図2に示すように、A
gろう材14を使用して、それぞれ電極7,8の端面中
央部に真空ろう付けした。一方、電極7,8を導電棒
5,6の端面にろう付け部12を介して一体に接合し
た。さらに、各接点部材13a,13bをろう付け接合
した電極7,8を対向するように配置して図1に示すよ
うな真空遮断器をそれぞれ組み立て、遮断特性の良否を
比較した。すなわち所定の電圧値の回路を遮断したとき
の再点弧発生電流の最低値を測定した。
That is, as shown in FIG. 2, each contact member 13a, 13b according to each embodiment, conventional example, and comparative example is
g Using a brazing material 14, the electrodes 7 and 8 were vacuum-brazed at the center of the end faces. On the other hand, the electrodes 7, 8 were integrally joined to the end surfaces of the conductive rods 5, 6 via a brazing portion 12. Further, the electrodes 7, 8 to which the respective contact members 13a, 13b were brazed were arranged so as to face each other to assemble vacuum circuit breakers as shown in FIG. 1, and the quality of the breaking characteristics was compared. That is, the minimum value of the re-ignition current when the circuit of a predetermined voltage value was cut off was measured.

【0037】また、バフ研磨により鏡面仕上げをしたN
i針を陽極とする一方、同様に鏡面仕上げをした各接点
材料を陰極とし、両極間のギャップを0.5mmとし、真
空において徐々に電圧を上昇させ、スパークを発生した
ときの電圧値を測定し、静耐圧値を求めた。
In addition, a mirror-finished N
While the i-needle is used as the anode, each mirror-finished contact material is used as the cathode, the gap between both electrodes is set to 0.5 mm, and the voltage is gradually increased in vacuum to measure the voltage value when a spark is generated Then, a static withstand voltage value was obtained.

【0038】また、直径25mmの円板状の各接点材料と
同径の加圧ロッドとを対向配置し、さらに一定荷重(1
00kg)の押圧力を付加した密着状態で真空中において
所定の電流(20KA)を20ミリ秒間通電した後に、
接点材料と加圧ロッドとを引き外すために必要な引張力
を測定し、耐溶着性の評価を行った。なお、上記各特性
値は、従来例1〜3で示すそれぞれの組成比を有する接
点材料を使用した場合の特性値を基準値1.0として相
対的に示している。各測定値を下記表1に示す。
Further, a disk-shaped contact material having a diameter of 25 mm and a pressure rod having the same diameter are arranged opposite to each other, and a constant load (1
After applying a predetermined current (20 KA) for 20 milliseconds in vacuum in a contact state with a pressing force of
The tensile force required to separate the contact material and the pressure rod was measured, and the welding resistance was evaluated. In addition, the above-mentioned respective characteristic values are relatively shown with the characteristic value in the case of using the contact materials having the respective composition ratios shown in Conventional Examples 1 to 3 as the reference value 1.0. Table 1 below shows the measured values.

【0039】[0039]

【表1】 [Table 1]

【0040】上記表1に示す結果から明らかなように、
表面粗さを所定の範囲内に調整し平滑に仕上げた接点材
料を組み込んだ各実施例に対応する真空遮断器は、従来
の粗面を有する接点材料を使用した比較例に係る遮断器
と比較して再点弧発生頻度のばらつきが少なく、しかも
通電後の引き外し力も大幅に減少していることから、耐
溶着性が大幅に改善することが実証された。
As is clear from the results shown in Table 1 above,
The vacuum circuit breaker corresponding to each embodiment incorporating the contact material whose surface roughness is adjusted within a predetermined range and finished smoothly is compared with the conventional circuit breaker using the contact material having a rough surface. Since the variation in the frequency of occurrence of restriking was small and the tripping force after energization was significantly reduced, it was demonstrated that the welding resistance was significantly improved.

【0041】特に再点弧発生頻度のばらつき幅が極めて
小さく、アークの安定性および遮断性能のばらつきが少
なく、特性が安定した小型の真空遮断器を量産すること
が可能になる。
Particularly, the variation range of the frequency of occurrence of restriking is extremely small, the variation in arc stability and the breaking performance is small, and a small-sized vacuum circuit breaker having stable characteristics can be mass-produced.

【0042】[0042]

【発明の効果】以上説明の通り、本発明に係る真空遮断
器用接点材料によれば、表面粗さを最大高さ(Ry)で
12μm以下または算術平均粗さ(Ra)で4μm以下
としているため、真空遮断器の接点部材として使用した
場合に接点における接触抵抗が減少し、大電流遮断性,
耐電圧性,耐溶着性を大幅に改善することができる。し
たがって、小型化した真空遮断器においても、遮断性能
が良好であり、耐久性が優れた真空遮断器を量産するこ
とができる。
As described above, according to the contact material for a vacuum circuit breaker according to the present invention, the surface roughness is 12 μm or less in maximum height (Ry) or 4 μm or less in arithmetic average roughness (Ra). When used as a contact member of a vacuum circuit breaker, the contact resistance at the contact decreases,
Voltage resistance and welding resistance can be greatly improved. Therefore, even in a miniaturized vacuum circuit breaker, it is possible to mass-produce a vacuum circuit breaker having good breaking performance and excellent durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る接点材料を適用する真空遮断器の
構造例を示す断面図。
FIG. 1 is a sectional view showing a structural example of a vacuum circuit breaker to which a contact material according to the present invention is applied.

【図2】図1に示す接点および電極部を拡大して示す断
面図。
FIG. 2 is an enlarged sectional view showing a contact and an electrode unit shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 遮断室 2 絶縁容器 3a,3b 封止金属 4a,4b 蓋体 5 導電棒 6 導電棒 7 電極(固定電極) 8 電極(可動電極) 9 ベローズ 10 アークシールド 11 アークシールド 12 ろう付け部 13a,13b 接点部材 14 ろう材(Agろう材) DESCRIPTION OF SYMBOLS 1 Isolation chamber 2 Insulating container 3a, 3b Sealing metal 4a, 4b Lid 5 Conductive rod 6 Conductive rod 7 Electrode (fixed electrode) 8 Electrode (movable electrode) 9 Bellows 10 Arc shield 11 Arc shield 12 Brazing parts 13a, 13b Contact member 14 Brazing material (Ag brazing material)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高導電成分としての銅と耐弧成分として
のクロムとから成る真空遮断器用接点材料であり、接点
材料の表面粗さがJIS B 0601で規定する最大
高さ(Ry)で12μm以下であることを特徴とする真
空遮断器用接点材料。
1. A contact material for a vacuum circuit breaker comprising copper as a highly conductive component and chromium as an arc-resistant component, wherein the contact material has a surface roughness of 12 μm at a maximum height (Ry) specified by JIS B0601. A contact material for a vacuum circuit breaker, comprising:
【請求項2】 高導電成分としての銅と耐弧成分として
のクロムとから成る真空遮断器用接点材料であり、接点
材料の表面粗さがJIS B 0601で規定する算術
平均粗さ(Ra)で4μm以下であることを特徴とする
真空遮断器用接点材料。
2. A contact material for a vacuum circuit breaker comprising copper as a highly conductive component and chromium as an arc-resistant component, wherein the contact material has an arithmetic average roughness (Ra) defined by JIS B0601. A contact material for a vacuum circuit breaker, which is 4 μm or less.
【請求項3】 高導電成分としての銅と耐弧成分として
のクロムとから成る真空遮断器用接点材料であり、接点
材料の表面粗さがJIS B 0601で規定する最大
高さ(Ry)で12μm以下であり、かつ算術平均粗さ
(Ra)で4μm以下であることを特徴とする真空遮断
器用接点材料。
3. A contact material for a vacuum circuit breaker comprising copper as a highly conductive component and chromium as an arc-resistant component, wherein the contact material has a surface roughness of 12 μm at a maximum height (Ry) specified in JIS B0601. A contact material for a vacuum circuit breaker, wherein the contact material has an arithmetic average roughness (Ra) of 4 μm or less.
【請求項4】 耐弧成分としてのクロムの含有量が10
〜80重量%であることを特徴とする請求項1,2,3
のいずれかに記載の真空遮断器用接点材料。
4. The chromium content as an arc-resistant component is 10%.
4 to 80% by weight.
The contact material for a vacuum circuit breaker according to any one of the above.
【請求項5】 真空容器内に対向して配置した1対の接
触子の開閉動作によって電路を開閉する真空遮断器にお
いて、上記接触子が、高導電成分としての銅と耐弧成分
としてのクロムとから成り、表面粗さがJIS B 0
601で規定する最大高さ(Ry)で12μm以下であ
る接点材料から成ることを特徴とする真空遮断器。
5. A vacuum circuit breaker which opens and closes an electric circuit by opening and closing a pair of contacts arranged in a vacuum vessel so as to face each other, wherein said contacts are made of copper as a highly conductive component and chromium as an arc resistant component. And the surface roughness is JIS B 0
A vacuum circuit breaker comprising a contact material having a maximum height (Ry) specified in 601 of 12 μm or less.
【請求項6】 真空容器内に対向して配置した1対の接
触子の開閉動作によって電路を開閉する真空遮断器にお
いて、上記接触子が、高導電成分としての銅と耐弧成分
としてのクロムとから成り、表面粗さがJIS B 0
601で規定する算術平均粗さ(Ra)で4μm以下で
ある接点材料から成ることを特徴とする真空遮断器。
6. A vacuum circuit breaker which opens and closes an electric circuit by opening and closing a pair of contacts arranged in a vacuum vessel so as to face each other, wherein said contacts are made of copper as a highly conductive component and chromium as an arc resistant component. And the surface roughness is JIS B 0
A vacuum circuit breaker comprising a contact material having an arithmetic average roughness (Ra) specified in 601 of 4 μm or less.
【請求項7】 耐弧成分としてのクロム粉末と高導電成
分としての銅粉末とを混合して原料混合体を調製する工
程と、この原料混合体を成形して成形体を形成する工程
と、得られた成形体を非酸化性雰囲気中で焼結する工程
と、得られた焼結体の表面粗さを、JIS B 060
1で規定する最大高さ(Ry)で12μm以下または算
術平均粗さ(Ra)で4μm以下に加工する工程とを備
えることを特徴とする真空遮断器用接点材料の製造方
法。
7. A step of mixing a chromium powder as an arc-resistant component and a copper powder as a highly conductive component to prepare a raw material mixture; and forming the raw material mixture to form a molded body; The step of sintering the obtained molded body in a non-oxidizing atmosphere and the surface roughness of the obtained sintered body were measured according to JIS B 060
Machining the contact material to have a maximum height (Ry) of 12 μm or less or an arithmetic mean roughness (Ra) of 4 μm or less.
【請求項8】 銅粉末の平均粒径が、クロム粉末の平均
粒径の1/20〜1/3であることを特徴とする請求項
7記載の真空遮断器用接点材料の製造方法。
8. The method for producing a contact material for a vacuum circuit breaker according to claim 7, wherein the average particle size of the copper powder is 1/20 to 1/3 of the average particle size of the chromium powder.
JP8199052A 1996-07-29 1996-07-29 Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker Pending JPH1040761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8199052A JPH1040761A (en) 1996-07-29 1996-07-29 Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8199052A JPH1040761A (en) 1996-07-29 1996-07-29 Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPH1040761A true JPH1040761A (en) 1998-02-13

Family

ID=16401316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8199052A Pending JPH1040761A (en) 1996-07-29 1996-07-29 Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH1040761A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071740A1 (en) * 2000-03-23 2001-09-27 Nippon Steel Corporation Metal foil excellent in electrical contact stability
US6753494B2 (en) 2001-07-17 2004-06-22 Hitachi, Ltd. Sintered body and electrode, method for surface densitication of these, process for manufacturing electrode by this method and circuit breaker
JP2006202568A (en) * 2005-01-19 2006-08-03 Toshiba Corp Method of manufacturing contact material for vacuum valve
JP2007137371A (en) * 2005-11-22 2007-06-07 Railway Technical Res Inst Track short circuit improvement method and its device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071740A1 (en) * 2000-03-23 2001-09-27 Nippon Steel Corporation Metal foil excellent in electrical contact stability
US6703143B2 (en) 2000-03-23 2004-03-09 Nippon Steel Corporation Metal foil excellent in electrical contact stability
CN1301520C (en) * 2000-03-23 2007-02-21 新日本制铁株式会社 Metal foil excellent in electrical contact stability
US6753494B2 (en) 2001-07-17 2004-06-22 Hitachi, Ltd. Sintered body and electrode, method for surface densitication of these, process for manufacturing electrode by this method and circuit breaker
JP2006202568A (en) * 2005-01-19 2006-08-03 Toshiba Corp Method of manufacturing contact material for vacuum valve
JP2007137371A (en) * 2005-11-22 2007-06-07 Railway Technical Res Inst Track short circuit improvement method and its device
JP4685606B2 (en) * 2005-11-22 2011-05-18 財団法人鉄道総合技術研究所 Orbital short-circuit improvement method and apparatus

Similar Documents

Publication Publication Date Title
JP2705998B2 (en) Manufacturing method of electrical contact material
EP1528581B1 (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker
JP2002313196A (en) Electric contact member and manufacturing method for the same
JPH04505986A (en) Manufacturing method of CuCr contact material for vacuum electromagnetic contactor and attached contact material
JP4620071B2 (en) Contact materials for vacuum circuit breakers
JPH1173830A (en) Vacuum valve
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker
EP0460680B1 (en) Contact for a vacuum interrupter
EP3187287B1 (en) Method for manufacturing electrode material
CN1239723C (en) Copper base alloy electric vacuum contact material and method for making same
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
US6346683B1 (en) Vacuum interrupter and vacuum switch thereof
JP5002398B2 (en) Contact materials for vacuum circuit breakers
EP0426490B1 (en) Vacuum switch contact material and method of manufacturing it
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
JPH11176298A (en) Contact material for vacuum circuit breaker, manufacture of the contact material, and vacuum circuit breaker
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JPH09190730A (en) Manufacture of contact member for vacuum circuit breaker
JPH1031942A (en) Contact material for vacuum circuit-breaker and its manufacture
JPH09161583A (en) Manufacture of contact member for vacuum circuit breaker
JPH09167534A (en) Contact member for vacuum breaker and its manufacture
US5225381A (en) Vacuum switch contact material and method of manufacturing it
JPH0729446A (en) Manufacture of electrode for vacuum interrupter
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2511019B2 (en) Contact material for vacuum valve