JP3251779B2 - Manufacturing method of contact material for vacuum valve - Google Patents
Manufacturing method of contact material for vacuum valveInfo
- Publication number
- JP3251779B2 JP3251779B2 JP15775594A JP15775594A JP3251779B2 JP 3251779 B2 JP3251779 B2 JP 3251779B2 JP 15775594 A JP15775594 A JP 15775594A JP 15775594 A JP15775594 A JP 15775594A JP 3251779 B2 JP3251779 B2 JP 3251779B2
- Authority
- JP
- Japan
- Prior art keywords
- atmosphere
- temperature
- vacuum
- heat treatment
- contact material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/0203—Contacts characterised by the material thereof specially adapted for vacuum switches
Landscapes
- Manufacture Of Switches (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、真空バルブ用接点材料
の製造方法に関する。The present invention relates to a method for producing a contact material for a vacuum valve.
【0002】[0002]
【従来の技術】真空バルブの接点に要求される基本的な
特性は、耐溶着、耐電圧および高しゃ断性である。しか
し、これら3要件に対しては相反する物理的性質が要求
されるので理想的に両立させることは困難であり、適用
する回路の優先要件を第1にして、他の要件は若干犠牲
にして対応しているのが現状である。2. Description of the Related Art The basic characteristics required for the contacts of a vacuum valve are welding resistance, withstand voltage and high breaking performance. However, these three requirements require conflicting physical properties, making it difficult to make them ideally compatible. Therefore, the priority requirement of the circuit to be applied is first, and the other requirements are slightly sacrificed. The current situation is to deal with it.
【0003】例えば従来、高耐圧大容量真空しゃ断器に
おいては、溶着防止成分(Bi,Te,Pbなど)を5
重量%以下含有するCu合金を電極接点として具備した
ものが知られている。[0003] For example, conventionally, in a high-withstand-pressure, large-capacity vacuum circuit breaker, an anti-weld- ing component (Bi, Te, Pb, etc.) is used.
It is known that a Cu alloy containing not more than% by weight is provided as an electrode contact.
【0004】ところが、近年の高電圧化要求に対して
は、耐電圧の面で十分ではない。すなわち、真空しゃ断
器は小型軽量、メンテナンスフリー、環境調和など、他
のしゃ断器に比べ優れた特徴を有するために、年々その
適用範囲も拡大され、従来一般的に使用されていた36k
V以下の回路から更に高電圧の回路への適用が行われる
と共に、特殊回路、例えばコンデンサ回路を開閉する需
要も急増しているので、一層の耐高電圧化が必要となっ
ている。However, with respect to recent demands for higher voltage, the withstand voltage is not sufficient. In other words, the vacuum circuit breaker has features that are superior to other circuit breakers, such as small size, light weight, maintenance-free, and environmental friendliness.
Since the application to circuits having a voltage lower than V has been increased, and the demand for opening and closing special circuits, for example, capacitor circuits, has been rapidly increasing, it is necessary to further increase the withstand voltage.
【0005】その達成を阻害している重要な要因の1つ
として、再点弧現象、再発弧現象が挙げられる。再点弧
現象は、製品の信頼性向上の観点から重要視されている
にもかかわらず、未だ防止技術は勿論のこと直接的な発
生原因についても明らかになっていない。[0005] One of the important factors hindering the achievement is a restriking phenomenon and a re-arcing phenomenon. Although the restriking phenomenon is regarded as important from the viewpoint of improving the reliability of products, not only its prevention technology but also its direct cause has not yet been clarified.
【0006】上記高耐圧化に伴って、接点材料に対して
も、更に高耐圧でかつ再点弧現象の発生頻度の低い特性
を持つことが要求されている。接点材料の高耐圧化、無
再点弧化を図るには、耐圧的に欠陥となる脆弱な溶着防
止成分の量そのものを極力少なくしたり、過度に集中す
るのを避けること、ガス不純物やピンホール等を極力少
なくすること、接点合金自体の強度を大きくすること等
が望ましい。[0006] With the increase in the withstand voltage, the contact material is required to have a higher withstand voltage and a characteristic in which a re-ignition phenomenon occurs less frequently. In order to achieve high withstand voltage and no re-ignition of the contact material, minimize the amount of the fragile anti-welding component itself, which is a defect in pressure resistance, avoid excessive concentration, and avoid gas impurities and pins. It is desirable to minimize holes and the like and to increase the strength of the contact alloy itself.
【0007】これらの観点から前述のCu−Bi合金は
満足できるものではない。また、従来から使用されてい
るCu−W接点は、耐電圧的にはかなり優れているもの
の、この焼結型接点合金は、製造方法的に気泡が残存し
易く、また溶着防止材を含有するために再点弧現象が発
生し易いという欠点がある。[0007] From these viewpoints, the above-mentioned Cu-Bi alloy is not satisfactory. Further, although the conventionally used Cu-W contact is considerably excellent in the withstand voltage, this sintered contact alloy is liable to have air bubbles remaining due to the production method and contains a welding prevention material. Therefore, there is a disadvantage that the re-ignition phenomenon easily occurs.
【0008】ところで、このような再点弧現象は、溶浸
操作後、その加熱状態で保持することにより発生頻度を
ある程度減少させ得ることが知られている。しかしなが
ら、このような加熱状態で接点を保持することにより、
一般的に蒸気圧の高い溶着防止材が失われるので耐溶着
性能が低下するだけでなく、高価な溶着防止材の逸失に
伴う経済的損失も大きい。By the way, it is known that the frequency of occurrence of such a re-ignition phenomenon can be reduced to some extent by maintaining the heated state after the infiltration operation. However, by holding the contacts in such a heated state,
Generally, the loss of the welding prevention material having a high vapor pressure is lost, so that not only the welding resistance is reduced, but also the economic loss accompanying the loss of the expensive welding prevention material is large.
【0009】そこで、本発明者らは、接点材料を加熱す
る過程において、放出されるガスの総量ならびに放出の
形態について詳細な研究を行ったところ、これら要因と
再点弧現象の発生には重要な相関があり、特に接点材料
を構成する原材料の個々について、これらガスの放出、
なかでも融点近傍で突発的に発生するガスの放出を制御
することにより、再点弧現象を効果的に抑制できること
を見出した。The present inventors have conducted detailed studies on the total amount of gas released and the form of release in the process of heating the contact material. These factors and the occurrence of restriking are important. The release of these gases, especially for each of the raw materials that make up the contact material,
In particular, it has been found that the re-ignition phenomenon can be effectively suppressed by controlling the release of gas suddenly generated near the melting point.
【0010】すなわち、接点材料を加熱していくと、吸
着ガスのほとんどは溶融点以下で脱ガスされ、溶融点近
傍で固溶したガスが放出されるが、さらに溶融点以上で
加熱放置すると、極めて短時間(例えば、数ミリ秒程
度)ではあるが、パルス的な突発性ガスの放出(数回な
いし数百回突発する)が観察される。That is, as the contact material is heated, most of the adsorbed gas is degassed below the melting point and a solid-dissolved gas is released in the vicinity of the melting point. For a very short time (for example, on the order of several milliseconds), a pulsative gas release (several to hundreds of bursts) is observed.
【0011】これら突発性ガスにはC2 H2 ,CH4 等
が若干含まれるが、主体はCO,CO2 ,O2 等の酸素
系であることから、これら突発性ガスは接点材料に含ま
れる酸化物の分解により放出されるものと考えられる。[0011] These abrupt gases contain a small amount of C 2 H 2 , CH 4, etc., but since these are mainly composed of oxygen, such as CO, CO 2 , O 2 , these abrupt gases are contained in the contact material. It is considered to be released by decomposition of the oxides.
【0012】本発明者らの研究によれば、再点弧現象の
多く発生する接点材料には、突発性ガスの放出も多い。
したがって、上述の知見よりすれば、接点材料をその融
点以上の温度で保持して、この突発性ガス因子を予め放
出させておくことにより、再点弧現象の発生を防止する
ことが考えられる。According to the study of the present inventors, contact materials in which re-ignition occurs frequently emit a large amount of sudden gas.
Therefore, according to the above findings, it is conceivable to prevent the re-ignition phenomenon by maintaining the contact material at a temperature equal to or higher than its melting point and releasing the sudden gas factor in advance.
【0013】しかしながら、真空バルブ用接点材料は、
Cuを相当量含有し、これらの酸化物を分解して除くた
めには、例えば10-2〜10-4Torrの真空度において約1200
℃以上の温度が必要となる。このため、蒸気圧の高いB
i,Pb,Te,Sb等の溶着防止材を含む接点材料に
ついて上記のような熱処理を行うことは、高価な溶着防
止材の損失を招き、また接点材料の基本的な機能の一つ
である溶着防止性能が失われることになる。However, the contact material for a vacuum valve is
In order to contain a considerable amount of Cu and to decompose and remove these oxides, for example, at a vacuum degree of 10 -2 to 10 -4 Torr, about 1200
Temperatures above ℃ are required. For this reason, B having a high vapor pressure
Performing the above-described heat treatment on a contact material containing a welding prevention material such as i, Pb, Te, or Sb causes loss of an expensive welding prevention material and is one of the basic functions of the contact material. The welding prevention performance is lost.
【0014】一方、溶着防止材として、例えばBiを加
熱して行くと、400 〜 500℃近傍で極めて激しく複数種
のガスを放出する。このような放出ガスの一部は、昇温
過程にあるCu等と結合して比較的安定な化合物を作
り、溶解作業中に一部は分解するが、他の一部はなお残
存し突発性ガスの一因となる。On the other hand, when Bi, for example, is heated as a welding prevention material, a plurality of types of gases are released very violently at around 400 to 500 ° C. Some of these released gases combine with Cu etc. in the process of raising the temperature to form a relatively stable compound, and some decompose during the melting operation, but others remain and remain sudden. Contributes to gas.
【0015】このような突発性ガスの放出は、例えば純
度 99.9999%のBiを原料として使用しても、酸化ある
いはガス吸着が進行する状態で放置しておく場合にはな
お認められる。Even when Bi having a purity of 99.9999% is used as a raw material, such a burst of gas is still recognized when oxidation or gas adsorption is allowed to proceed.
【0016】上述のような観察は、溶着防止材を含む接
点材料において、Cu等の高導電性材料と溶着防止成分
とについて個別の熱処理により突発性ガスの原因となる
不純物を予め除いておくことの必要性を示唆していると
共に、接点合金の製造または熱処理過程において、るつ
ぼ、ボート、板などから放出される放出ガスにより接点
合金が受ける汚染も管理する必要性を示唆している。The observation described above is based on the premise that, in a contact material containing a welding prevention material, impurities which cause a sudden gas are removed in advance by a heat treatment separately for a highly conductive material such as Cu and a welding prevention component. And the need to control the contamination of the contact alloy by the outgassed gases from crucibles, boats, plates, etc. during the manufacturing or heat treatment of the contact alloy.
【0017】前者の知見によって、本発明者らは、突発
性ガスの軽減に対し、構成元素をあらかじめ個別に熱処
理する技術を開発し、ある程度有効でそれに伴い再点弧
発生確率も減少する傾向にあることを認めている。Based on the former knowledge, the present inventors have developed a technique for individually heat-treating the constituent elements in advance in order to reduce the sudden gas, and to a certain extent, the tendency for the re-ignition occurrence probability to be reduced accordingly. I admit that there is.
【0018】後者の知見によって本発明者らは、溶解ま
たは焼結時に接点合金の近傍にあるるつぼ、ボート、板
等の材質およびその表面の物理的、化学的状態が突発性
ガスの放出形態に重要な影響を与え、かつその結果再点
弧発生確率の大小にも関連する傾向にあることを認めて
いる。Based on the latter finding, the present inventors have found that the material of the crucible, boat, plate and the like near the contact alloy at the time of melting or sintering and the physical and chemical state of its surface are changed to the form of sudden gas release. The authors acknowledge that this has a significant effect and, as a result, tends to be related to the magnitude of the probability of restriking occurring.
【0019】特に、前者技術による接点合金の構成元素
レベルでの管理による突発性ガス放出の軽減効果を後者
技術との重畳によって確実かつ効率的に向上させ得るこ
とも認めている。In particular, it has been recognized that the effect of reducing the sudden gas emission by controlling the contact alloy at the elemental level by the former technique can be surely and efficiently improved by overlapping with the latter technique.
【0020】さらに、接点合金に含有される全ガス量中
に占める突発性ガス量も再点弧発生頻度に影響を与える
ことを見出した。なお突発性ガスは、実際上数ミリ秒程
度の短時間に放出されるので、その量を測定するには手
間を要する。そこで、前述のように所定温度など一定条
件下で求めた突発性ガス量の接点合金中に占める比率に
よって管理すると便利であり、再点弧発生頻度との相関
性も確認している。Furthermore, it has been found that the amount of sudden gas in the total amount of gas contained in the contact alloy also affects the frequency of restriking. Since the sudden gas is actually released in a short time of about several milliseconds, it takes time and effort to measure the amount. Therefore, as described above, it is convenient to control by the ratio of the amount of the sudden gas obtained under certain conditions such as a predetermined temperature in the contact alloy, and the correlation with the frequency of restriking has been confirmed.
【0021】接点合金の製造または熱処理においては突
発性ガスの発生を極力、少なくすることが必要である
が、これが厳密にゼロにすることは技術上困難であるの
で、再点弧の発生が認められる限界に突発性ガス量の上
限量を制限すればよい。In the production or heat treatment of a contact alloy, it is necessary to minimize the generation of a burst of gas. However, since it is technically difficult to make this exactly zero, the occurrence of restriking is recognized. The upper limit of the amount of the sudden gas may be limited to the limit.
【0022】上記した理由によって、接点材料に固溶や
吸着する例えば酸素ガスを低減化するために、真空バル
ブ用接点材料の製造または熱処理は、目的の所定熱処理
温度までの昇温作業から所定熱処理的温度に保持する焼
結、溶浸作業の雰囲気は、一般に真空中で実施してい
る。その結果、雰囲気を制御しない場合に比してほぼ1
/10〜1/1000程度に低軽し実用に供している。水素中
で実施した場合、残存する水素ガスは真空中より増加す
るが、酸素ガスを低減化させるという観点からは同じ傾
向である。For the above-described reasons, in order to reduce, for example, oxygen gas which forms a solid solution or adsorbs on the contact material, the production or heat treatment of the contact material for the vacuum valve is performed by increasing the temperature up to the target heat treatment temperature and then performing the heat treatment. The sintering and infiltration operation at a constant temperature is generally performed in a vacuum. As a result, it is almost 1 in comparison with the case where the atmosphere is not controlled.
It is practically used because it is as light as / 10 to 1/1000. When the process is performed in hydrogen, the remaining hydrogen gas increases in vacuum, but the same tendency is observed from the viewpoint of reducing oxygen gas.
【0023】[0023]
【発明が解決しようとする課題】上述した様に、従来で
は昇温作業から焼結、溶浸作業に至る熱処理雰囲気を真
空中又は水素中とすることによってガス量を低軽化して
いるが、近年の高電圧化要求、大電流化要求に対して
は、このガス量レベルでは十分ではなく、さらに再点弧
発生頻度の低減化に有益な突発性ガスの抑制に対して
は、熱処理雰囲気の選択に配慮がなされていなかった。
本発明の目的は、大電流遮断性能を維持しながら再点弧
発生頻度を低減させることができる真空バルブ用接点材
料の製造方法を提供することにある。As described above, conventionally, the amount of gas is reduced by setting the heat treatment atmosphere from the temperature raising operation to the sintering and infiltration operations in a vacuum or in hydrogen. This level of gas amount is not sufficient for recent demands for higher voltage and higher current, and for suppressing sudden gas that is useful for reducing the frequency of restriking, the heat treatment atmosphere must be used. No consideration was given to selection.
An object of the present invention is to provide a method for manufacturing a contact material for a vacuum valve, which can reduce the frequency of occurrence of restriking while maintaining high current interruption performance.
【0024】[0024]
【課題を解決するための手段】上記目的を達成するため
に本発明は、CuまたはAgの少なくとも1種より成る
高導電性成分とCrより成る耐弧性成分とで構成された
被熱処理体を所定の熱処理温度まで加熱する第1の工程
と、熱処理温度にて所定時間保持する第2の工程と、所
定時間保持後に冷却する第3の工程とを有し、前記第1
の工程、前記第2の工程または第3の工程における雰囲
気を選択し、前記熱処理温度を下げることなく、熱処理
雰囲気を所望の雰囲気へ切替えるようにしたことを要旨
とする。In order to achieve the above-mentioned object, the present invention provides a heat-treated object comprising a highly conductive component comprising at least one of Cu or Ag and an arc-resistant component comprising Cr. A first step of heating to a predetermined heat treatment temperature, a second step of holding at the heat treatment temperature for a predetermined time, and a third step of cooling after holding for a predetermined time;
The gist is that the atmosphere in the second step or the third step is selected and the heat treatment atmosphere is switched to a desired atmosphere without lowering the heat treatment temperature.
【0025】[0025]
【作用】このような構成において、熱処理の最初すなわ
ち(工程I)または(工程I)と(工程II)を、まず真
空雰囲気中で被熱処理体に加熱処理を与える効果は、被
熱処理体の表面や構成粒子間の隙間等にルーズに、しか
し大量に付着、吸着している各種気体(酸素、窒素等)
及び水分の大部分を素早く確実に取除く。これに対して
熱処理の最初を水素雰囲気とした時には、短時間に大量
の各種気体及び水分を取除く事が困難なばかりか、特に
構成粒子間の隙間等に気体及び水分が残存する場合があ
り、ガス量レベルの低減とくに突発性ガス量を低減した
接点材料の製造に不利となる。これは所望の大電流遮断
性能を維持しながら、再点弧の発生頻度を低減する信頼
性の高い真空バルブの提供を困難とする。In such a configuration, the effect of first performing the heat treatment on the object to be heat-treated in a vacuum atmosphere at the beginning of the heat treatment, that is, (step I) or (step I) and (step II), is as follows. And various gases (oxygen, nitrogen, etc.) loosely but adsorbed and adsorbed in large amounts in gaps between constituent particles
And quickly and reliably remove most of the water. On the other hand, when the first heat treatment is performed in a hydrogen atmosphere, it is not only difficult to remove a large amount of various gases and moisture in a short time, but also gas and moisture may remain particularly in gaps between constituent particles. This is disadvantageous for the production of a contact material with a reduced gas level, especially a reduced amount of bursty gas. This makes it difficult to provide a highly reliable vacuum valve that reduces the frequency of restriking while maintaining the desired high current interruption performance.
【0026】次いで、熱処理の後半すなわち(工程II)
または(工程II)と(工程III )を、水素雰囲気中で被
熱処理体に冷却処理または加熱処理と冷却処理を与える
効果は、真空雰囲気中での加熱処理では除去出来なかっ
た被熱処理体の構成粒子間の細部になお残存している気
体や付着物、被膜を分解除去(含む酸化物の還元)す
る。これに対して熱処理の後半を真空雰囲気とした時に
は、上記効果が得られないのみならず被熱処理体の冷却
速度を小としその結果、経済性の低下と共に被熱処理体
内部の収縮孔の発生を助長し、健全な接点素材を得るの
に妨げとなる。Next, the second half of the heat treatment, that is, (Step II)
Alternatively, the effect of performing the cooling treatment or the heating treatment and the cooling treatment on the heat-treated body in the hydrogen atmosphere in the (step II) and the (step III) is based on the structure of the heat-treated body that could not be removed by the heat treatment in the vacuum atmosphere. It decomposes and removes (reduces oxides) the gas, deposits and coatings still remaining in the details between the particles. On the other hand, when the second half of the heat treatment is performed in a vacuum atmosphere, not only the above effect is not obtained but also the cooling rate of the heat treatment object is reduced, and as a result, shrinkage holes inside the heat treatment object are generated together with reduced economic efficiency. It encourages and hinders obtaining a healthy contact material.
【0027】熱処理温度を下げることなく熱処理雰囲気
を、真空雰囲気から水素雰囲気へ切替える事の効果は、
一般に工業用熱処理炉ではどんなに十分に管理してもリ
ークガスの侵入炉壁などからのガス放出を避ける事は不
可能である。熱処理炉の温度が冷却した時これらのガス
は、炉壁など炉内面に再吸着しガスの供給源となる。こ
の様な雰囲気の中に前記真空雰囲気での熱処理を終了し
た被熱処理体を置く事は、被熱処理体にもガスの再付
着、再侵入の現象が生じる。従ってこの現象を避ける為
には、被熱処理体を冷却する事なく雰囲気の切替えを行
う事が有利である。The effect of switching the heat treatment atmosphere from a vacuum atmosphere to a hydrogen atmosphere without lowering the heat treatment temperature is as follows.
In general, no matter how well the industrial heat treatment furnace is managed, it is impossible to prevent gas from leaking from the ingress furnace wall and the like. When the temperature of the heat treatment furnace is cooled, these gases are re-adsorbed on the furnace inner surface such as the furnace wall and serve as a gas supply source. When the object to be heat treated which has been subjected to the heat treatment in the vacuum atmosphere is placed in such an atmosphere, a phenomenon of reattachment and re-invasion of gas also occurs in the object to be heat treated. Therefore, in order to avoid this phenomenon, it is advantageous to switch the atmosphere without cooling the object to be heat-treated.
【0028】[0028]
【実施例】以下、本発明の一実施例を図面を参照して説
明する。なお、本実施例では、アーク区域に使用される
材料、すなわち接点、および必要により電極、導電軸、
シールドなどの材料として、それぞれその溶融点より少
なくとも50℃高い加熱状態下で放出される突発性ガスの
総量がそれぞれ材料中の全ガス量の1%未満であるもの
を使用したものとする。An embodiment of the present invention will be described below with reference to the drawings. In this embodiment, the material used for the arc area, that is, the contact, and if necessary, the electrode, the conductive shaft,
As a material for the shield or the like, a material in which the total amount of the burst gas released under a heating state at least 50 ° C. higher than its melting point is less than 1% of the total gas amount in the material is used.
【0029】図1は本発明の一実施例を示す真空バルブ
の正断面図であり、図2はその要部拡大図である。これ
らの図において、しゃ断室1は、セラミック等の絶縁材
料によりほぼ円筒状に形成された絶縁容器2と、この両
端に密閉機構3,3aを介して設けた金属製蓋体4およ
び5とで真空気密に密閉されている。FIG. 1 is a front sectional view of a vacuum valve showing an embodiment of the present invention, and FIG. 2 is an enlarged view of a main part thereof. In these figures, a shut-off chamber 1 is composed of an insulating container 2 formed of an insulating material such as ceramic in a substantially cylindrical shape, and metal lids 4 and 5 provided at both ends thereof through sealing mechanisms 3 and 3a. It is hermetically sealed in a vacuum.
【0030】さらに、しゃ断室1内には、一対の電極棒
6,7の互いに対向する端部にそれぞれ固定電極8およ
び可動電極9が配設されている。また、可動電極9の電
極棒7には、ベローズ10が取付けられ、しゃ断室1内を
真空気密に保持しながら、電極9の往復動による一対の
電極8,9の開閉を可能にしている。Further, in the shut-off chamber 1, a fixed electrode 8 and a movable electrode 9 are disposed at opposite ends of a pair of electrode rods 6, 7, respectively. A bellows 10 is attached to the electrode rod 7 of the movable electrode 9 so that the pair of electrodes 8, 9 can be opened and closed by reciprocating movement of the electrode 9 while keeping the inside of the shut-off chamber 1 vacuum-tight.
【0031】ベローズ10は、フード11により覆われ、ア
ーク蒸気の被着を防止しており、しゃ断室1内には円筒
状金属容器12が設けられ、絶縁容器2へのアーク蒸気の
被着を防止している。The bellows 10 is covered by a hood 11 to prevent the deposition of arc vapor. A cylindrical metal container 12 is provided in the shutoff chamber 1, and the deposition of arc vapor to the insulating container 2 is performed. Preventing.
【0032】一方、可動電極9は図2に示すように、導
電棒7にろう材13によって固定されるか、またはかしめ
によって圧着接続(図示せず)されており、その上には
可動接点14がろう材15によって接合されている。On the other hand, as shown in FIG. 2, the movable electrode 9 is fixed to the conductive rod 7 by a brazing material 13 or is connected by crimping (not shown) by caulking. Are joined by the brazing material 15.
【0033】また固定電極8も向きが逆となるのみでほ
ぼ同様であり、これには固定接点14aが設けられてい
る。本実施例に用いられる材料を製造するために用いる
素材は、従来のそれと異なるものではない。The fixed electrode 8 is almost the same except that the direction is reversed. The fixed electrode 8 is provided with a fixed contact 14a. The material used for manufacturing the material used in this embodiment is not different from the conventional one.
【0034】例えば、電極或いは導電軸は無酸素銅、脱
酸銅、電解銅などを原材とする銅又は銅合金が使用さ
れ、接点合金は上記銅、銀またはその両方が用いられ、
その最大値は接点合金中の耐溶着防止材の量を差し引い
た量であり、その最小値は導電性の観点から15%以上
は必要である。For example, the electrode or the conductive shaft is made of copper or a copper alloy made of oxygen-free copper, deoxidized copper, electrolytic copper or the like, and the contact alloy is made of the above copper, silver or both.
The maximum value is the amount obtained by subtracting the amount of the anti-welding material in the contact alloy, and the minimum value is 15% or more from the viewpoint of conductivity.
【0035】また、溶着防止材としては、Bi,Pb,
Te,Sbの少なくとも一種が用いられ、これら溶着防
止材は、接点合金に要求される耐溶着性の程度に応じ、
その量は5%の範囲で用いられる。As the welding prevention material, Bi, Pb,
At least one of Te and Sb is used, and these anti-welding materials are used in accordance with the degree of anti-welding required for the contact alloy.
The amount is used in the range of 5%.
【0036】本実施例の製造技術の実施に於いては、十
分に管理した状態のるつぼ又は容器を用いて接点素材へ
のるつぼなどからの不純物、ガスなどの侵入、拡散を防
止し、突発性ガスの発生要因となる可能性のある因子を
削除して行うことがポイントである。その意味におい
て、事前にるつぼなどを所定条件で脱ガスすることは、
補助技術として有益である。In the implementation of the manufacturing technique of the present embodiment, a crucible or a container in a well-controlled state is used to prevent the intrusion and diffusion of impurities and gases from the crucible or the like into the contact material, and The point is to remove factors that may cause gas generation. In that sense, degassing a crucible or the like under predetermined conditions in advance
Useful as an assistive technology.
【0037】るつぼなどの状態を管理すること以外に、
その材質の選択も突発性ガスの軽減化に補助技術として
有益である。本技術と補助技術との組合わせによって、
突発性ガスの少ない接点素材を得る。得られた接点素材
について必要に応じて切削研磨等の加工を行い、或いは
必要に応じて鍛造圧延などの塑性加工を与えることによ
り所望の形状の接点が得られる。In addition to managing the state of the crucible and the like,
The selection of the material is also useful as an auxiliary technology for reducing the sudden gas. By combining this technology and assistive technology,
A contact material with less sudden gas is obtained. A contact having a desired shape can be obtained by subjecting the obtained contact material to processing such as cutting and polishing as necessary, or applying plastic processing such as forging rolling as necessary.
【0038】なお、接点材料の評価は、後述する突発性
ガス放出および再点弧発生確率の2つの条件に基づいて
行った。本実施例に用いられる材料の内、最も厳しくア
ーク区域に用いられる接点合金を得る一例は下記のとお
りである。以下、表1〜表2を参照し、サンプルテスト
によって更に具体的に説明する。The evaluation of the contact material was performed based on two conditions, which will be described later, ie, sudden gas release and re-ignition probability. An example of obtaining the contact alloy used in the most severe arc region among the materials used in the present embodiment is as follows. Hereinafter, with reference to Tables 1 and 2, a more specific description will be given by a sample test.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【表2】 [Table 2]
【0041】実施例:1〜2、比較例:1〜3 (実施例:1)1300℃以上の温度で精製したCuと、13
00℃以上の温度で脱ガスしたCrを原料として、Cu,
Cr粉を混合、4トン/cm2 で成型して被熱処理体を得
た。Examples: 1-2, Comparative Examples: 1-3 (Example: 1) Cu purified at a temperature of 1300 ° C. or more, 13
Using Cr degassed at a temperature of 00 ° C. or more as a raw material, Cu,
Cr powder was mixed and molded at 4 tons / cm 2 to obtain a heat-treated body.
【0042】これを真空雰囲気中で昇温(工程I)、真
空雰囲気中1000℃で固相焼結(工程II)後この温度で水
素雰囲気に切替え水素雰囲気中で冷却(工程III )し、
Cu−25Cr接点素材を製造した。 (比較例:1)上記(実施例:1)と同様、1300℃以上
の温度で精製したCuと、1300℃以上の温度で脱ガスし
たCrを原料として、Cu,Cr粉を混合、4トン/cm
2 で成型して被熱処理体を得た。After raising the temperature in a vacuum atmosphere (step I), solid phase sintering at 1000 ° C. in a vacuum atmosphere (step II), the atmosphere is switched to a hydrogen atmosphere at this temperature and cooled in a hydrogen atmosphere (step III).
A Cu-25Cr contact material was manufactured. (Comparative Example: 1) In the same manner as in the above (Example: 1), Cu and Cr powder were mixed using Cu purified at a temperature of 1300 ° C. or more and Cr degassed at a temperature of 1300 ° C. or more as raw materials, and 4 tons. /cm
The heat-treated body was obtained by molding in 2 .
【0043】これを真空雰囲気中で昇温(工程I)、真
空雰囲気中1000℃で固相焼結(工程II)後、そのまま真
空雰囲気中で 500℃近傍まで冷却(工程III )の後、水
素雰囲気に切替え室温まで冷却(工程III )し、Cu−
25Cr接点素材を製造した。 (比較例:2)上記(実施例:1)に於いて、真空雰囲
気中で昇温(工程I)、真空雰囲気中1000℃で固相焼結
(工程II)後、そのまま真空雰囲気中で室温まで冷却
(工程III )し、接点素材を製造した。 (比較例:3)上記(実施例:1)と同様、1300℃以上
の温度で精製したCuと、1300℃以上の温度で脱ガスし
たCrを原料として、Cu,Cr粉を混合、4トン/cm
2 で成型して被熱処理体を得た。After raising the temperature in a vacuum atmosphere (Step I), solid-phase sintering at 1000 ° C. in a vacuum atmosphere (Step II), and cooling it to about 500 ° C. in a vacuum atmosphere (Step III), Switch to atmosphere and cool to room temperature (Step III).
A 25Cr contact material was manufactured. (Comparative Example: 2) In the above (Example 1), after raising the temperature in a vacuum atmosphere (Step I), solid-phase sintering at 1000 ° C. in a vacuum atmosphere (Step II), and then directly room temperature in a vacuum atmosphere (Step III) to produce a contact material. (Comparative Example: 3) In the same manner as in the above (Example: 1), Cu and Cr powders were mixed using Cu purified at a temperature of 1300 ° C. or higher and Cr degassed at a temperature of 1300 ° C. or higher as raw materials, and 4 tons. /cm
The heat-treated body was obtained by molding in 2 .
【0044】これを水素雰囲気中で昇温(工程I)、水
素雰囲気中1000℃で固相焼結(工程II)後、そのまま水
素雰囲気中で室温まで冷却(工程III )し、Cu−25C
r接点素材を製造した。 (実施例:2)上記(実施例:1)と同様、1300℃以上
の温度で精製したCuと、1300℃以上の温度で脱ガスし
たCrを原料として、Cu,Cr粉を混合、4トン/cm
2 で成型して被熱処理体を得た。After raising the temperature in a hydrogen atmosphere (step I) and solid-phase sintering at 1000 ° C. in a hydrogen atmosphere (step II), it is cooled to room temperature in a hydrogen atmosphere (step III) to obtain Cu-25C
An r-contact material was manufactured. (Example: 2) Similar to the above (Example: 1), Cu and Cr powders were mixed using Cu refined at a temperature of 1300 ° C. or higher and Cr degassed at a temperature of 1300 ° C. or higher as raw materials, and 4 tons. /cm
The heat-treated body was obtained by molding in 2 .
【0045】これを真空雰囲気中で昇温(工程I)、水
素雰囲気中1000℃で固相焼結(工程II)後この温度で水
素雰囲気に切替え水素雰囲気中で冷却(工程III )し、
Cu−25Cr接点素材を製造した。The temperature was raised in a vacuum atmosphere (step I), solid phase sintering was performed at 1000 ° C. in a hydrogen atmosphere (step II), and then switched to a hydrogen atmosphere at this temperature and cooled in a hydrogen atmosphere (step III).
A Cu-25Cr contact material was manufactured.
【0046】実施例:3〜4、比較例:4〜5 (実施例:3)上記(実施例:1)と同様、1300℃以上
の温度で精製したCuと、1300℃以上の温度で脱ガスし
たCr粉を用意する。Example: 3-4, Comparative Example: 4-5 (Example: 3) In the same manner as in the above (Example: 1), Cu purified at a temperature of 1300 ° C. or more was removed from Cu at a temperature of 1300 ° C. or more. A gaseous Cr powder is prepared.
【0047】Cr粉を真空雰囲気中で1150℃以上の温度
で焼結して得たCrスケルトンと、Cuとを重ね合わせ
ながら真空雰囲気中で昇温(工程I)し、1170℃に加熱
保持し前記Crスケルトンの空隙中に、溶融したCuを
真空溶浸(工程II)させ、この温度で水素雰囲気に切替
え水素雰囲気中で冷却(工程III )し、Cu−25Cr接
点素材を製造した。 (比較例:4)上記(実施例:1)と同様、1300℃以上
の温度で精製したCuと、1300℃以上の温度で脱ガスし
たCr粉を用意する。The temperature of the Cr powder was raised in a vacuum atmosphere (step I) while the Cr skeleton obtained by sintering the Cr powder at a temperature of 1150 ° C. or higher and Cu at a temperature of 1170 ° C. The molten Cu was vacuum infiltrated into the voids of the Cr skeleton (Step II), switched to a hydrogen atmosphere at this temperature, and cooled in a hydrogen atmosphere (Step III) to produce a Cu-25Cr contact material. (Comparative Example: 4) Similar to the above (Example: 1), Cu purified at a temperature of 1300 ° C. or higher and Cr powder degassed at a temperature of 1300 ° C. or higher are prepared.
【0048】Cr粉を真空雰囲気中で1150℃以上の温度
で焼結して得たCrスケルトンと、Cuとを重ね合わせ
ながら真空雰囲気中で昇温(工程I)し、1170℃に加熱
保持し前記Crスケルトンの空隙中に、溶融したCuを
真空溶浸(工程II)させた後、そのまま真空雰囲気中で
室温まで冷却(工程III )し、Cu−25Cr接点素材を
製造した。 (比較例:5)上記(実施例:1)と同様、1300℃以上
の温度で精製したCuと、1300℃以上の温度で脱ガスし
たCr粉を用意する。The temperature of the Cr skeleton obtained by sintering the Cr powder at a temperature of 1150 ° C. or higher in a vacuum atmosphere and Cu is superimposed in a vacuum atmosphere while superimposing the Cu (step I), and the temperature is maintained at 1170 ° C. The molten Cu was vacuum infiltrated into the voids of the Cr skeleton (Step II) and then cooled to room temperature in a vacuum atmosphere (Step III) to produce a Cu-25Cr contact material. (Comparative Example: 5) Similar to the above (Example 1), Cu purified at a temperature of 1300 ° C. or more and Cr powder degassed at a temperature of 1300 ° C. or more are prepared.
【0049】Cr粉を真空雰囲気中で1150℃以上の温度
で焼結して得たCrスケルトンと、Cuとを重ね合わせ
ながら真空雰囲気中で昇温(工程I)し、1170℃に加熱
保持し前記Crスケルトンの空隙中に、溶融したCuを
水素雰囲気中溶浸(工程II)させ、そのまま水素雰囲気
中で冷却(工程III )し、Cu−25Cr接点素材を製造
した。 (実施例:4)上記(実施例:1)と同様、1300℃以上
の温度で精製したCuと、1300℃以上の温度で脱ガスし
たCr粉を用意する。The Cr skeleton obtained by sintering the Cr powder at a temperature of 1150 ° C. or more in a vacuum atmosphere and Cu are superimposed, and the temperature is raised in a vacuum atmosphere (step I) while being kept at 1170 ° C. The molten Cu was infiltrated in a hydrogen atmosphere in the voids of the Cr skeleton (Step II) and cooled in a hydrogen atmosphere (Step III) to produce a Cu-25Cr contact material. (Example 4) Similar to the above (Example 1), Cu purified at a temperature of 1300 ° C. or more and Cr powder degassed at a temperature of 1300 ° C. or more are prepared.
【0050】Cr粉を真空雰囲気中で1150℃以上の温度
で焼結して得たCrスケルトンと、Cuとを重ね合わせ
ながら真空雰囲気中で昇温(工程I)し、1170℃に加熱
保持し前記Crスケルトンの空隙中に、溶融したCuを
水素雰囲気中溶浸(工程II)させ、そのまま水素雰囲気
中で冷却(工程III )し、Cu−25Cr接点素材を製造
した。The temperature of the Cr powder was raised in a vacuum atmosphere (step I) while the Cr skeleton obtained by sintering the Cr powder at a temperature of 1150 ° C. or higher and Cu at a temperature of 1170 ° C. The molten Cu was infiltrated in a hydrogen atmosphere in the voids of the Cr skeleton (Step II) and cooled in a hydrogen atmosphere (Step III) to produce a Cu-25Cr contact material.
【0051】以上実施例1〜4,比較例1〜5から明ら
かなように、昇温(工程I)と加熱保持(工程II)を真
空雰囲気中、冷却(工程III )を水素雰囲気とし、かつ
その雰囲気の切替え雰を加熱保持温度の高温度で行う事
によって効果を発揮する。比較例:1に示すように雰囲
気の切替え雰を 500℃近傍まで冷却してから行ったので
は効果が低い事が分かった(実施例:1と比較例:1の
対比)。また、雰囲気の切替えの無い場合では十分な特
性が得られていない(比較例:2〜3、比較例:4〜
5)。As is clear from Examples 1 to 4 and Comparative Examples 1 to 5, the heating (step I) and the heating and holding (step II) are performed in a vacuum atmosphere, the cooling (step III) is performed in a hydrogen atmosphere, and The effect is exhibited by switching the atmosphere at a high heating and holding temperature. As shown in Comparative Example 1, it was found that the effect was low if the atmosphere was switched after cooling the atmosphere to about 500 ° C. (Comparison between Example 1 and Comparative Example 1). Further, when the atmosphere is not switched, sufficient characteristics are not obtained (Comparative Examples: 2-3, Comparative Examples: 4-
5).
【0052】実施例:5〜8 (実施例:5)一方、溶着防止成分として例えばBiを
含むCu−Cr−Bi合金では、 600℃以上の温度で精
製したBiを原料として用意する。Cu,Crは上記
(実施例:1)と同様である。Examples 5 to 8 (Example 5) On the other hand, for a Cu-Cr-Bi alloy containing, for example, Bi as a welding prevention component, Bi purified at a temperature of 600 ° C. or higher is prepared as a raw material. Cu and Cr are the same as in the above (Example 1).
【0053】Cu,Cr,Bi粉を混合、成型して被熱
処理体を得て、これを真空雰囲気中で昇温(工程I)、
真空雰囲気中1000℃で固相焼結(工程II)後、この温度
で水素雰囲気に切替え水素雰囲気中で冷却(工程III )
し、Cu−50Cr−0.2 Bi接点素材を製造した。 (実施例:6)上記(実施例:1)と同様、 600℃以上
の温度で精製したBiを原料として用意する。Cu,C
rは上記(実施例:1)と同様である。Cu, Cr and Bi powders are mixed and molded to obtain a heat-treated body, which is heated in a vacuum atmosphere (step I).
After solid phase sintering at 1000 ° C in a vacuum atmosphere (Step II), switch to hydrogen atmosphere at this temperature and cool in a hydrogen atmosphere (Step III)
Then, a Cu-50Cr-0.2 Bi contact material was manufactured. (Example 6) As in the above (Example 1), Bi purified at a temperature of 600 ° C. or higher is prepared as a raw material. Cu, C
r is the same as the above (Example 1).
【0054】Crスケルトン中にCuBiを 160℃で真
空雰囲気中溶浸(工程II)させた後、この温度で水素雰
囲気に切替え水素雰囲気中で冷却固化(工程III )し、
Cu−25Cr−0.2 Bi接点素材を製造した。After infiltrating CuBi into the Cr skeleton at 160 ° C. in a vacuum atmosphere (step II), the atmosphere is switched to a hydrogen atmosphere at this temperature and cooled and solidified in a hydrogen atmosphere (step III).
A Cu-25Cr-0.2 Bi contact material was manufactured.
【0055】以上の様に、Cu−Cr−Bi合金に於い
ても同様の効果が得られている(実施例:5〜6)。ま
た、実施例:5〜6では、溶着防止成分としてBiを含
むCu−Cr−Bi合金について示したが、Bi以外の
溶着防止成分としてTeを含むCu−Cr−Te合金、
Sbを含むCu−Cr−Sb合金に対しても有効であ
る。As described above, the same effect is obtained with the Cu—Cr—Bi alloy (Examples: 5 to 6). Further, in Examples: 5 to 6, Cu-Cr-Bi alloys containing Bi as a welding prevention component were shown, but Cu-Cr-Te alloys containing Te as a welding prevention component other than Bi,
It is also effective for Cu-Cr-Sb alloy containing Sb.
【0056】例えば 600℃以上の温度で精製したTeを
原料として用意する。Cu,Crは上記(実施例:1)
と同様である。Crスケルトン中にCuBiを1120℃で
真空雰囲気中溶浸(工程II)させた後、この温度で水素
雰囲気に切替え水素雰囲気中で冷却固化(工程III )
し、Cu−50Cr−4Te接点素材を製造した。Cu−
Cr−Te合金に於いてもCu−Cr−Bi合金とほぼ
同様の効果が得られている。For example, Te purified at a temperature of 600 ° C. or higher is prepared as a raw material. Cu and Cr are as described above (Example: 1)
Is the same as After infiltrating CuBi into the Cr skeleton at 1120 ° C. in a vacuum atmosphere (Step II), switch to a hydrogen atmosphere at this temperature and cool and solidify in a hydrogen atmosphere (Step III).
Then, a Cu-50Cr-4Te contact material was manufactured. Cu-
Almost the same effects as those of the Cu-Cr-Bi alloy are obtained in the Cr-Te alloy.
【0057】さらに、Sbを含むCu−Cr−Sb合金
に於いては、 600℃以上の温度で精製したSbを原料と
して用意する。Cu,Crは上記(実施例:1)と同様
である。Crスケルトン中にCuSbを1100℃で真空雰
囲気中溶浸(工程II)させた後、この温度で水素雰囲気
に切替え水素雰囲気中で冷却固化(工程III )し、Cu
−50Cr−0.2 Sb接点素材を製造した。Cu−Cr−
Sb合金に於いてもCu−Cr−Bi合金とほぼ同様の
効果が得られている。 (実施例:7)1300℃以上の温度で精製したCuを粉砕
して得たCu粉と、1300℃以上の温度で脱ガスしたCr
粉とを原料として、Cu,Cr粉を混合、4トン/cm2
で成型して被熱処理体を得た。Further, in the case of Cu-Cr-Sb alloy containing Sb, Sb purified at a temperature of 600 ° C. or more is prepared as a raw material. Cu and Cr are the same as in the above (Example 1). After infiltrating CuSb into a Cr skeleton at 1100 ° C. in a vacuum atmosphere (Step II), the atmosphere is switched to a hydrogen atmosphere at this temperature and solidified by cooling in a hydrogen atmosphere (Step III),
A -50Cr-0.2Sb contact material was manufactured. Cu-Cr-
In the case of the Sb alloy, substantially the same effects as those of the Cu-Cr-Bi alloy are obtained. (Example: 7) Cu powder obtained by pulverizing Cu purified at a temperature of 1300 ° C. or more, and Cr degassed at a temperature of 1300 ° C. or more
Powder, and mix Cu and Cr powder, 4 tons / cm 2
To obtain a heat-treated body.
【0058】被熱処理体を真空雰囲気中で 950℃の温度
まで昇温(工程I)し、 950℃に加熱保持(工程II)し
CuCrスケルトンを得た後、真空雰囲気中で更に1200
℃に昇温(工程I)し、1200℃で再度加熱保持(工程I
I)し、前記CuCrスケルトンの空隙中に、溶融した
Cuを真空溶浸させ、この温度で水素雰囲気に切替え水
素雰囲気中で冷却(工程III )し、Cu−50Cr接点素
材を製造した。 (実施例:8)1300℃以上の温度で精製したCuを粉砕
して得たCu粉と、1300℃以上の温度で脱ガスしたCr
粉とを原料として、Cu,Cr粉を混合、4トン/cm2
で成型して被熱処理体を得た。The object to be heat-treated is heated to a temperature of 950 ° C. in a vacuum atmosphere (step I), and heated and held at 950 ° C. (step II) to obtain a CuCr skeleton.
° C (Step I), and heat and hold again at 1200 ° C (Step I)
I) Then, the molten Cu was vacuum-infiltrated into the voids of the CuCr skeleton, and the atmosphere was switched to a hydrogen atmosphere at this temperature and cooled in a hydrogen atmosphere (step III) to produce a Cu-50Cr contact material. (Example 8) Cu powder obtained by pulverizing Cu purified at a temperature of 1300 ° C. or more, and Cr degassed at a temperature of 1300 ° C. or more
Powder, and mix Cu and Cr powder, 4 tons / cm 2
To obtain a heat-treated body.
【0059】被熱処理体を真空雰囲気中で1030℃の温度
まで昇温(工程I)し、1030℃に加熱保持(工程II)の
途中で、真空雰囲気から水素雰囲気に切替え水素雰囲気
中で冷却(工程III )し、Cu−50Cr接点素材を製造
した。The temperature of the object to be heat-treated is raised to a temperature of 1030 ° C. in a vacuum atmosphere (Step I), and while heating and holding at 1030 ° C. (Step II), the vacuum atmosphere is switched to a hydrogen atmosphere and cooled in a hydrogen atmosphere ( Step III) to produce a Cu-50Cr contact material.
【0060】以上の様に、昇温(工程I)加熱保持(工
程II)のサイクルを複数回繰り返す事によって、優れた
効果が示された(実施例:7)。また、加熱保持(工程
II)の途中に雰囲気の切替えを行っても優れた効果が示
された(実施例:8)。As described above, an excellent effect was exhibited by repeating the cycle of raising the temperature (step I) and heating and holding (step II) a plurality of times (Example: 7). In addition, heat holding (process
Even if the atmosphere was switched during the course of II), an excellent effect was exhibited (Example: 8).
【0061】実施例:9〜18 上記した実施例1〜8,比較例1〜5は、高導電性成分
としてCu、耐弧性成分としてCrを代表例として示し
たが、本発明方法ではCu−Cr,Cu−Cr−Biに
限る事なく適用出来る。例えばCu−Crに於けるCr
の一部をW(実施例−9),Crの一部をMo(実施例
−10),Crの一部をTi(実施例−11),Crの一部
をTa(実施例−12),Crの一部をNb(実施例−1
3)で置換した接点の製造でも効果を発揮する。Examples 9 to 18 In Examples 1 to 8 and Comparative Examples 1 to 5 described above, Cu was used as a high conductivity component and Cr was used as a typical arc resistant component. -It can be applied without being limited to Cr, Cu-Cr-Bi. For example, Cr in Cu-Cr
Is partly W (Example-9), part of Cr is Mo (Example-10), part of Cr is Ti (Example-11), and part of Cr is Ta (Example-12). , Cr are partially replaced by Nb (Example-1).
It is also effective in the production of contacts replaced in 3).
【0062】また、Cr以外の耐弧性成分としてW,M
o,Ti,Ta,Nbを選択したCu合金に於いても同
様の効果を発揮する(実施例:14〜19)。また、上記し
た実施例1〜8,比較例1〜5は、高導電性成分として
Cuを代表例として示したが、本発明方法ではCuに限
る事なく、Agであっても更に耐弧性成分を炭化物とし
たAg−WCであっても同様の効果を発揮する。 (サンプルテストについて) (a)突発性ガス放出 インゴットより切出した試料を突発性ガス放出測定用真
空装置内に設置し、室温から溶融点を越える所定温度に
至るまで定速度で加熱(例えばCu−Crのときには12
50℃)し、一定時間放置中(例えばCu=Crのときに
は30分保持)に突発的に放出される回数の積算値を真空
度10-5〜10-6Torr雰囲気で計測する。 (b)再点弧発生確率 径30mm、厚さ5mmの円板状接点片を、デイマウンタブル
型真空バルブに装着し、6KV× 500Aの回路を2000回
しゃ断した時の再点弧発生頻度を測定し、2台のしゃ断
器(バルブとして6本)のばらつき幅(最大および最
小)で示した。Further, as arc-resistant components other than Cr, W, M
The same effect is exhibited in a Cu alloy in which o, Ti, Ta, and Nb are selected (Examples: 14 to 19). Further, in Examples 1 to 8 and Comparative Examples 1 to 5 described above, Cu was shown as a typical example as a highly conductive component. However, the method of the present invention is not limited to Cu. The same effect is exhibited even with Ag-WC using carbide as a component. (Regarding sample test) (a) Sudden gas release A sample cut from an ingot is placed in a vacuum device for measuring sudden gas release and heated at a constant rate from room temperature to a predetermined temperature exceeding the melting point (for example, Cu- 12 for Cr
50 ° C.), and the integrated value of the number of times of sudden release during standing for a certain period of time (for example, 30 minutes when Cu = Cr) is measured in a vacuum degree of 10 −5 to 10 −6 Torr. (B) Probability of re-ignition The frequency of re-ignition when a disc-shaped contact piece with a diameter of 30 mm and a thickness of 5 mm is mounted on a day mountable vacuum valve and a 6 KV x 500 A circuit is cut off 2000 times is shown. The measurement was made, and the variation width (maximum and minimum) of two circuit breakers (six valves) was shown.
【0063】接点の装着に際しては、ベーキング加熱
( 450℃、30分)のみ行い、ろう材の使用ならびにこれ
に伴う加熱は行わなかった。なお全ガス量は、1500℃以
上の高温度に所定時間保持している間に放出されるガス
量とした。At the time of mounting the contacts, only baking heating (450 ° C., 30 minutes) was performed, and the use of the brazing material and the accompanying heating were not performed. In addition, the total gas amount was the amount of gas released during holding at a high temperature of 1500 ° C. or higher for a predetermined time.
【0064】すなわち高真空中に保持した例えばカーボ
ンるつぼ中に試料を収容し、カーボンるつぼに直接通電
するか、または高周波加熱などの方法によって加熱し、
試料から放出するガスを定量する。That is, the sample is accommodated in, for example, a carbon crucible held in a high vacuum, and the carbon crucible is directly energized or heated by a method such as high frequency heating.
Quantify the gas released from the sample.
【0065】[0065]
【発明の効果】以上のように本発明によれば、製造時の
各工程の雰囲気を適切に調整しているので、大電流遮断
性能を維持しながら再点弧の発生頻度を低減することが
できる。As described above, according to the present invention, since the atmosphere in each step of the manufacturing process is appropriately adjusted, it is possible to reduce the frequency of occurrence of restriking while maintaining high current interruption performance. it can.
【図1】本発明の一実施例を説明するための真空バルブ
の断面図。FIG. 1 is a cross-sectional view of a vacuum valve for explaining one embodiment of the present invention.
【図2】[図1]の要部拡大図。FIG. 2 is an enlarged view of a main part of FIG.
8…固定電極、9…可動電極、14,14a…接点 8: fixed electrode, 9: movable electrode, 14, 14a: contact
───────────────────────────────────────────────────── フロントページの続き (72)発明者 南 淑子 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (56)参考文献 特開 昭63−199833(JP,A) 特開 昭56−150155(JP,A) 特開 平4−180546(JP,A) 特開 昭49−114609(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 33/66 C22C 1/00 H01H 11/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiko Minami 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Corporation Yokohama Office (72) Inventor Atsushi Yamamoto 1 Toshiba-cho, Fuchu-shi, Tokyo Fuchu Toshiba Corporation Inside the factory (56) References JP-A-63-199833 (JP, A) JP-A-56-150155 (JP, A) JP-A-4-180546 (JP, A) JP-A-49-114609 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01H 33/66 C22C 1/00 H01H 11/04
Claims (8)
る高導電性成分とCrより成る耐弧性成分とで構成され
た被熱処理体を所定の熱処理温度まで加熱する第1の工
程と、前記熱処理温度にて所定時間保持する第2の工程
と、前記所定時間保持後に冷却する第3の工程とを有
し、前記第1の工程を真空雰囲気、前記第2の工程を水
素雰囲気とし、前記熱処理温度を下げることなく、熱処
理雰囲気を真空雰囲気から水素雰囲気へ切替えるように
したことを特徴とする真空バルブ用接点材料の製造方
法。1. A first step of heating an object to be heat-treated comprising a highly conductive component made of at least one of Cu or Ag and an arc-resistant component made of Cr to a predetermined heat treatment temperature; A second step of holding at a temperature for a predetermined time; and a third step of cooling after holding the predetermined time, wherein the first step is a vacuum atmosphere, the second step is a hydrogen atmosphere, and the heat treatment is performed. A method for manufacturing a contact material for a vacuum valve, wherein the heat treatment atmosphere is switched from a vacuum atmosphere to a hydrogen atmosphere without lowering the temperature.
回繰り返すことを特徴とする請求項1記載の真空バルブ
用接点材料の製造方法。2. The method according to claim 1, wherein the first and second steps are repeated a plurality of times.
る高導電性成分とCrより成る耐弧性成分とで構成され
た被熱処理体を所定の熱処理温度まで加熱する第1の工
程と、前記熱処理温度にて所定時間保持する第2の工程
と、前記所定時間保持後に冷却する第3の工程とを有
し、前記第1の工程および第2の工程を真空雰囲気、前
記第3の工程を水素雰囲気とし、前記熱処理温度を下げ
ることなく、熱処理雰囲気を真空雰囲気から水素雰囲気
へ切替えるようにしたことを特徴とする真空バルブ用接
点材料の製造方法。3. A first step of heating an object to be heat-treated composed of a highly conductive component made of at least one of Cu or Ag and an arc-resistant component made of Cr to a predetermined heat treatment temperature; A second step of holding at a temperature for a predetermined time; and a third step of cooling after holding the predetermined time. The first step and the second step are performed in a vacuum atmosphere, and the third step is performed in a hydrogen atmosphere. A method for manufacturing a contact material for a vacuum valve, wherein the atmosphere is changed to an atmosphere and a heat treatment atmosphere is switched from a vacuum atmosphere to a hydrogen atmosphere without lowering the heat treatment temperature.
の途中で、前記熱処理温度を下げることなく、熱処理雰
囲気を真空雰囲気から水素雰囲気へ切替えるようにした
ことを特徴とする請求項3記載の真空バルブ用接点材料
の製造方法。4. The heat treatment atmosphere is switched from a vacuum atmosphere to a hydrogen atmosphere without lowering the heat treatment temperature during the second step or the third step. A method for producing the contact material for a vacuum valve as described above.
は、被熱処理体を水素雰囲気室へ移動させることにより
行うようにしたことを特徴とする請求項1〜請求項4の
いずれかに記載の真空バルブ用接点材料の製造方法。5. The vacuum apparatus according to claim 1, wherein the switching from the vacuum atmosphere to the hydrogen atmosphere is performed by moving the heat treatment target to a hydrogen atmosphere chamber. Manufacturing method of valve contact material.
は、真空雰囲気中へ水素を注入することにより行うよう
にしたことを特徴とする請求項1〜請求項4のいずれか
に記載の真空バルブ用接点材料の製造方法。6. The vacuum valve according to claim 1, wherein the switching from the vacuum atmosphere to the hydrogen atmosphere is performed by injecting hydrogen into the vacuum atmosphere. Manufacturing method of contact material.
一部または総てをW,Mo,Ti,TaおよびNbのう
ちの1種より成ることを特徴とする請求項1〜請求項6
のいずれかに記載の真空バルブ用接点材料の製造方法。7. An arc-resistant component of the heat-treated body, wherein part or all of Cr is made of one of W, Mo, Ti, Ta and Nb. Item 6
The method for producing a contact material for a vacuum valve according to any one of the above.
を含有し、Cuに対して5wt%以下のBi,Teおよ
びSbのうちの1種を含むCuBi,CuTe,CuS
bのいずれかであることを特徴とする請求項1〜請求項
7のいずれかに記載の真空バルブ用接点材料の製造方
法。8. The highly conductive component of the object to be heat-treated is Cu
, CuBi, CuTe, CuS containing 5 wt% or less of Cu, one of Bi, Te and Sb
The method for producing a contact material for a vacuum valve according to any one of claims 1 to 7, wherein the method is any one of (b) and (b).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15775594A JP3251779B2 (en) | 1994-07-11 | 1994-07-11 | Manufacturing method of contact material for vacuum valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15775594A JP3251779B2 (en) | 1994-07-11 | 1994-07-11 | Manufacturing method of contact material for vacuum valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0822734A JPH0822734A (en) | 1996-01-23 |
JP3251779B2 true JP3251779B2 (en) | 2002-01-28 |
Family
ID=15656636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15775594A Expired - Fee Related JP3251779B2 (en) | 1994-07-11 | 1994-07-11 | Manufacturing method of contact material for vacuum valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3251779B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5389622B2 (en) * | 2009-11-27 | 2014-01-15 | 株式会社東芝 | Manufacturing method of contact for vacuum valve |
JP5448859B2 (en) * | 2010-01-08 | 2014-03-19 | 株式会社東芝 | Contact material for vacuum valve |
CN110330266A (en) * | 2019-07-16 | 2019-10-15 | 湖南省美程陶瓷科技有限公司 | New energy resource power battery relay ceramic material and preparation method thereof |
-
1994
- 1994-07-11 JP JP15775594A patent/JP3251779B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0822734A (en) | 1996-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910000486B1 (en) | Contact forming material for a vacuum valve and the method | |
KR970004578B1 (en) | Process for manufacturing a contact material for a vacuum circuit breakers | |
JPH1173830A (en) | Vacuum valve | |
JP3251779B2 (en) | Manufacturing method of contact material for vacuum valve | |
KR0170052B1 (en) | Contact material for vacuum valve & method of manufacturing the same | |
JP2000235825A (en) | Electrode member for vacuum circuit-breaker and manufacture thereof | |
KR900003545B1 (en) | Fabrication method of contact compound metal of vacuum valve | |
JP2006032036A (en) | Contact material for vacuum valve | |
JPS6362852B2 (en) | ||
JPH0682532B2 (en) | Method for manufacturing contact alloy for vacuum valve | |
JP2937620B2 (en) | Manufacturing method of contact alloy for vacuum valve | |
JP3833519B2 (en) | Vacuum circuit breaker | |
KR100643149B1 (en) | Method for manufacturing contact materials for vacuum interpreter and contact materials manufactured thereby | |
JP2511043B2 (en) | Manufacturing method of contact alloy for vacuum valve | |
JP2653467B2 (en) | Manufacturing method of contact alloy for vacuum valve | |
EP0097906B1 (en) | Contacts for vacuum switches | |
JP2001236865A (en) | Vacuum valve | |
JPH07320608A (en) | Manufacture of contact material | |
JP4357132B2 (en) | Vacuum circuit breaker | |
JPS6063835A (en) | Method of producing contact alloy for vacuum bulb | |
JP4476542B2 (en) | Vacuum circuit breaker | |
JP4421173B2 (en) | Vacuum circuit breaker | |
JPH07228933A (en) | Contact material for vacuum valve | |
JP3478699B2 (en) | Manufacturing method of contact alloy for vacuum circuit breaker | |
JP2511019B2 (en) | Contact material for vacuum valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071116 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081116 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091116 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101116 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101116 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111116 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |