JP2511043B2 - Manufacturing method of contact alloy for vacuum valve - Google Patents

Manufacturing method of contact alloy for vacuum valve

Info

Publication number
JP2511043B2
JP2511043B2 JP15898487A JP15898487A JP2511043B2 JP 2511043 B2 JP2511043 B2 JP 2511043B2 JP 15898487 A JP15898487 A JP 15898487A JP 15898487 A JP15898487 A JP 15898487A JP 2511043 B2 JP2511043 B2 JP 2511043B2
Authority
JP
Japan
Prior art keywords
alloy
contact
infiltration
powder
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15898487A
Other languages
Japanese (ja)
Other versions
JPS644436A (en
Inventor
誠司 千葉
功 奥冨
薫旦 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15898487A priority Critical patent/JP2511043B2/en
Publication of JPS644436A publication Critical patent/JPS644436A/en
Application granted granted Critical
Publication of JP2511043B2 publication Critical patent/JP2511043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Landscapes

  • Powder Metallurgy (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、ガスおよびポア(空孔)が少ないCuおよ
びAg-Cr合金の製造方法に関し、特に、再点弧発生頻度
を軽減化し、低サージ特性を改良した真空バルブ用接点
合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial field of application) The present invention relates to a method for producing Cu and Ag-Cr alloys having few gas and pores (holes), and particularly to the frequency of re-ignition. The present invention relates to a method for manufacturing a contact alloy for a vacuum valve, which has improved low surge characteristics.

(従来の技術) 真空バルブ用接点に要求される主たる特性は、耐溶
着、耐電圧、高しゃ断性である。
(Prior Art) The main characteristics required for a contact for a vacuum valve are welding resistance, withstand voltage, and high breaking property.

しかし、これら3要件に対しては相反する物理的性質
が要求されるので、これらの要件を理想的に両立させる
ことは困難であり、適用する回路の優先要件を第1にし
て、他の要件は若干犠牲にして対応しているのが現状で
ある。
However, since these three requirements require contradictory physical properties, it is difficult to ideally balance these requirements. At present, we are responding with a slight sacrifice.

例えば、従来、高耐圧、大容量真空しゃ断器において
は、溶着防止成分(Bi、Te、Pbなど)を5重量%以下含
有するCu合金を電極接点として具備したものが知られて
いる(特公昭41-12131号公報)。
For example, conventionally, there is known a high-breakdown-voltage, large-capacity vacuum circuit breaker equipped with a Cu alloy containing 5% by weight or less of a welding prevention component (Bi, Te, Pb, etc.) as an electrode contact (Japanese Patent Publication No. 41-12131).

ところが、近年高電圧化要求に対しては、耐電圧の面
で十分ではない。
However, in recent years, the demand for higher voltage has not been sufficient in terms of withstand voltage.

すなわち、真空しゃ断器は小形軽量、メンテナンスフ
リー環境調和など、他のしゃ断器に比べ優れた特徴を有
するために、年々、その適用範囲も拡大され、従来一般
的に使用されていた36KV以下の回路から更に高電圧の回
路への適用が行われると共に、特殊回路例えばコンデン
サ回路を開閉する需要も急増しているので、一層の耐高
電圧化が必要となっている。
In other words, the vacuum circuit breaker has advantages such as small size, light weight, and maintenance-free environmental harmony as compared with other circuit breakers, so its application range is expanding year by year, and the circuit of 36KV or less, which has been generally used conventionally, is used. Since it is applied to a higher voltage circuit, the demand for opening and closing a special circuit, for example, a capacitor circuit is rapidly increasing. Therefore, higher withstand voltage is required.

その達成を阻害している重要な要因の1つとして、再
点弧現象は、再発弧現象が挙げられる。
The reignition phenomenon is one of the important factors that hinder the achievement of the reignition phenomenon.

再点弧現象は、製品の信頼性向上の観点から重要視さ
れているにもかかわらず、未だ防止技術は勿論のこと直
接的な発生原因についても明らかになっていない。
Although the re-ignition phenomenon is regarded as important from the viewpoint of improving the reliability of products, neither the prevention technology nor the direct cause has been clarified.

上記高耐圧化に伴って、接点材料に対しても、更に高
耐圧でかつ再点弧現象の発生頻度の低い特性を持つこと
が要求されている。
With the increase in the withstand voltage, the contact material is also required to have a higher withstand voltage and a characteristic that the re-ignition phenomenon is less likely to occur.

接点材料の高耐圧化、無再点弧化を図るには、耐圧的
に欠陥となる脆弱な溶着防止成分の量そのものを極力少
なくしたり、過度に集中するのを避けること、ガス不純
物やピンホール等を極力少なくすること、接点合金自体
の強度を大きくすること等々が望ましい。
In order to achieve high withstand voltage and non-re-ignition of contact materials, minimize the amount of fragile anti-welding components that are defects in pressure resistance, avoid excessive concentration, and avoid gas impurities and pins. It is desirable to minimize holes and the like, increase the strength of the contact alloy itself, and so on.

これらの観点からいえば、前述のCu-Bi合金は満足で
きるものではない。
From these viewpoints, the aforementioned Cu-Bi alloy is not satisfactory.

また従来使用されている他の接点材料であるCu-W接点
またはCu-WC接点は耐電圧的にはかなり優れているもの
のこの焼結系接点合金は、製造方法的にいって気泡が残
存し易く、また熱電子放出も盛んなため再点弧現象が発
生し易いという欠点がある。
Although other contact materials that have been used conventionally, Cu-W contacts or Cu-WC contacts, are quite excellent in terms of withstand voltage, this sintered contact alloy has bubbles remaining due to the manufacturing method. In addition, it has a drawback that the re-ignition phenomenon is likely to occur because the emission of thermoelectrons is active.

一方、高耐圧かつ大電流しゃ断を要求する分野では、
Cu-Cr合金の適用が行われている。Cu-Cr合金は、他の接
点材料ほどには、構成元素間の蒸気圧差が少ないため均
一な性能発揮を期待し得る利点があり、使い方によって
は、その特徴は十分利用することの出来る接点合金であ
る。
On the other hand, in fields requiring high breakdown voltage and large current interruption,
Cu-Cr alloys are being applied. The Cu-Cr alloy has the advantage that, unlike other contact materials, the difference in vapor pressure between the constituent elements is small and uniform performance can be expected. Depending on how it is used, its characteristics can be fully utilized. Is.

このCu-Cr径接点合金は、概ね、次のように製造され
ている。例えば、特公昭59-30761号公報によれば、Cr粉
末と少量のCu粉末を混合し、この混合粉をダイ型に充填
して小圧力をかけてプレス成形し、この成形体をダイ型
から取出したのち、これを真空焼結して、Crスケルトン
を形成し最後にCuを溶浸するという方法がある。
This Cu-Cr diameter contact alloy is generally manufactured as follows. For example, according to Japanese Examined Patent Publication No. 59-30761, Cr powder and a small amount of Cu powder are mixed, the mixed powder is filled in a die mold, and a small pressure is applied to press-mold the molded product from the die mold. After taking it out, there is a method of vacuum-sintering this to form a Cr skeleton and finally infiltrating Cu.

また、最近では、型の中にCr粉末を注加し、その上に
Cuペレットを載置し、全体を脱ガスしたのち減圧下で溶
浸処理を行うという方法も開示されている(特開昭59-2
5903号公報参照)。
Recently, Cr powder was poured into the mold and
A method is also disclosed in which Cu pellets are placed, the whole is degassed, and then infiltration treatment is performed under reduced pressure (Japanese Patent Laid-Open No. 59-2.
(See Japanese Patent No. 5903).

更に、初めから最終目標値のCuとCrとを混合し、これ
より得た成形体をCuの溶融点又はそれ以下で固相焼結す
ることによってCu-Cr合金を得る方法も行われている。
Furthermore, a method of obtaining a Cu-Cr alloy by mixing Cu and Cr, which are the final target values from the beginning, and by solid-phase sintering the molded body obtained from this at the melting point of Cu or below .

一方、Ag-Cr合金も上記Cu-Cr合金とほぼ同様の方法で
作られる。すなわち、Crスケルトンと溶浸材としてのAg
とを密着させながら加熱することによって、前記スケル
トン中の空隙にAgを満たす方法がこれである。
On the other hand, the Ag-Cr alloy is also produced by a method similar to that of the Cu-Cr alloy. That is, Cr skeleton and Ag as infiltrant
This is a method in which the voids in the skeleton are filled with Ag by heating while closely contacting and.

(発明が解決しようとする問題点) しかしながら、上記した特にAg-Cr合金に於ては、一
般に粉末冶金方法によって製造され、再点弧発生に関与
するその原料粉末管理、焼結技術、及び溶浸技術が十分
に確立されていないために、再点弧発生頻度の点で未だ
充分満足のいくものではないという問題がある。
(Problems to be solved by the invention) However, in the above-mentioned Ag-Cr alloy in particular, it is generally manufactured by the powder metallurgy method, and its raw material powder management, sintering technology, and melting that are involved in re-ignition generation are involved. There is a problem that the frequency of re-ignition is not yet satisfactory because the immersion technology is not well established.

すなわち、Ag-Cr合金の素材中には、好ましくないポ
アの残存及びこれに基づく多量のガスの残存が不可避的
に見られ、その結果上記した再点弧の発生及びさい断特
性のバラツキが認められるのである。
That is, in the material of the Ag-Cr alloy, undesired residual pores and a large amount of residual gas due to this are unavoidably observed, and as a result, the above-mentioned re-ignition occurs and variations in the cutting characteristics are recognized. Be done.

本発明は、上記従来技術に伴う問題点に鑑みてなされ
たものであり、再点弧の発生頻度の著しい低減化及びさ
い断特性の改良が図られた真空バルブ用接点合金の製造
方法を提供することを目的とする。
The present invention has been made in view of the problems associated with the above-mentioned prior art, and provides a method for producing a contact alloy for a vacuum valve in which re-ignition occurrence frequency is significantly reduced and cutting characteristics are improved. The purpose is to do.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段および作用) 本発明者らは、真空バルブ用接点合金の再点弧発生頻
度の軽減化、及びさい断特性の安定化のために、スケル
トン材料ならびに溶浸材として使用する高導電性材料を
検討し更に焼結条件及び溶浸条件等を検討した結果、耐
アーク材料成分からなるスケルトンに予め共晶比率を有
するAg-Cu系材料を配合しておくことによって、溶浸工
程における、スケルトンへの導電性材料成分の濡れ性が
著しく改善されることを見出した。本発明は上記知見に
基づいてなされたものである。
(Means and Actions for Solving Problems) The inventors of the present invention have made a skeleton material and an infiltrant material in order to reduce the frequency of re-ignition of contact alloys for vacuum valves and to stabilize the cutting characteristics. As a result of examining the highly conductive material to be used as the material and further examining the sintering conditions and the infiltration conditions, it was confirmed that the skeleton composed of the arc-resistant material was previously mixed with the Ag-Cu-based material having the eutectic ratio. It was found that the wettability of the conductive material component to the skeleton in the infiltration step is significantly improved. The present invention has been made based on the above findings.

すなわち、本発明に係る真空バルブ用接点合金の製造
方法は、CuおよびAgからなる導電性材料成分25〜75重量
%、Crおよび(または)Tiからなる耐アーク材料成分75
〜25重量%とからなり、かつ、前記導電性材料成分のCu
とAgが合金中で共晶組織を構成してなる真空バルブ用接
点合金を製造する方法であって、以下の工程(イ)〜
(ハ)を含むことを特徴としている。
That is, the method for producing a contact alloy for a vacuum valve according to the present invention comprises a conductive material component 25 to 75% by weight consisting of Cu and Ag, and an arc resistant material component 75 consisting of Cr and / or Ti.
.About.25% by weight, and Cu of the conductive material component.
A method for manufacturing a contact alloy for a vacuum valve, wherein Ag and Ag form a eutectic structure in the alloy, comprising the steps of (a) to
It is characterized by including (c).

(イ)前記耐アーク材料粉末に、共晶比率を有するAg-C
u系粉末を前記導電性材料成分と耐アーク材料成分の合
計量を基準として2〜30の重量%の量だけ予め混合して
得られる混合粉末を成形する工程、 (ロ)得られた成形体を焼結してスケルトンを得る工
程、 (ハ)得られたスケルトン中の空隙に、導電性材料成分
を溶浸する工程。
(B) Ag-C having a eutectic ratio in the arc-resistant material powder
a step of forming a mixed powder obtained by previously mixing u-based powder in an amount of 2 to 30% by weight based on the total amount of the conductive material component and the arc-resistant material component, (b) the obtained formed body A step of sintering to obtain a skeleton, and (c) a step of infiltrating a conductive material component into the voids in the obtained skeleton.

本発明の方法によれば、Ag-Cr(および/またはTi)
系合金の製造において、Cr(および/またはTi)スケル
トン中に予備配合材として純Agを用いるのではなく共晶
成分であるAg-Cuを配合しているので、Crに対する濡れ
性がAgのみの時より改善され、これによってポアが少な
くガスの少ないAg-Cr系接点合金を製造することができ
る。
According to the method of the present invention, Ag-Cr (and / or Ti)
In the production of alloys based on Cr (and / or Ti), since Ag-Cu, which is a eutectic component, is added to the skeleton of Cr instead of pure Ag as a pre-mixing material, the wettability to Cr is only Ag. It is possible to produce Ag-Cr based contact alloys with less pores and less gas, which is improved over time.

現在、高耐圧かつ大電流しゃ断用接点材料として使用
されているCu-50wt%Cr合金は、再点弧発生頻度が少な
いもののさい断電流値が高く、そのバラツキ幅が大きい
という欠点がある。
The Cu-50wt% Cr alloy currently used as a contact material for high withstand voltage and large current interruption has a drawback that the breaking current value is high and its variation range is large although the frequency of re-ignition is low.

これに対してAg-Cu合金は、Cuと比較してAgが有して
る約2桁高い蒸気圧差の寄与によって、前記Cu-Cr合金
よりも優れたさい断特性を示す。
On the other hand, the Ag-Cu alloy exhibits better breaking properties than the Cu-Cr alloy due to the contribution of about two orders of magnitude higher vapor pressure difference that Ag has compared with Cu.

しかし、このAg-Cr合金は、純Crスケルトン中にAgを
溶浸する方法では、工業的規模での製造が困難である。
However, it is difficult to manufacture this Ag-Cr alloy on an industrial scale by the method of infiltrating Ag into a pure Cr skeleton.

また、この問題を改善するために、あらかじめAgを予
備配合したCrスケルトン中にAgを溶浸する方法が考えら
れるが、この方法によっも、上記と同様、Ag-Cr合金の
製造は工業的に困難な傾向にある。
Further, in order to improve this problem, a method of infiltrating Ag into a Cr skeleton in which Ag is pre-blended in advance is conceivable, but by this method as well, similar to the above, the production of Ag-Cr alloy is industrially performed. Tend to be difficult.

このように前記Cu-Cr合金よりさい断特性で優れてい
るAg-Cr合金は、Crスケルトン中へのAgの溶浸が困難な
ことから工業的な製造において問題がある。
Thus, the Ag-Cr alloy, which is superior to the Cu-Cr alloy in cutting properties, has a problem in industrial production because it is difficult to infiltrate Ag into the Cr skeleton.

これは発明者らの知見によれば、加熱時にAgから放出
されるガスによってCr表面が汚染され、CrとAgとの濡れ
が阻害されることに起因することを見出した。
According to the findings of the inventors, it has been found that the Cr surface is contaminated by gas released from Ag at the time of heating, and that wetting of Cr and Ag is inhibited.

更に本発明者らは、接点材料を加熱する過程で放出さ
れるガスの総量ならびに放出の形態について詳細な観察
を行ったところ、これら要因と再点弧現象の発生には重
要な相関があり、特に接点材料を構成する原材料の個々
について、これらガスの放出、なかでも融点近傍で突発
的に発生するガスの放出を制御することにより、再点弧
現象を効果的に抑制できることを見出した。
Furthermore, the present inventors have made a detailed observation on the total amount of gas released in the process of heating the contact material and the morphology of the release, and there is an important correlation between these factors and the occurrence of the re-ignition phenomenon, In particular, it has been found that the reignition phenomenon can be effectively suppressed by controlling the release of these gases, particularly the release of gas that is suddenly generated near the melting point, for each of the raw materials that make up the contact material.

すなわち、接点材料を加熱していくと、吸着ガスのほ
とんどは溶融点以下で脱ガスされ、溶融点近傍で固溶し
たガスが放出されるが、さらに溶融点以上で加熱放置す
ると、極めて短時間(例えば数ミリ秒程度)ではあるが
パルス的な突発性ガスの放出(数回ないし数百回突発す
る)が観察される。
That is, when the contact material is heated, most of the adsorbed gas is degassed below the melting point and the solid solution gas is released near the melting point. Although it is (for example, about several milliseconds), a pulse-like burst gas release (several to hundreds of bursts) is observed.

これら突発性ガスにはC2H2、CH4等が若干含まれる
が、主体はCO、CO2、O2等の酸素系であることから、こ
れら突発性ガスは接点材料に含まれる酸化物の分解によ
り放出されるものと考えられる。
These burst gases contain a small amount of C 2 H 2 , CH 4, etc., but since these are mainly oxygen systems such as CO, CO 2 , O 2 etc., these burst gases are oxides contained in the contact material. It is considered to be released by decomposition of.

本発明者らの研究によれば、再点弧現象の多く発生す
る接点材料には、突発性ガスの放出も多い。
According to the research conducted by the present inventors, the contact material that frequently causes the re-ignition phenomenon also releases a large amount of sudden gas.

従って上述の知見よりすれば、接点材料をその融点以
上の温度で保持して、この突発性ガスを予め放出させて
おくことにより、再点弧現象の発生を軽減することが考
えられる。
Therefore, based on the above knowledge, it is possible to reduce the occurrence of the re-ignition phenomenon by holding the contact material at a temperature equal to or higher than its melting point and releasing this sudden gas in advance.

ところで、このような観察をCu及びAgについて行った
ところ、興味深いことには、両者のガス放出挙動には相
違が見られた。すなわち、Cuは溶融点近傍でCuの含有し
てる大部分のガス放出が認められるが、Agは溶融点以上
でもガスの放出が持続する等、CuとAgのガス放出の挙動
は異なるのである。
By the way, when such observations were made on Cu and Ag, it was interesting that a difference was observed in the gas release behavior between the two. That is, most of the gas contained in Cu is recognized near the melting point of Cu, but the behavior of gas discharge of Cu and Ag is different such that the gas continues to be released even above the melting point of Ag.

上記したこれらの知見を基に、AgとCrとの濡れの改善
に対しては、本発明者らは予備配合材及び溶浸材である
Agの一部をCuと置換することにより、CuがCrへ濡れる効
果で改良できることを見出した。
Based on these findings described above, the inventors of the present invention are a pre-blending material and an infiltrant for improving the wetting between Ag and Cr.
It was found that by substituting a part of Ag for Cu, Cu can be improved by the effect of wetting Cr.

更にAgとCuの比率を共晶にすることで、濡れ性の改善
及び流れ性についても良好となり、健全な合金が製造可
能になると共にさい断特性においても改善が得られた。
また、上記のような改善は、耐アーク材料成分をTiで構
成する場合においても同様に見られた。
Furthermore, by making the ratio of Ag and Cu eutectic, the wettability was improved and the flowability was also improved, making it possible to manufacture a sound alloy and improving the breaking characteristics.
Further, the above-mentioned improvements were similarly observed when the arc-resistant material component was composed of Ti.

本発明における耐アーク材料成分は、Crからなるが必
要に応じてその一部もしくは全部をTiに置換し得る。
The arc-resistant material component in the present invention is made of Cr, but if necessary, a part or all of it can be replaced with Ti.

本発明の方法によって得られる接点合金は、Cuおよび
Agからなる導電性材料成分25〜75重量%、Crおよび(ま
たは)Tiからなる耐アーク材料成分75〜25重量%とから
なり、かつ、前記導電性材料成分のCuとAgが合金中で共
晶組織を構成してなる。
The contact alloys obtained by the method of the invention are Cu and
25 to 75% by weight of a conductive material component made of Ag and 75 to 25% by weight of an arc resistant material component made of Cr and / or Ti, and Cu and Ag of the conductive material components are contained in the alloy. It is composed of crystal structure.

以下、本発明の方法を工程に即して説明する。 Hereinafter, the method of the present invention will be described according to steps.

まず、耐アーク材料粉末に、予め、共晶比率を有する
Ag-Cu系粉末を配合して混合粉末を得る。この場合のAg-
Cu系粉末は、Ag粉末とCu粉末との混合粉末でもAg-Cu合
金の粉末であってもよい。また、Ag-Cu系粉末の混合比
は、接点合金材料の全体量すなわち導電性材料成分と耐
アーク材料成分の合計全量に対し2〜30重量%であるこ
とが必要である。2%未満では、混合技術上耐アーク材
料との充分均一な混合状態が得られず、更にCrに対する
期待する漏れ性改善効果が少ない。一方、30%以上で
は、溶浸後の素材中に偏折が生じるので好ましくない。
First, the arc-resistant material powder has a eutectic ratio in advance.
Ag-Cu powder is blended to obtain a mixed powder. Ag- in this case
The Cu-based powder may be a mixed powder of Ag powder and Cu powder or a powder of Ag-Cu alloy. Further, the mixing ratio of the Ag-Cu-based powder needs to be 2 to 30% by weight with respect to the total amount of the contact alloy material, that is, the total total amount of the conductive material component and the arc resistant material component. If it is less than 2%, a sufficiently uniform mixed state with the arc resistant material cannot be obtained due to the mixing technique, and the expected effect of improving the leak resistance to Cr is small. On the other hand, when it is 30% or more, unevenness occurs in the material after infiltration, which is not preferable.

用意された上記金属粉末を常法にしたがって、たとえ
ば8トン/cm2以下の外部圧力もしくは該金属粉末の自重
の圧力で成形体を形成することが好ましい。
It is preferable to form a molded body from the prepared metal powder according to a conventional method under an external pressure of, for example, 8 ton / cm 2 or less or the pressure of the weight of the metal powder.

このようにして得られた成形体を、焼結用容器と共に
加熱炉内に設置して焼結する。焼結雰囲気は、非酸化性
雰囲気であることが必要で、例えば、真空または水素中
である。これらの雰囲気のうち、充填した金属粉末、プ
レスした成形体や容器などに吸蔵されている酸素、窒素
を除去するという点では、真空(1×10-5Torr以上)雰
囲気が好適である。
The molded body thus obtained is placed in a heating furnace together with a sintering container and sintered. The sintering atmosphere needs to be a non-oxidizing atmosphere, such as vacuum or hydrogen. Among these atmospheres, a vacuum (1 × 10 −5 Torr or more) atmosphere is preferable in terms of removing filled metal powder, oxygen and nitrogen stored in a pressed compact or container.

焼結は、600〜1000℃の温度範囲で行なうことが好ま
しい。次いで、得られたスケルトン中の空隙に、導電性
材料成分を溶浸する。すなわち、スケルトンの上面又は
/及び下面に、溶浸材であるCuおよびAgを載置し、全体
を例えば真空中(1×10-4〜1×10-6TOrr)で加熱して
CuおよびAgをスケルトンの空隙中に溶浸させる。
Sintering is preferably performed in the temperature range of 600 to 1000 ° C. Next, the conductive material component is infiltrated into the voids in the obtained skeleton. That is, Cu and Ag, which are infiltration materials, are placed on the upper surface and / or the lower surface of the skeleton, and the whole is heated, for example, in a vacuum (1 × 10 −4 to 1 × 10 −6 TOrr).
Infiltrate Cu and Ag into the skeleton voids.

溶浸時の温度は、CuおよびAgの溶融点以上の温度であ
る。また、溶浸時間は、スケルトン中の空隙に、これら
融液が完全に含浸されるに充分な時間を設定する。
The temperature at the time of infiltration is a temperature above the melting points of Cu and Ag. Further, the infiltration time is set to a time sufficient for completely impregnating the voids in the skeleton with these melts.

本発明の場合、溶浸は900〜1200℃の温度範囲で行う
ことが好ましい。また、溶浸工程は非酸化性雰囲気中で
行うことが好ましい。
In the case of the present invention, infiltration is preferably carried out in the temperature range of 900 to 1200 ° C. The infiltration step is preferably performed in a non-oxidizing atmosphere.

上記溶浸後、冷却して更に常法に従って所定形状に加
工して接点片とする。
After the above infiltration, the contact piece is cooled and further processed into a predetermined shape according to a conventional method.

(実施例) 以下、本発明を実施例に基づいて説明するが、はじめ
に本発明の方法による接点材料が適用される真空バルブ
の構成について第1図および第2図を参照して説明す
る。
(Examples) Hereinafter, the present invention will be described based on Examples. First, the structure of a vacuum valve to which a contact material according to the method of the present invention is applied will be described with reference to FIGS. 1 and 2.

第1図は、本発明に係る接点材料を適用する真空しゃ
断器の構成例を示すもので、同図に於いて、1はしゃ断
室を示し、このしゃ断室1は絶縁材料によりほぼ円筒状
に形成された絶縁容器2と、この両端に封止金具3a,3b
を介して設けた金属性の蓋体4a,4bとで真空気密に構成
されている。しかして前記しゃ断室1内には、導電棒5,
6の対向する端部に取付けられた1対の電極7,8が配設さ
れ、上部の電極7を固定電極、下部の電極8を可動電極
としている。またこの可動電極8の電極棒6には、ベロ
ーズ9が取付けられしゃ断室1内を真空気密に保持しな
がら電極8の軸方向の移動を可能にしている。またこの
ベローズ9上部には金属性のアークシールド10が設けら
れ、ベローズ9がアーク蒸気で覆われることを防止して
いる。また、11は、前記電極7,8を覆うようにしてしゃ
断室1内に設けられた金属性のアークシールドで絶縁容
器2がアーク蒸気で覆われることを防止している。さら
に電極8は、第2図に拡大して示す如く、導電棒6にろ
う付部12によって固定されるか、または、かしめによっ
て圧着接続されている。接点13aは、電極8にろう付け1
4で固着されている。なお、第1図における13bは固定側
接点である。
FIG. 1 shows an example of the structure of a vacuum breaker to which the contact material according to the present invention is applied. In FIG. 1, reference numeral 1 denotes a breaking chamber, and this breaking chamber 1 is made of an insulating material to have a substantially cylindrical shape. Formed insulating container 2 and sealing metal fittings 3a, 3b on both ends
It is configured to be vacuum-tight with the metallic lids 4a and 4b provided via. In the shut-off chamber 1, the conductive rod 5,
A pair of electrodes 7 and 8 attached to opposite ends of 6 are arranged, with the upper electrode 7 being a fixed electrode and the lower electrode 8 being a movable electrode. A bellows 9 is attached to the electrode rod 6 of the movable electrode 8 to enable the electrode 8 to move in the axial direction while keeping the inside of the cut-off chamber 1 vacuum-tight. Further, a metallic arc shield 10 is provided above the bellows 9 to prevent the bellows 9 from being covered with arc vapor. Reference numeral 11 denotes a metallic arc shield provided in the shut-off chamber 1 so as to cover the electrodes 7 and 8 to prevent the insulating container 2 from being covered with arc vapor. Further, as shown in an enlarged manner in FIG. 2, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12 or is crimp-connected by caulking. The contact 13a is brazed to the electrode 8 1
It is fixed at 4. In FIG. 1, reference numeral 13b denotes a fixed contact.

本発明の接点材料は、上記したような接点13a,13bの
双方またはいずれか一方を構成するのに適したものであ
る。
The contact material of the present invention is suitable for forming both or either of the contacts 13a and 13b as described above.

比較例−1 平均粒径125μmのCrを2ton/cm2の圧力で成形して、
得られた成形体をカーボン容器に収納し、真空中におい
て850℃1時間保持で仮焼結を行う。
Comparative Example-1 Cr with an average particle size of 125 μm was molded at a pressure of 2 ton / cm 2 ,
The obtained molded body is housed in a carbon container, and is temporarily sintered in vacuum at 850 ° C. for 1 hour.

この仮焼結体の上側に共晶成分であるAg-Cuからなる
溶浸材を配置し、この後真空中において1100℃1時間保
持で行う溶浸工程に移し、合金を得た。
An infiltrant made of Ag-Cu, which is a eutectic component, was placed on the upper side of the pre-sintered body, and then the alloy was obtained by moving to an infiltration step of holding it at 1100 ° C for 1 hour in vacuum.

この比較例−1の合金は、結果を第1表に示すよう
に、溶浸が困難であり電気的な評価は行えなかった。
As shown in Table 1, the alloy of Comparative Example-1 was difficult to infiltrate and could not be electrically evaluated.

比較例−2〜3,実施例−1〜3 比較例−1と同様平均粒径125μmのCr粉を用意す
る。これに同程度の粒径を持つ共晶Ag-Cu合金粉を加
え、ボールミルにて混合後、プレスにより成形圧を加え
得られた成形体をカーボン容器に収納し、真空中におい
て850℃1時間保持で仮焼結を行う。この仮焼結体の上
側に共晶成分であるAg-Cuからなる溶浸材を配置、この
後真空中において1100℃1時間保持で行う溶浸工程に移
し、(Ag-Cu)‐50Cr合金を得た。
Comparative Examples-2 to 3 and Examples-1 to 3 As in Comparative Example-1, Cr powder having an average particle diameter of 125 μm is prepared. Eutectic Ag-Cu alloy powder with a similar particle size was added to this, mixed with a ball mill, and the molding pressure was applied by pressing, and the resulting compact was stored in a carbon container and kept in vacuum at 850 ° C for 1 hour. Temporary sintering is performed by holding. An infiltrant consisting of Ag-Cu, which is a eutectic component, is placed on the upper side of this pre-sintered body, and then moved to the infiltration step, which is held at 1100 ° C for 1 hour in vacuum, and the Got

比較例−4 上記同様平均粒径125μmのCr粉を用意する。これにC
uを加えボールミルにて混合後、プレスによって成形圧
を加え得られた成形体をカーボン容器に収納し、真空中
において1000℃1時間保持で仮焼結を行う。この仮焼結
体の上側にCuである溶浸材を配置し、この後真空中にお
いて1100℃1時間保持で行う溶浸工程に移し、Cu-50Cr
合金を得た。
Comparative Example-4 Cr powder having an average particle size of 125 μm is prepared in the same manner as above. C to this
After u is added and mixed in a ball mill, a molding pressure is applied by a press, the obtained molded body is housed in a carbon container, and temporary sintering is performed by holding at 1000 ° C. for 1 hour in a vacuum. A Cu infiltration material is placed on the upper side of this pre-sintered body, and then the infiltration process is performed by holding it at 1100 ° C. for 1 hour in vacuum.
An alloy was obtained.

比較例−2〜4、実施例−1〜3で作製した合金から
所定の接点形状に加工し、これを着脱式試験装置に取り
付け、さい断電流特性、再点弧特性を評価した。
The alloys produced in Comparative Examples-2 to 4 and Examples-1 to 3 were processed into a predetermined contact shape, which was attached to a detachable test device, and the breaking current characteristic and the re-ignition characteristic were evaluated.

この結果を第1表に示す。 The results are shown in Table 1.

Ag-50wt%Cr合金の製造において、耐アーク材料中に
予備配合する高導電材料の割合が、2wt%未満(比較例
−1,2)の場合、さい断電流値及び再点弧発生頻度の値
が大きく又、バラツキ幅が大きい結果となった。特に耐
アーク材料中に予備配合する高導電材料の割合を0wt%
(比較例−1)とした場合、Crスケルトン中へのAg-Cu
の溶浸が困難であり、合金製造ができない。
In the production of Ag-50wt% Cr alloy, when the proportion of highly conductive material pre-blended in the arc resistant material is less than 2wt% (Comparative Examples-1 and 2), the breaking current value and re-ignition frequency The value was large and the variation range was large. Especially, the proportion of highly conductive material pre-blended in arc resistant material is 0 wt%
In the case of (Comparative Example-1), Ag-Cu in the Cr skeleton
Is difficult to infiltrate, and alloy production is not possible.

これに対して、耐アーク材料中に予備配合する高導電
材料の割合を2〜30wt%(実施例−1〜3)とした場
合、さい断電流値はCu-50wt%Cr(比較例−4)よりも
小さく、バラツキ幅も小さく好ましい傾向にある。再点
弧発生頻度は、Cu-50wt%Crほどの小さい値ではない
が、好ましい傾向にある。
On the other hand, when the proportion of the highly conductive material pre-blended in the arc resistant material is 2 to 30 wt% (Examples 1-3), the breaking current value is Cu-50wt% Cr (Comparative Example-4). ) And the width of variation is small, which is preferable. The frequency of restriking is not as small as that of Cu-50wt% Cr, but tends to be favorable.

一方、耐アーク材料中に予備配合する高導電材料の割
合を30wt%以上(比較例−3)とした場合、さい断電流
値の値が大きく、バラツキ幅が大きくなる傾向になる。
On the other hand, when the ratio of the highly conductive material to be pre-blended in the arc resistant material is 30 wt% or more (Comparative Example-3), the value of the breaking current value tends to be large and the variation width tends to be large.

これらのことから、耐アーク材料中に予備配合する高
導電材料の割合は、2〜30wt%が最適である。
From these facts, the optimum proportion of the highly conductive material to be pre-blended in the arc resistant material is 2 to 30 wt%.

比較例−5〜8,実施例−4〜5 第2表に示した接点合金は、実施例−4〜5と同様に
製造しており、予備配合する高導電材料中のAg粉とCu粉
の比率を各々変え製造した。評価した結果を同第2表に
示す。
Comparative Examples-5 to 8 and Examples-4 to 5 The contact alloys shown in Table 2 were manufactured in the same manner as Examples-4 to 5, and Ag powder and Cu powder in the pre-compounded highly conductive material were prepared. Were manufactured by changing the respective ratios. The evaluation results are shown in Table 2 of the same.

Ag-50wt%Cr合金の製造において、予備配合する高導
電材料中のAgの比率が9:1、10:1の場合(比較例5,6)に
は、さい断電流値の値はいくぶん大きい傾向にあり、バ
ラツキ幅も大きい。又再点弧発生頻度は、材料内にポア
の発生が多いことによる内蔵ガスの影響を受け大きい値
を示し、バラツキ幅も大きい。
In the production of Ag-50wt% Cr alloy, when the ratio of Ag in the high-conductivity material to be pre-blended is 9: 1 and 10: 1 (Comparative Examples 5 and 6), the value of the breaking current is somewhat large. There is a tendency, and the range of variation is large. Further, the re-ignition frequency shows a large value due to the influence of the built-in gas due to the large number of pores generated in the material, and the variation range is large.

これに対して、予備配合する高導電材中のAgの比率を
8〜6(実施例−2,4,5)の場合、さい断電流の値はCu-
50wt%Cr(比較例−4)よりも小さく、バラツキ幅も小
さく、好ましい傾向にある。又再点弧発生頻度について
も低い値を示し、バラツキ幅も小さく、好ましい傾向で
ある。
On the other hand, when the ratio of Ag in the highly conductive material to be pre-blended is 8 to 6 (Example-2, 4, 5), the value of the breaking current is Cu-.
It is smaller than 50 wt% Cr (Comparative Example-4) and has a small variation width, which is preferable. The frequency of re-ignition is also low, and the variation width is small, which is a preferable tendency.

一方予備配合する高導電材料中のAgの比率が上記より
多い(比較例−7,8)の場合、さい断電流値、再点弧発
生頻度の値が大きく、バラツキ幅も大きくなる傾向にあ
る。
On the other hand, when the ratio of Ag in the high-conductivity material to be pre-blended is higher than the above (Comparative Examples-7 and 8), the breaking current value and the re-ignition frequency are large, and the fluctuation range tends to be large. .

これらのことから、予備配合する高導電材料中のAgと
Cuの比率は、8:2〜6:4が最適である。
From these, Ag in the high conductivity material to be pre-blended and
The optimum Cu ratio is 8: 2 to 6: 4.

比較例−9〜10,実施例−6〜7 前記実施例−1〜5、比較例−1〜3、比較例−5〜
8については、接点材料として(Ag-Cu)‐50wt%Cr合
金を製造した例につき述べたが、本発明方法の技術はこ
の比率に関係なく、25wt%Cr(実施例−6)及び75wt%
Cr(実施例−7)合金の製造に対しても、有効であるこ
とが分かった。
Comparative Examples-9-10, Examples-6-7 The Examples-1-5, Comparative Examples 1-3, Comparative Examples-5-5
Regarding No. 8, an example in which an (Ag-Cu) -50 wt% Cr alloy was manufactured as a contact material was described, but the technique of the method of the present invention, regardless of this ratio, is 25 wt% Cr (Example-6) and 75 wt% Cr.
It was also found to be effective for the production of Cr (Example-7) alloy.

すなわち、第3表に示した条件で25wt%Cr(実施例−
6)、75wt%Cr(実施例−7)合金を製造して、さい断
特性及び再点弧特性を評価したが何れも近く安定した結
果が得られた。
That is, under the conditions shown in Table 3, 25 wt% Cr (Example-
6), a 75 wt% Cr (Example-7) alloy was manufactured, and the cutting characteristics and restriking characteristics were evaluated, but stable results were obtained in both cases.

これに対して、前記接点材料中のCrが15wt%(比較例
−9)合金では、さい断特性及び再点弧特性にバラツキ
幅が見られる。
On the other hand, in the alloy containing 15 wt% of Cr in the contact material (Comparative Example-9), there are variations in the breaking and re-ignition characteristics.

一方、90wt%Cr(比較例−10)合金では、さい断特性
は優れているものの再点弧発生頻度が高いのみならず、
材料の製造が工業的に難しく、又接点の接触抵抗が高く
なり易いことから通電障害が起ることが認められる。
On the other hand, in the 90 wt% Cr (Comparative Example-10) alloy, not only is the frequency of re-ignition high, although the breaking characteristics are excellent,
It is recognized that the production of the material is industrially difficult, and the contact resistance of the contact is likely to be high, so that the current flow failure occurs.

これらのことから、(Ag-Cu)‐Cr合金においては、C
r量が25〜75wt%の範囲の合金に本発明方法技術を適用
すると有効である。
Therefore, in the (Ag-Cu) -Cr alloy, C
It is effective to apply the method of the present invention to an alloy having an r amount in the range of 25 to 75 wt%.

比較例−11〜15,実施例−8〜11 前記実施例−1〜7、比較例−1〜3、比較例−5〜
10については、接点の合金を製造に際して焼結温度を85
0℃、溶浸温度を1100℃で各々行い製造した例につき述
べるが、本発明方法の技術はこの温度に関係なく、焼結
温度が600℃(実施例−8)、1000℃(実施例−9)に
よる合金の製造に対しても有効であることが分かった。
Comparative Examples-11 to 15, Examples-8 to 11 The Examples-1 to 7, Comparative Examples-1 to 3, and Comparative Examples-5 to 5
For No. 10, the sintering temperature was 85 when manufacturing the contact alloy.
An example in which the manufacturing is carried out at 0 ° C. and an infiltration temperature of 1100 ° C. will be described. The technique of the method of the present invention has sintering temperatures of 600 ° C. (Example-8) and 1000 ° C. (Example- It has also been found to be effective for the production of alloys according to 9).

又、溶浸温度が900℃(実施例−10)、1200℃(実施
例−11)にる合金の製造に対しても上記同様有効である
ことが分かった。
Further, it was found that the same effect was obtained for producing alloys having infiltration temperatures of 900 ° C (Example-10) and 1200 ° C (Example-11).

すなわち、第4表に示した、焼結温度600℃(実施例
−8)、1000℃(実施例−9)、溶浸温度を1100℃とし
た場合。又、焼結温度を850℃で行い、溶浸温度を900℃
(実施例−10)、1200℃(実施例−11)で各々(Ag-C
u)‐50wt%Cr合金を製造して、さい断特性及び再点弧
特性を評価したが何れも低く安定した結果が得られた。
That is, when the sintering temperature is 600 ° C (Example-8), 1000 ° C (Example-9), and the infiltration temperature is 1100 ° C shown in Table 4. Also, the sintering temperature is 850 ℃, and the infiltration temperature is 900 ℃.
(Example-10) and 1200 ° C (Example-11) respectively (Ag-C
u) -50wt% Cr alloy was manufactured and the breaking and re-ignition characteristics were evaluated, but low and stable results were obtained.

これに対して、焼結温度を500℃(比較例−11)で製
造した合金は、スケルトンの状態が悪く、材料中のポア
が多い。このため再点弧発生頻度が多く、バラツキ幅も
大きい。
On the other hand, the alloy produced at a sintering temperature of 500 ° C. (Comparative Example-11) has a poor skeleton state and has many pores in the material. Therefore, the frequency of re-ignition is high and the variation range is large.

一方、焼結温度を1200℃(比較例−12)で製造した合
金は、スケルトンに予備配合した高導電材料の蒸発損失
が多いことからスケルトンの状態が良好でなく、材料内
のポアの発生が多い。このため比較例−11ほどではない
が、再点弧発生頻度が大きく、バラツキ幅も大きい。
又、さい断電流値も高い傾向にある。
On the other hand, the alloy produced at a sintering temperature of 1200 ° C (Comparative Example-12) had a poor skeleton state because of the large evaporation loss of the highly conductive material premixed in the skeleton, and the generation of pores in the material Many. For this reason, although not as high as in Comparative Example-11, the frequency of re-ignition is high and the variation range is large.
Also, the breaking current value tends to be high.

続いて溶浸温度を700℃(比較例−13)、800℃(比較
例−14)で製造した材料は、溶浸材料がスケルトンへの
溶浸が不良で再点弧発生頻度が大きい結果となった。
Subsequently, the materials produced at the infiltration temperatures of 700 ° C (Comparative Example-13) and 800 ° C (Comparative Example-14) showed that the infiltration material was poorly infiltrated into the skeleton and the re-ignition frequency was high. became.

これに対して溶浸温度を1300℃(比較例−15)で製造
した材料は、溶浸時に溶浸材の蒸発損失が多いことか
ら、さい断電流値が大きく、バラツキ幅も大きい傾向と
なる。
On the other hand, the material manufactured at the infiltration temperature of 1300 ° C (Comparative Example-15) tends to have a large breaking current value and a large variation range because the evaporation loss of the infiltration material during infiltration is large. .

これらのことから、(Ag-Cu)‐Cr合金の製造におい
ては焼結温度が600〜1000℃、溶浸温度が900〜1200℃の
温度範囲で製造する本発明方法技術を適用すると有効で
ある。
From these facts, it is effective to apply the method method of the present invention in which the sintering temperature is 600 to 1000 ° C and the infiltration temperature is 900 to 1200 ° C in the production of the (Ag-Cu) -Cr alloy. .

実施例−12〜14 前記実施例−1〜11、比較例−1〜3、比較例−5〜
15については、接点合金を(Ag-Cu)‐Cr合金の製造方
法について述べたが、本発明方法の技術は、このCrを50
wt%Ti(実施例−12)、同様に25wt%Ti(実施例−13)
に置換えた場合。又、25wt%Cr-25wt%Ti(実施例−1
4)に置換えた合金の製造に対しても有効であることが
分かった。
Examples-12 to 14 The above Examples-1 to 11, Comparative Examples-1 to 3, and Comparative Examples-5 to 5.
With regard to No. 15, the contact alloy was described as a method for producing an (Ag-Cu) -Cr alloy.
wt% Ti (Example-12), similarly 25 wt% Ti (Example-13)
When replaced with. In addition, 25 wt% Cr-25 wt% Ti (Example-1
It was also found to be effective for the production of alloys substituted for 4).

すなわち、第5表に示したCrを50wt%Ti(実施例−1
2)、25wt%Ti(実施例−13)、及び25wt%Ti-25wt%Cr
(実施例−14)に各々置換して合金を製造して、さい断
特性及び再点弧特性を評価したが何れも低く安定した結
果が得られた。
That is, 50 wt% Ti shown in Table 5 (Example-1
2), 25 wt% Ti (Example-13), and 25 wt% Ti-25 wt% Cr
Alloys were manufactured by substituting each of them with (Example-14), and the breaking characteristics and the re-ignition characteristics were evaluated, but low and stable results were obtained.

このように、(Ag-Cu)‐50wt%Ti合金、(Ag-Cr)‐
25wt%Ti合金、(Ag-Cu)‐25wt%Ti-25wt%Cr合金の製
造についても本発明方法、技術を適用すると有効であ
る。
Thus, (Ag-Cu) -50wt% Ti alloy, (Ag-Cr)-
It is also effective to apply the method and technique of the present invention to the production of 25 wt% Ti alloy and (Ag-Cu) -25 wt% Ti-25 wt% Cr alloy.

評価方法・条件 以下に本発明方法によって製造した接点材料を評価し
た時の条件を示す。
Evaluation Method / Conditions The conditions for evaluating the contact material produced by the method of the present invention are shown below.

(1)さい断電流特性 直径10mm、厚さ4mmで一方は平面、他方は200mmRの球
面を有する一対の供試接点に400℃のベーキング、放電
エージングを行った後、これらに直列に挿入した同軸形
シャントの電圧降下をシンクロスコープで観測した。接
点には、L,C,回路を経て交流を与え、接触圧力10kgでの
300回の開閉におけるさい断電流値のばらつき範囲を表
に示す。
(1) Breaking current characteristics A pair of test contacts having a diameter of 10 mm and a thickness of 4 mm, one of which is a flat surface and the other of which has a spherical surface of 200 mmR, are baked at 400 ° C and are subjected to discharge aging, and then inserted coaxially in series. The voltage drop of the shunt was observed with a synchroscope. AC is applied to the contact through L, C, and circuit, and contact pressure is 10kg.
The table below shows the variation range of the breaking current value for 300 switching operations.

このさい断電流値は、低サージ性の程度を判断する1
つの重要な尺度で、その値が小さくかつばらつき範囲の
小さい程、優れた低サージ性を具備する。
This breaking current value determines the degree of low surge 1
On one of the important scales, the smaller the value and the smaller the variation range, the better the low surge property.

(2)再点弧特性 径30mm、厚さ5mmの円板状接点片を、ディマウンタブ
ル形真空バルブに装着し、6KV×500Aの回路を2000回し
ゃ断した時の再点弧発生頻度を測定し、2台のしゃ断器
(バルブとして6本)のばらつき幅(最大および最小)
で示した。接点の装着に際しては、ベーキング加熱(45
0℃、30分)のみ行い、ろう材の使用ならびにこれに伴
う加熱は行わなかった。
(2) Re-ignition characteristics A disc-shaped contact piece with a diameter of 30 mm and a thickness of 5 mm was attached to a demountable vacuum valve, and the frequency of re-ignition was measured when the circuit of 6 KV x 500 A was cut 2000 times. However, the variation width (maximum and minimum) of 2 circuit breakers (6 valves)
Indicated by. Baking heating (45
(0 ° C., 30 minutes) only, and no brazing material was used and no accompanying heating was performed.

〔発明の効果〕〔The invention's effect〕

以上詳記したように本発明によれば、電流さい断特性
及び再点弧特性の安定性にすぐれた真空バルブの接点材
料を提供することができる。
As described in detail above, according to the present invention, it is possible to provide a contact material for a vacuum valve, which is excellent in the stability of the current cutting characteristic and the restriking characteristic.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による真空バルブ用の接点材料が適用さ
れる真空バルブの断面図、第2図は第1図に示す真空バ
ルブの電極部分の拡大断面図である。 1……しゃ断室、2……絶縁容器、5,6……導電棒、13
a,13b……接点。
FIG. 1 is a sectional view of a vacuum valve to which a contact material for a vacuum valve according to the present invention is applied, and FIG. 2 is an enlarged sectional view of an electrode portion of the vacuum valve shown in FIG. 1 ... shut-off chamber, 2 ... insulating container, 5, 6 ... conductive rod, 13
a, 13b …… Contacts.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】CuおよびAgからなる導電性材料成分25〜75
重量%、Crおよび(または)Tiからなる耐アーク材料成
分75〜25重量%とからなり、かつ、前記導電性材料成分
のCuとAgが合金中で共晶組織を構成してなる真空バルブ
用接点合金を製造する方法であって、以下の工程(イ)
〜(ハ)を含むことを特徴とする、真空バルブ用接点合
金の製造方法。 (イ)前記耐アーク材料粉末に、共晶比率を有するAg-C
u系粉末を、前記導電性材料成分と耐アーク材料成分の
合計量を基準として2〜30の重量%の量だけ予め混合し
て得られる混合粉末を成形する工程、 (ロ)得られた成形体を燒結してスケルトンを得る工
程、 (ハ)得られたスケルトン中の空隙に、導電性材料成分
を溶浸する工程。
1. A conductive material component 25 to 75 composed of Cu and Ag.
For a vacuum valve, which is composed of 75% to 25% by weight of an arc resistant material component composed of Cr and / or Ti, and Cu and Ag of the conductive material components form a eutectic structure in an alloy. A method for producing a contact alloy, comprising the following steps (a)
(C) is included, The manufacturing method of the contact alloy for vacuum valves characterized by the above-mentioned. (B) Ag-C having a eutectic ratio in the arc-resistant material powder
a step of forming a mixed powder obtained by preliminarily mixing the u-based powder in an amount of 2 to 30% by weight based on the total amount of the conductive material component and the arc resistant material component, (b) Obtained forming A step of sintering the body to obtain a skeleton, and (c) a step of infiltrating a conductive material component into the voids in the obtained skeleton.
【請求項2】前記工程(ロ)において、燒結を600〜100
0℃の温度範囲で行う、特許請求の範囲第1項に記載の
方法。
2. In the step (b), the sintering is 600-100.
The method according to claim 1, which is carried out in a temperature range of 0 ° C.
【請求項3】前記工程(ハ)において、溶浸を900〜120
0℃の温度範囲で行う、特許請求の範囲第1項または第
2項に記載の方法。
3. In the step (c), the infiltration is 900-120.
The method according to claim 1 or 2, which is carried out in a temperature range of 0 ° C.
【請求項4】前記工程(ロ)における燒結ならびに工程
(ハ)における溶浸を非酸化性雰囲気中で行う、特許請
求の範囲第1項〜第3項のいずれか1項に記載の方法。
4. The method according to claim 1, wherein the sintering in the step (b) and the infiltration in the step (c) are performed in a non-oxidizing atmosphere.
JP15898487A 1987-06-26 1987-06-26 Manufacturing method of contact alloy for vacuum valve Expired - Lifetime JP2511043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15898487A JP2511043B2 (en) 1987-06-26 1987-06-26 Manufacturing method of contact alloy for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15898487A JP2511043B2 (en) 1987-06-26 1987-06-26 Manufacturing method of contact alloy for vacuum valve

Publications (2)

Publication Number Publication Date
JPS644436A JPS644436A (en) 1989-01-09
JP2511043B2 true JP2511043B2 (en) 1996-06-26

Family

ID=15683672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15898487A Expired - Lifetime JP2511043B2 (en) 1987-06-26 1987-06-26 Manufacturing method of contact alloy for vacuum valve

Country Status (1)

Country Link
JP (1) JP2511043B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1609594B1 (en) * 2004-06-23 2009-01-07 Chrysant Grossegger Multilayered panel

Also Published As

Publication number Publication date
JPS644436A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
US4032301A (en) Composite metal as a contact material for vacuum switches
US6551374B2 (en) Method of controlling the microstructures of Cu-Cr-based contact materials for vacuum interrupters and contact materials manufactured by the method
US4743718A (en) Electrical contacts for vacuum interrupter devices
US3385677A (en) Sintered composition material
US20050092714A1 (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vaccum circuit breaker
EP0155322A1 (en) Electrode of vacuum breaker
JPH0534406B2 (en)
JP2766441B2 (en) Contact material for vacuum valve
KR0170052B1 (en) Contact material for vacuum valve & method of manufacturing the same
KR0154988B1 (en) Contact material for vacuum circuit breakers and method of manufacturing the same
JP3597544B2 (en) Contact material for vacuum valve and manufacturing method thereof
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JP3441331B2 (en) Manufacturing method of contact material for vacuum valve
JP2006032036A (en) Contact material for vacuum valve
JP3251779B2 (en) Manufacturing method of contact material for vacuum valve
JP2002208335A (en) Vacuum bulb contact point and its manufacturing method
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH06103858A (en) Manufacture of contact material for vacuum valve
JP4619821B2 (en) Contact material and vacuum valve
JP3106598B2 (en) Manufacturing method of electrode material
KR0171607B1 (en) Vacuum circuit breaker and contact
US4249944A (en) Method of making electrical contact material
JPH1083745A (en) Contact material for vacuum valve and electrode material
KR910006114B1 (en) Contact material of vacuum interrupter and manufacturing process therefor
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker