JPS6063835A - Method of producing contact alloy for vacuum bulb - Google Patents

Method of producing contact alloy for vacuum bulb

Info

Publication number
JPS6063835A
JPS6063835A JP17124183A JP17124183A JPS6063835A JP S6063835 A JPS6063835 A JP S6063835A JP 17124183 A JP17124183 A JP 17124183A JP 17124183 A JP17124183 A JP 17124183A JP S6063835 A JPS6063835 A JP S6063835A
Authority
JP
Japan
Prior art keywords
contact
alloy
vacuum
restriking
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17124183A
Other languages
Japanese (ja)
Inventor
功 奥富
千葉 誠司
一秀 松本
石松 正規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17124183A priority Critical patent/JPS6063835A/en
Publication of JPS6063835A publication Critical patent/JPS6063835A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野〕 本発明は、再点弧化率を軽減できる真空ノ(ルブ用接点
合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a contact alloy for a vacuum nozzle, which can reduce the rate of restriking.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

真空パルプ用接点に要求される特性は、耐溶着、耐電圧
、高しゃ断性である。
The characteristics required for contacts for vacuum pulp are welding resistance, withstand voltage, and high interrupting properties.

しかしこれら3要件に対しては相反する物理的性質が要
求されるので理想的に両立させることは困難とあり、適
用する回路の優先要件を第1にして、他の要件は若干犠
牲にして対応しているのが現状である。
However, these three requirements require contradictory physical properties, so it is difficult to ideally balance them, so the priority requirements of the applied circuit should be prioritized first, and other requirements should be sacrificed slightly. This is the current situation.

例えば従来、高耐圧、大容量真空しゃ断器においては、
溶着防止成分(Bi、Te、Pb など)を5重量−以
下含有するCU金合金電極接点として具備したものが知
られている。
For example, in conventional high-voltage, large-capacity vacuum breakers,
A CU gold alloy electrode contact containing a welding prevention component (Bi, Te, Pb, etc.) in an amount of 5 weight or less is known.

ところが、近年の高電圧化要求に対しては、耐電圧の面
で十分ではない。
However, it is not sufficient in terms of withstand voltage to meet the recent demand for higher voltage.

すなわち、真空しゃ断器は小形@鍜、メンテナンスフリ
ー環境調和など、他のしゃ断器に比べ優れた特徴を有す
るために、年々、その適用範囲も拡大され、従来一般的
に使用されていた36kV以下の回路から更に高電圧の
回路への適用が行われると共に、特殊回路例えばコンデ
ンザ回路を開閉する需要も急増しているので、一層の耐
高電圧化が必要となっている。
In other words, because vacuum breakers have superior features compared to other circuit breakers, such as being small, maintenance-free, and environmentally friendly, their range of application has expanded year by year, and they have expanded beyond the conventionally commonly used As circuits are being applied to even higher voltage circuits, the demand for opening and closing special circuits such as capacitor circuits is rapidly increasing, so there is a need for even higher voltage resistance.

その達成を阻害している重要な要因の1つとして再点弧
現象、再発弧現象が挙けられる。
One of the important factors hindering the achievement of this goal is the re-ignition phenomenon and the re-ignition phenomenon.

再点弧現象は、製品の信頼性向上の観点から重要視され
ているにもかかわらず、未だ防止技術は勿論のこと直接
的な発生原因についても明らかになっていない。
Although the restriking phenomenon is regarded as important from the viewpoint of improving product reliability, not only prevention technology but also the direct cause of its occurrence have not yet been clarified.

上記高耐圧化に伴って、接点材料に対しても、更に高耐
圧でかつ再点弧現象の発生頻度の低い特性を持つことが
要求され°〔いる。
With the above-mentioned increase in voltage resistance, contact materials are also required to have characteristics such as higher voltage resistance and a lower frequency of restriking phenomena.

接点拐料の高耐圧化、無再点弧化を図、るには、耐圧的
に欠陥となる脆弱な溶着防止成分の凰そのものを極力少
なくしたり、過度に集中するのを避けること、ガス不純
物やピンホール等を極力少なくすること、接点合金自体
の強度を大きくすること等々が望ましい。
In order to achieve high pressure resistance and non-re-ignition of the contact powder, it is necessary to minimize the amount of the welding prevention component, which is a fragile welding prevention component that causes a defect in pressure resistance, and to avoid excessive concentration of gas. It is desirable to reduce impurities, pinholes, etc. as much as possible, and to increase the strength of the contact alloy itself.

これらの観点から前述のCu−B1合金は満足できるも
のではない。
From these points of view, the aforementioned Cu-B1 alloy is not satisfactory.

また従来使用されている他の接点拐料であるCu−W接
点は耐電圧的にはかなり優れているもののこの焼結形接
点合金は、製造方法的にいって気泡が残存し易く、また
溶着防止材を含有するため再点弧現象が発生し易いとい
う欠点がある。
In addition, although Cu-W contacts, which are other conventional contact materials, are quite good in terms of withstand voltage, this sintered contact alloy is prone to leaving bubbles and welding due to the manufacturing method. Since it contains a prevention material, it has the disadvantage that restriking phenomenon is likely to occur.

このような再点弧現象は、溶浸操作後、その加熱状態で
保持することにより発生頻度を成る程度減少させ得るこ
とが知られている。
It is known that the frequency of such restriking phenomenon can be reduced to some extent by maintaining the heated state after the infiltration operation.

しかしながら、このような加熱状態で接点を保持するこ
とにより、一般的に蒸気圧の高い溶着防止材が失われる
ので、耐溶着性能が低下するだけでなく、高価な溶着防
止材の逸失に伴なう経済的損失も大きい。
However, by holding the contacts in such a heated state, the anti-welding material, which typically has a high vapor pressure, is lost, which not only reduces the anti-welding performance but also causes the loss of the expensive anti-welding material. The economic loss is also large.

本発明者らは、接点栃料を加熱する過程で放出されるガ
スの総量ならびに放出の形態について詳細な観察を行っ
たところ、これら要因と再点弧現象の発生には重要な相
関があり、特に接点材料を構成する原材料の個々につい
て、これらガスの放出、なかでも融点近傍で突発的に発
生するガスの放出、を制御することにより、再点弧現象
を効果的に抑制できることが見出された。
The present inventors made detailed observations on the total amount of gas released during the process of heating the contact material and the form of the release, and found that there is an important correlation between these factors and the occurrence of the restriking phenomenon. In particular, it has been discovered that the restriking phenomenon can be effectively suppressed by controlling the release of these gases, especially the release of gases that suddenly occur near the melting point, for each raw material that makes up the contact material. Ta.

すなわち、接点材料を加熱していくと、吸着ガスのほと
んどは溶融点以下で脱ガスされ、溶融点近傍で固溶した
ガスが放出されるが、さらに溶融点以上で加熱放置する
と、極めて短時間(例えば数ミリ秒程度)ではあるがパ
ルス的な突発性ガスの放出(数回ないし数百同突aする
)が観察される。
In other words, when the contact material is heated, most of the adsorbed gas is degassed below the melting point, and the gas dissolved in solid solution near the melting point is released. However, if the contact material is further heated above the melting point, it will degas for a very short time. (for example, several milliseconds), but pulse-like sudden gas emissions (several to hundreds of bursts) are observed.

これら突発性ガスにはC,H,、CH,等が若干台まれ
るが、主体はC01CO2,01等の酸素系であること
から、これら突発性ガスは接点相料に含まれる酸化物の
分解により放出されるものと考えられる。
These sudden gases contain a small amount of C, H, CH, etc., but since they are mainly oxygen-based such as CO1CO2, 01, these sudden gases are caused by the decomposition of oxides contained in the contact phase material. It is thought that this is released by

本発明者らの研究によれば、再点弧現象の多く発生する
接点材料には、突発性ガスの放出も多い。
According to the research conducted by the present inventors, contact materials that frequently cause restriking phenomena also release a large amount of sudden gas.

従って、上述の知見よりすれば、接点材料をその融点以
上の温度で保持して、この突発性ガスを予吟放出させて
おくことにより、再点弧現象の発生を防止することが考
えられる。
Therefore, based on the above findings, it is possible to prevent the restriking phenomenon by holding the contact material at a temperature higher than its melting point and releasing this sudden gas in advance.

しかしながら、真空しゃ断器用接点材料は、cuを相当
量含有し、これらの酸化物を分解して除くためには、た
とえば10−3〜1σ’T’orrの真空度において約
1200℃以上の温度が必要となるので、蒸気圧の高い
B1XPbXTe、Sb等の溶着防止材を含む接点材料
をこりいて上記のような熱処理を行うことは、高価な溶
着防止材の損失を招き、また接点材料の基本的な機能の
一つである溶着防止性能が失われることになる。
However, contact materials for vacuum breakers contain a considerable amount of Cu, and in order to decompose and remove these oxides, a temperature of about 1200°C or higher is required at a vacuum level of 10-3 to 1σ'T'orr. Therefore, performing the above heat treatment on contact materials containing anti-welding materials such as B1XPbXTe and Sb, which have high vapor pressure, will result in loss of the expensive anti-welding materials, and will also damage the basic properties of the contact materials. This results in the loss of welding prevention performance, which is one of the most important functions.

一方、溶着防止材として、例えばBi を加熱して行く
と、400−550℃近傍で極めて激しく複数種のガス
を放出する。
On the other hand, when Bi, for example, is heated as a welding prevention material, it emits a plurality of gases extremely violently at around 400-550°C.

このような放出ガスの一部は、昇温過程にあるCu等と
結合し、比較的安定な化合物を作り溶解作業中に一部は
分解するが、他の一部はなお残存し突発性ガスの一因と
なる。
A part of such released gas combines with Cu, etc. during the temperature rising process to form a relatively stable compound, and part of it decomposes during the melting process, but the other part still remains and generates sudden gas. This is a contributing factor.

このような突発性ガスの放出は、たとえば純度9919
999%のBi を原料として使用しても、酸化あるい
はガス吸着が進行する状態で放置しておく場合にはなお
認められる。
Such a sudden release of gas may be caused by, for example, purity 9919.
Even if 999% Bi is used as a raw material, oxidation or gas adsorption will still occur if left as it is.

上述のような観察は、溶着防止利を含む接点材料におい
て、Cu等の高導電性材料と溶着防止成分材とについて
個別の熱処理により突発性ガスの原因となる不純物を予
め除いておくことの必要性を示唆すると共に、接点合金
の製造または熱処理過程において一部または全体が液体
状態にある接点合金の液相が直接接するるつは、ボート
、板などからの放出ガスにより接点合金が受りる汚染も
管理する必要性を示唆している。
The above observation indicates that in contact materials that include adhesion prevention properties, it is necessary to remove impurities that cause sudden gas by separate heat treatments for highly conductive materials such as Cu and adhesion prevention components. In addition, during the manufacturing or heat treatment process of the contact alloy, the liquid phase of the contact alloy, which is partially or entirely in a liquid state, comes into direct contact with the contact alloy, and the contact alloy is exposed to gases released from boats, plates, etc. It also suggests the need to control pollution.

前者の知見に対して本発明者らは、突発性ガスの軽減に
対し構成元素を個別に熱処理することは、成る程度有効
で、それに伴い再点弧発生確率も減少する傾向にあるこ
とを認めている。
Regarding the former finding, the present inventors recognized that heat treating the constituent elements individually to reduce sudden gas is effective to some extent, and that the probability of restriking also tends to decrease accordingly. ing.

後者の知見に対して本発明者らは液相に接するるつぼ等
の材質及びその表面の物理的化学的状態が突発性ガスの
放出形態に影響を与え、かつ再点弧発生確率にも関連す
ることを認めると共に特に前者の接点の構成元素レベル
での管理による突発性ガス放出の軽減効果を後者によつ
゛〔、確実かつ効率的に向上させるのに必須であること
を認めた。
Regarding the latter finding, the present inventors found that the material of the crucible in contact with the liquid phase and the physical and chemical conditions of its surface affect the form of sudden gas release and are also related to the probability of restriking. It was acknowledged that this is essential in order to reliably and efficiently improve the former's effect of reducing sudden gas release through control at the constituent element level of the contact point.

[発明の目的〕 本発明は、所要の溶着防止性能を維持しながら再点弧の
発生頻度を低減する真空パルプ用接点合金の製造方法を
提供することを目的としている。
[Object of the Invention] An object of the present invention is to provide a method for manufacturing a contact alloy for vacuum pulp that reduces the frequency of restriking while maintaining the required anti-welding performance.

〔発明の概要〕[Summary of the invention]

本発明は、真空パルプ用接点合金を、少くとも一部に液
相が存在する状態で合金化、鋳造、精製または焼結する
プロセスを含む工程で製造する真空パルプ用接点合金の
製造方法において、少くともその1つのプロセス(特に
最終プロセス)は8isN、を主体とする構成体または
粉体に接して行なわせ、これによって接点合金からの突
発性ガスの放出頻度を低減させ、真空パルプの再点弧の
発生確率を低減させるようにしたものである。
The present invention provides a method for manufacturing a contact alloy for vacuum pulp in which the contact alloy for vacuum pulp is manufactured in a process including a process of alloying, casting, refining, or sintering the contact alloy for vacuum pulp in a state in which a liquid phase exists in at least a portion of the contact alloy. At least one of the processes (especially the final process) is carried out in contact with an 8isN-based composition or powder, thereby reducing the frequency of outgassing from the contact alloy and reducing the repointing of the vacuum pulp. This is designed to reduce the probability of arc occurrence.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明による接点材料を適用した真空パルプの
一構成例を示す正断面図、第2図はその要部拡大図であ
る。
FIG. 1 is a front sectional view showing an example of the structure of a vacuum pulp to which the contact material according to the present invention is applied, and FIG. 2 is an enlarged view of the main parts thereof.

第1図において、しゃ断案1は、セラミック等の絶縁材
料によりほぼ円筒状に形成された絶縁容器2と、この両
端に密閉機構3+38を介して設けた金属製蓋体4およ
び5とで真空気密に密閉されている。
In FIG. 1, the breaking plan 1 is vacuum-tight with an insulating container 2 formed of an insulating material such as ceramic into a substantially cylindrical shape, and metal lids 4 and 5 provided at both ends of the container via sealing mechanisms 3+38. is sealed.

さらにしゃ断案1内には、一対の電極棒6,7の互いに
対向する端部にそれぞれ固定電極8および可動電極9が
配設されている。
Furthermore, within the breaker guide 1, a fixed electrode 8 and a movable electrode 9 are disposed at mutually opposing ends of a pair of electrode rods 6, 7, respectively.

ま、た上記可動電極9の電極棒7には、ベローズ10が
取付けられ、しゃ断案1内を真空気密に保持しながら、
電極9の往復動による一対の電極8゜9の開閉を可能に
している。
Furthermore, a bellows 10 is attached to the electrode rod 7 of the movable electrode 9, and while keeping the interior of the shutoff guide 1 vacuum-tight,
The pair of electrodes 8.9 can be opened and closed by the reciprocating movement of the electrode 9.

またこのベローズ10はフード11により覆われ、アー
ク蒸気の被着を防止しており、またしゃ断案1内には更
に円筒状金属容器12が設けられ、絶縁容器2へのアー
ク蒸気の被着を防止している。
The bellows 10 is covered with a hood 11 to prevent arc vapor from adhering to it, and a cylindrical metal container 12 is further provided within the shutoff guide 1 to prevent arc vapor from adhering to the insulating container 2. It is prevented.

一方、可動電極9は、その拡大構造を第2図1こ示すよ
うに、電極棒7にろう旧13によって固定されるか、ま
たはかしめによって圧着接続(図示せず)されており、
その上には可動接点14がろう材15によって接合され
ている。
On the other hand, as the enlarged structure of the movable electrode 9 is shown in FIG.
A movable contact 14 is joined thereon by a brazing material 15.

また固定電極8も向きが逆となるのみで11は同様であ
り、これには固定接点14aが設けられている。
Further, the fixed electrode 8 is also the same except that the direction is reversed, and the fixed electrode 11 is the same, and is provided with a fixed contact 14a.

本発明により製造する接点合金は、上記したような接点
14 + 14a の双方またはいずれが一方を構成す
るのに適したものである。
The contact alloy produced according to the present invention is suitable for forming one or both of the contacts 14 + 14a as described above.

本発明の方法で接点合金を製造するために用いる素材は
、従来のそれと異なるものではない。
The materials used to produce contact alloys in the method of the present invention are not different from conventional materials.

すなわち高導電性材としては、Cu、Agまたはその両
者が用いられ、その量の最大値は接点合金中の耐溶着防
止材の量を差引いた量であり、その量の最小値は、導電
性の観点から15−程度は必要である。
In other words, as the highly conductive material, Cu, Ag, or both are used, and the maximum value of the amount is the amount minus the amount of the anti-welding material in the contact alloy, and the minimum value of the amount is the amount of the conductive material. From this point of view, about 15 - is necessary.

また溶着防止材としては、Bi、 Pb、 Te、 8
bの少なくとも一種が用いられ、これら溶着防止材は、
接点合金に要求される耐溶着性の程度に応じその量は0
.1チル15% の範囲で用いられる。
In addition, welding prevention materials include Bi, Pb, Te, 8
At least one of b is used, and these welding prevention materials are:
The amount depends on the degree of welding resistance required for the contact alloy.
.. It is used in a range of 15% per chill.

さらに上記の溶解系接点合金以外に耐アーク性はとして
W、Mo、Cr、Triおよびこれらの炭化物から6択
した焼結系接点合金の製造成いは熱処理に対しても適用
される。
Furthermore, in addition to the above-mentioned melting type contact alloys, the present invention is also applied to the production and heat treatment of sintered type contact alloys selected from six selected from W, Mo, Cr, Tri, and their carbides for arc resistance.

本発明の方法によって接点合金を得る一例は下i己のよ
うである。
An example of obtaining a contact alloy by the method of the present invention is as shown below.

すなわち溶解系接点合金では、例えば真空度約I X 
10−”−I X 10−Il履HP 、 1000〜
1300℃の条件で、高導電性成分を溶解し、均一に合
金化した後鋳型中で冷却固化するか、必要によって指向
性凝固を行う。
In other words, for molten contact alloys, for example, the degree of vacuum is approximately I
10-”-I
The highly conductive components are melted at 1300° C., uniformly alloyed, and then cooled and solidified in a mold, or directional solidification is performed if necessary.

本発明技術は、この製造過程における合金化中に接点合
金を収容する容器拐刺、冷却同化時に使う鋳型態別、指
向性凝固する時に接点合金を収容する容器拐刺の少なく
とも1つは8i、N、を主体とする構成体を用いること
である。
The technology of the present invention provides that at least one of the container cutting to accommodate the contact alloy during alloying in this manufacturing process, the mold type used during cooling assimilation, and the container cutting to accommodate the contact alloy during directional solidification is 8i. , N, is used.

焼結系接点では、例えば100〜400メツシユ程度の
耐アーク性粉末と高導電性材料粉末との混合粉末を1〜
7トン/d程度の圧力で成型し′C1圧粉成型体を得る
For sintered contacts, for example, a mixed powder of about 100 to 400 meshes of arc-resistant powder and highly conductive material powder is used.
It is molded at a pressure of about 7 tons/d to obtain a 'C1 powder compact.

得られた圧粉成型体を水素中または1×16’mHPよ
り高真空中で1150’Cまたはこれより高い温度で仮
焼結または本焼結を行う。
The obtained powder compact is subjected to preliminary sintering or main sintering in hydrogen or in a vacuum higher than 1×16′ mHP at a temperature of 1150° C. or higher.

更に必要によって高導電性材を溶浸し接点素材を得る。Furthermore, if necessary, a highly conductive material is infiltrated to obtain a contact material.

本発明技術は、この製造過程における仮焼結、本焼結、
溶浸時に接点合金を収容する容器制料は8i、N、を主
体とする構成体を用いることである。
The technology of the present invention covers preliminary sintering, main sintering,
The container material for accommodating the contact alloy during infiltration is to use a structure mainly composed of 8i, N.

得られた接点素材について必要に応じて、切削研磨など
の加工を行い、あるいは鍛造、圧延などの塑性加工を与
えることにより所望の形状の接点が得られる。
A contact having a desired shape can be obtained by subjecting the obtained contact material to processing such as cutting and polishing, or plastic working such as forging or rolling, as required.

第3図および第4図はそれぞれ本発明で用いられる製造
装置の配置図であり、21は接点合金、22はるっほや
ボートなど接点合金を収容する容器、23は高周波加熱
コイル、24は絶縁体であり、第3図は主としてCu−
B1合金など溶解系合金の製造に、第4図は主としてC
u−W合金など焼結系合金の製造に用いられる。
3 and 4 are layout diagrams of the manufacturing equipment used in the present invention, respectively, in which 21 is a contact alloy, 22 is a container for accommodating a contact alloy such as Haruho or Boat, 23 is a high-frequency heating coil, and 24 is an insulation Fig. 3 shows mainly Cu-
For the production of melt-based alloys such as B1 alloy, Fig. 4 mainly shows C
Used in the production of sintered alloys such as u-W alloys.

以下サンプルテストによって本発明をさらに具体的に説
明する。
The present invention will be explained in more detail below using sample tests.

なお接点材料の評価は下記に示す突発性ガス放出および
再点弧発生確率の2つの条件にもとすいて行なった。
The contact material was evaluated under the following two conditions: sudden gas release and restriking probability.

突発性ガス放出 インゴットより切出した試料を突発性ガス放出測定用真
空装置内に設置し、室温から溶融点を越える所定温度に
至るまで定速度で加熱(例えばCU−Biのときには1
250℃)シ、一定時間放置中(例えばCu−B1のと
きには30分保持)に突発的に放出される回数の積算値
を真空度10〜10 Torrの界囲気で計測する。
A sample cut from a sudden gas release ingot is placed in a vacuum device for measuring sudden gas release, and heated at a constant rate from room temperature to a predetermined temperature exceeding the melting point (for example, in the case of CU-Bi, 1
250° C.), and the integrated value of the number of sudden releases during a certain period of standing (for example, 30 minutes in the case of Cu-B1) is measured in an ambient atmosphere with a degree of vacuum of 10 to 10 Torr.

再点弧発生確率 径30調、厚さ5困の円板体接点片を、ディマウンタプ
ル形真空バルブに装着し、6KVx500Aの回路を2
000回しゃ断した時の再点弧発生頻度を測定し、2台
のしゃ断器(パルプとして6本)のばらつき幅(最大お
よび最小)で示した。接点の装着に際しては、ベーキン
グ加熱(450℃、30分)のみ行い、ろう材の使用な
らびにこれに伴なう加熱は行なわなかった。
A disc contact piece with a diameter of 30 mm and a thickness of 5 mm is attached to a demount pull type vacuum valve, and a 6 KV x 500 A circuit is connected to the
The frequency of restriking after 000 circuit breakers was measured and shown as the variation width (maximum and minimum) of the two circuit breakers (6 circuit breakers for pulp). When attaching the contacts, only baking heating (450° C., 30 minutes) was performed, and no brazing material or accompanying heating was performed.

サンプルテストの結果を第1表および第2表に示す。The results of the sample tests are shown in Tables 1 and 2.

実施例−1、比較例−1及び2 約2即のCu を内径50j111のカーボンるつは(
比較例−1)、石英るつは(比較例−2)、8i、N、
るつは(実施例−1)に収容し、真空度約lOxmHg
1温度1200℃で溶解、脱ガス後溶着防止成分を添加
して十分攪拌し同じるつは中で冷却固化することにより
、第1表に組成を示す接点合金素材を得た。
Example-1, Comparative Examples-1 and 2 A carbon melt with an inner diameter of 50j111 was used to melt approximately 200m of Cu into (
Comparative example-1), quartz melt (comparative example-2), 8i, N,
(Example-1) and the degree of vacuum is approximately 1OxmHg.
After melting and degassing at a temperature of 1,200° C., a welding prevention component was added, thoroughly stirred, and the mixture was cooled and solidified in the same crucible to obtain a contact alloy material having the composition shown in Table 1.

次いで、これら接点素材から所定形状に切出した各試験
片について前記した試験法により突発性ガス放出量およ
び再点弧発生確率を測定し、結果を第1表に併記した。
Next, each test piece cut into a predetermined shape from these contact materials was measured for the amount of sudden gas release and the probability of restriking using the test method described above, and the results are also listed in Table 1.

第1表の比較例−1,2及び実施例−1とをそれぞれ対
比させると合金化の時に81.N、るつほを使用した素
材では、突発性ガスの放出回数と再点弧発生確率の両者
が低いことが明らかである。
Comparing Comparative Examples 1 and 2 and Example 1 in Table 1, 81. It is clear that in the material using N, Rutsuho, both the number of sudden gas releases and the probability of restriking are low.

カーボンるつは素材中の不純物或いはカーボンるつは表
面が、ボー2ス状で、表面積が比較的大きいことによる
るつは表面、内部に付着、内蔵しているガスが溶解作業
中の接点融体に拡散し、接点素材中の全ガス量を増加さ
せると共にそのなかの一部が所定温度、時間内で突発的
に放出するガスを形成しやすい。
Impurities in the material of the carbon melt, or the surface of the carbon melt is shaped like a ball and has a relatively large surface area, may adhere to the surface or inside of the melt, or the internal gas may melt the contacts during the melting process. This tends to diffuse into the body, increase the total amount of gas in the contact material, and form a gas that is released suddenly at a certain temperature and time.

一方石英るつほにおいては溶解作業中に接点融体から放
出される主として酸素などのガスの一部が石英表面と反
応し、溶解中に接点融体lこ留まり突発的に放出するガ
スを形成しやすい。
On the other hand, in quartz melting, part of the gas, mainly oxygen, released from the contact melt during the melting process reacts with the quartz surface, and the contact melt remains during melting, forming a gas that is suddenly released. It's easy to do.

以上の2つのるつほに対して、本発明方法によるSi、
N、るつぼを用いると上記した欠点となる現象が少な(
,8isN、表面から接点融体へのガスの侵入が前2者
より低いことが示されている。
For the above two rutsuho, Si by the method of the present invention,
N. When using a crucible, the above-mentioned disadvantageous phenomena are less likely to occur (
, 8isN, it has been shown that the gas intrusion from the surface to the contact melt is lower than the former two.

81、N、表面は、前2者と比較して蒸気圧が高く、空
焼きなどにより容易に蒸発除去による表面クリーニング
が可能であることが上記効果を示したものと推定される
It is presumed that the above effect is due to the fact that the surface of No. 81, N has a higher vapor pressure than the former two, and the surface can be easily cleaned by evaporation by dry baking or the like.

従って以上の考某によれば、るつほから放出されるガス
は接点素材が溶融状態にあるときの方が接点素材中への
侵入速度および量が大きいので、本発明方法は接点素材
またはその一部に液相が存 1在する状態のときに適用
すると、その効果を発揮する。
Therefore, according to the above considerations, the gas emitted from the contact material enters the contact material at a higher speed and in a larger amount when the contact material is in a molten state. It is effective when applied when a liquid phase exists in some areas.

また、比較例−1の材料の酸素量は7ppmであるのに
対して実施例−1の酸素量は273〜1/4に減少して
おり、突発性ガスのみならず、ガス全体も減少している
傾向にありこれも再点弧の発生減少に寄与しているもの
と考えられる。
In addition, while the oxygen content of the material of Comparative Example-1 is 7 ppm, the oxygen content of Example-1 is reduced to 273 to 1/4, and not only the sudden gas but also the entire gas is reduced. It is thought that this also contributes to the reduction in the occurrence of restriking.

実施例−2、比較例−3,4 上記例と同様約2KPのCu を内径50闘のカーボン
るつは(比較例−3)、石英るつは(比較例−4)、8
i、N番るつは(実施例−2)に収容し真2度約10 
mmHg 、温度約1200℃で溶着防止成分針添加後
各鋳型(実施例−2ではS輸N、、比較例−2ではカー
ボン、比較例−3では石英)に鋳込矢第1表に組成を示
す接点合金素材を得た。
Example 2, Comparative Examples 3 and 4 Similar to the above example, approximately 2 KP of Cu was applied to carbon fibers with an inner diameter of 50mm (Comparative Example 3), quartz fibers (Comparative Example 4), and 8
I and N numbers are housed in (Example-2) and the temperature is about 10 degrees
mmHg, and at a temperature of about 1200°C, after adding the anti-welding component to each mold (S import N in Example-2, carbon in Comparative Example-2, and quartz in Comparative Example-3), the composition shown in Table 1 was poured into the mold. The contact alloy material shown was obtained.

これら接点素材を用いて前記と同様の突発性ガス放出回
数と再点弧発生確率を測定した。
Using these contact materials, the number of sudden gas releases and the probability of restriking were measured in the same manner as described above.

第1表の実施例−2と比較例−3,4とを対比サセると
、合金化後の鋳造時のるつは材質の相違コヨる特性への
影響が顕著に認められている。
Comparing Example 2 and Comparative Examples 3 and 4 in Table 1, it is found that the difference in the material of the melt during casting after alloying has a significant effect on the characteristics.

すなわち実施例−2で明らかなように鋳造時においても
Si、Njるつほが突発性ガス放出、再点弧発生確率の
両性質とも良好である。この効果の理由も前記実施例−
1、比較例−2,3で推考したのと同じ理由が挙げられ
る。
That is, as is clear from Example 2, even during casting, Si and Nj metals have good properties in terms of sudden gas release and restriking probability. The reason for this effect is also explained in the above example.
1. Comparative Example - The same reason as considered in 2 and 3 can be cited.

実施例−3,4、比較例−5,6 合金化及び鋳造時の堆堝、鋳型のそれぞれlこカーボン
を用い最後の精製工程に使うるっ12としてカーボン(
比較例−5)、石英(比較例−6)、87sN、(実施
例−3)を用いた。これらを対比すると、第1表より明
らかなように5isN、の場合突発性ガス放出回数並び
に再点弧発生確率の両者に於て優れていることが判る。
Examples 3 and 4, Comparative Examples 5 and 6 Carbon (1) was used in the composting pot and mold during alloying and casting.
Comparative Example-5), quartz (Comparative Example-6), 87sN, and (Example-3) were used. Comparing these, it is clear from Table 1 that 5isN is superior in both the number of sudden gas releases and the probability of restriking.

従って、少なくとも最後の工程に86N4を用いること
は、使わないケースより好ましいことを示している。ま
た、合金化、鋳造、精製の各工程にSi、N4を使うこ
とは、勿論効果を示している(実施例−4)。
Therefore, it is shown that using 86N4 at least in the final step is preferable to not using it. Moreover, the use of Si and N4 in each step of alloying, casting, and refining has of course shown to be effective (Example 4).

実施例−5,6,7,8 接点材料として上記したCu−B1合金の外に、Cu−
pb (実施例−5)、Cu−’I’e (実施例−6
)、Cu−Ag−Bi(実施例−8)など、他の接点合
金に対しても8iaN、の使用は有効である。
Examples 5, 6, 7, 8 In addition to the Cu-B1 alloy mentioned above as the contact material, Cu-
pb (Example-5), Cu-'I'e (Example-6)
), 8iaN is also effective for other contact alloys such as Cu-Ag-Bi (Example-8).

実施例−9,10,11,12、比較例−7,8,9上
記は、溶解法によって′接点素材を作る場合の実施例及
び比較例につき述べたが本発明方法は焼結法によって接
点素材を得る場合に対して適用することによって効果を
発揮する。
Examples - 9, 10, 11, 12, Comparative Examples - 7, 8, 9 The above describes examples and comparative examples in which contact materials are made by a melting method. It is effective when applied when obtaining materials.

この場合の組成およびテスト結果を第2表に示す。The composition and test results in this case are shown in Table 2.

Cu またはAgの必要量の全量またはその一部の量の
粉末と、BI など溶着防止材料とW、Crなと耐アー
ク性材料の粉末との混合体にパラフィンを加え、約2ト
ン〜で成型稜、900〜1300″CJで予備焼結を行
う。
Paraffin is added to a mixture of all or a part of the required amount of powder of Cu or Ag, a welding prevention material such as BI, and powder of an arc-resistant material such as W and Cr, and the mixture is molded using approximately 2 tons or more. Edge, perform preliminary sintering at 900-1300″CJ.

Cu iたはAgの量が最初から全量を使用した場合の
仮焼結体はそのtま又は900〜1300℃程度で本焼
結を行い接点素材を得る。Cu またはAgの量が全量
の一部の量を使用した場合の予備焼結体に対しては、残
部のC,u量を1100〜1300℃程度で溶浸させる
ことにより接点素材を得る。
When the entire amount of Cu i or Ag is used from the beginning, the temporary sintered body is subjected to main sintering at about 900 to 1300° C. to obtain a contact material. For a preliminary sintered body in which a portion of the total amount of Cu or Ag is used, a contact material is obtained by infiltrating the remaining amounts of C and U at about 1100 to 1300°C.

上記各プロセスすなわち仮焼結、本焼結、溶浸工程にお
いて、接点を収容するボート、またはのせ板の利質は、
前例の溶解法による場合と同様な効果が焼結系接点拐の
相違にかかわらず得られている。
In each of the above processes, namely preliminary sintering, main sintering, and infiltration steps, the benefits of the boat or mounting plate that accommodates the contacts are as follows:
The same effect as in the case of the previous melting method was obtained regardless of the difference in the thickness of the sintered contact.

すなわち比較例−7、実施例−9を対応させるとCu−
W接点において本焼結1こ5tsN4を用いることで前
記と同様突発性ガス、再点弧発生確率の再考に優れてい
る。
That is, when Comparative Example-7 and Example-9 are made to correspond, Cu-
By using this sintered 15tsN4 at the W contact point, it is possible to reconsider the probability of sudden gas and restriking occurrence, as described above.

他の例Cu−Cr (比較例−8、実施例−10)、A
g−WC−B i (比較例−9、実施例−11)でも
、同じ傾向が得られている。
Other examples Cu-Cr (Comparative Example-8, Example-10), A
The same tendency was obtained with g-WC-B i (Comparative Example-9, Example-11).

仮焼結と本焼結の両方に81jN、を用いてることは、
同様tこ優れたレベルを維持している。
The fact that 81JN is used for both preliminary sintering and main sintering means that
Similarly, it maintains an excellent level.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の製造方法によれは、真空バ
ルブ用接点合金をつくるとき溶融状態にある接点合金の
取扱いを8i、N、にょって行うことにより、突発性ガ
ス放出を軽減化しつつ、再点弧の発生頻度を低減した接
点合金が得られ、真空バルブの高信頼化に有益である。
As explained above, according to the manufacturing method of the present invention, by handling the contact alloy in a molten state in 8i, N, when manufacturing the contact alloy for vacuum valves, it is possible to reduce sudden gas release while reducing sudden gas release. , a contact alloy that reduces the frequency of restriking can be obtained, which is useful for increasing the reliability of vacuum valves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による接点合金を適用する真空バルブの
一構成例を示す■断面図、第2図はその要部拡大図、第
3図および第4図はそれぞれ本発明に用いられる製造装
置の概略を示す配置図である0 ■・・・しゃ断案 2・・・絶縁容器 6.7・・・電極棒 8・・・固定電極9・・・可動電
極 14 、148・・・接点13.15・・・ろう材
 21・・・接点合金22・・・容器 23・・・高周
波加熱コイル24・・・絶縁体
Figure 1 is a sectional view showing an example of the configuration of a vacuum valve to which the contact alloy according to the present invention is applied, Figure 2 is an enlarged view of its main parts, and Figures 3 and 4 are manufacturing equipment used in the present invention, respectively. 0 ■... Breaking plan 2... Insulating container 6.7... Electrode rod 8... Fixed electrode 9... Movable electrode 14, 148... Contact point 13. 15... Brazing metal 21... Contact alloy 22... Container 23... High frequency heating coil 24... Insulator

Claims (2)

【特許請求の範囲】[Claims] (1)真空パルプ用接点合金を、少くとも一部に液相が
存在する状態で合金化、鋳造、鞘IL!!または焼結す
るプロセスを含む工程で製造する真空ノクルプ用接点合
金の製造方法において、少くともその1つのプロセスは
8i3N、を主体とする構成体まだは粉体に接して行な
わせることを%徴とする真空パルプ用接点合金の製造方
法。
(1) A contact alloy for vacuum pulp is alloyed, cast, and sheathed in a state where at least a portion of the liquid phase exists. ! Alternatively, in a method for manufacturing a contact alloy for a vacuum nokulp which is manufactured by a process including a sintering process, at least one of the processes is performed in contact with a powder mainly composed of 8i3N. A method for producing a contact alloy for vacuum pulp.
(2)少くとも最終プロセスはSt、N、を主体とする
構成体または粉体に接して行なわせるようにした特許請
求の範囲第1項記載の真空パルプ用接点合金の製造方法
(2) The method for producing a contact alloy for vacuum pulp according to claim 1, wherein at least the final process is carried out in contact with a composition or powder mainly composed of St and N.
JP17124183A 1983-09-19 1983-09-19 Method of producing contact alloy for vacuum bulb Pending JPS6063835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17124183A JPS6063835A (en) 1983-09-19 1983-09-19 Method of producing contact alloy for vacuum bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17124183A JPS6063835A (en) 1983-09-19 1983-09-19 Method of producing contact alloy for vacuum bulb

Publications (1)

Publication Number Publication Date
JPS6063835A true JPS6063835A (en) 1985-04-12

Family

ID=15919654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17124183A Pending JPS6063835A (en) 1983-09-19 1983-09-19 Method of producing contact alloy for vacuum bulb

Country Status (1)

Country Link
JP (1) JPS6063835A (en)

Similar Documents

Publication Publication Date Title
JPH059502B2 (en)
KR910000486B1 (en) Contact forming material for a vacuum valve and the method
JP2908073B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH1173830A (en) Vacuum valve
US4347413A (en) Electrodes of vacuum circuit breaker
KR0170052B1 (en) Contact material for vacuum valve & method of manufacturing the same
JP3251779B2 (en) Manufacturing method of contact material for vacuum valve
JPS6063835A (en) Method of producing contact alloy for vacuum bulb
KR950006738B1 (en) Contact point for a vacuum interrupter
US4229631A (en) Vacuum-type circuit breaker
US4231814A (en) Method of producing a vacuum circuit breaker
EP0097906B1 (en) Contacts for vacuum switches
JP2937620B2 (en) Manufacturing method of contact alloy for vacuum valve
JPS6362852B2 (en)
JP2006032036A (en) Contact material for vacuum valve
JP2511019B2 (en) Contact material for vacuum valve
JPS5960827A (en) Method of producing contact alloy for vacuum breaker
JPH0612646B2 (en) Contact material for vacuum valve
JPS63150822A (en) Manufacture of contact alloy for vacuum valve
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JPS62150618A (en) Manufacture of contact alloy for vacuum valve
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JPS62202425A (en) Manufacture of contact alloy for vacuum valve
JPH07228933A (en) Contact material for vacuum valve
JP2001236865A (en) Vacuum valve