JPS5960827A - Method of producing contact alloy for vacuum breaker - Google Patents

Method of producing contact alloy for vacuum breaker

Info

Publication number
JPS5960827A
JPS5960827A JP17025182A JP17025182A JPS5960827A JP S5960827 A JPS5960827 A JP S5960827A JP 17025182 A JP17025182 A JP 17025182A JP 17025182 A JP17025182 A JP 17025182A JP S5960827 A JPS5960827 A JP S5960827A
Authority
JP
Japan
Prior art keywords
heat
treated
highly conductive
conductive material
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17025182A
Other languages
Japanese (ja)
Inventor
功 奥富
千葉 誠司
一秀 松本
山根 茂美
関口 薫旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17025182A priority Critical patent/JPS5960827A/en
Publication of JPS5960827A publication Critical patent/JPS5960827A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、真空しゃ断器用接点材料の製造方法に関し、
特に再点弧現象の発生を抑制した接点合金の製造方法に
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a contact material for a vacuum breaker,
In particular, the present invention relates to a method of manufacturing a contact alloy that suppresses the occurrence of the restriking phenomenon.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

真空しゃ断器は、小型、軽量、メンテナンスフリー、環
境調和など、他のしゃ断器に比べ優れた特徴を有するた
め、近年、次第にその適用範囲が拡大され、従来より一
般に使用されている36 kV以下の回路から、例えば
72kV以上というような更に高圧の回路への適用が行
なわれている。このような高圧化に伴ない、更に高耐圧
で再点弧現象の発生の少ない接点材料の開発が望まれて
いる。この要求に対しては、従来より高耐圧、大容量真
空しゃ断器用の接点材料として用いられているBI。
Vacuum circuit breakers have superior characteristics compared to other circuit breakers, such as being small, lightweight, maintenance-free, and environmentally friendly.In recent years, the range of their application has been gradually expanded. Applications are being made from circuits to even higher voltage circuits, for example 72 kV or higher. As pressures become higher, there is a demand for the development of contact materials that have even higher withstand voltages and less occurrence of restriking phenomena. To meet this demand, BI has been used as a contact material for high-voltage, large-capacity vacuum breakers.

Pb、 ’l’e等の溶着防止成分を配合したCu基合
金は必ずしも満足すべきものとは云い難い。
It is difficult to say that Cu-based alloys containing adhesion prevention components such as Pb and 'l'e are necessarily satisfactory.

上記したような高圧下においても再点弧現象を起しにく
い接点材料を得るためには、一般に(1)耐圧的に欠陥
となりやすい脆弱な溶着防止成分を極力少な(すること
、(2)ガス不純物やピンホール等を極力少なくするこ
と、が望ましい。これに対し、上記したようにBi、 
pb、 Teなとの蒸気圧の高い元素を含有する接点合
金では、鋳塊に気泡が発生しやすく、特に径の小さな鋳
型に鋳込む際には気泡が表面付近に多く発生したり、又
内部に引は巣を生じたりするなどの重大な鋳造欠陥が生
ずることも多い。このような欠陥を生じさせないために
、一方向凝固法も採用されているが、・この場合も・上
記した溶着防止成分の添加に伴なう再点弧現象の発生は
必ずしも充分に抑制されていないのが実情である。
In order to obtain a contact material that is unlikely to cause restriking even under high pressure as described above, it is generally necessary to (1) minimize the amount of brittle adhesion prevention components that tend to cause defects in pressure resistance, and (2) reduce gas It is desirable to reduce impurities, pinholes, etc. as much as possible.On the other hand, as mentioned above, Bi,
Contact alloys containing elements with high vapor pressure such as PB and Te tend to generate bubbles in the ingot, and especially when casting into a small diameter mold, many bubbles occur near the surface or inside the ingot. Serious casting defects such as cracks and cavities often occur. In order to prevent such defects from occurring, a unidirectional solidification method is also used, but in this case as well, the occurrence of the restriking phenomenon associated with the addition of the above-mentioned welding prevention component is not necessarily sufficiently suppressed. The reality is that there is not.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した事情に鑑み、所望の耐溶着性
を維持しつつ、溶着防止成分の添加に伴なう再点弧現象
の発生の少ない真空しゃ断器用接点材料を製造する方法
を提供することを目的とする。
In view of the above-mentioned circumstances, it is an object of the present invention to provide a method for manufacturing a contact material for a vacuum breaker, which maintains desired welding resistance and reduces the occurrence of the restriking phenomenon due to the addition of a welding prevention component. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明者らは、接点材料を加熱する過程で放出されるガ
スの総量ならびに放出の形態について詳細な観察を行っ
たところこれら要因と再点弧現象の発生には重要な相関
があり、特に接点材料を構成する原材料の個々について
、これらガスの放出、なかでも融点近傍で突発的に発生
するガスの放出、を制御することにより、再点弧現象を
効果的に抑制できることが見出された。すなわち、接点
材料を加熱していくと、吸着ガスのほとんどは溶融点以
下で脱ガスされ、溶融点近傍で固溶したガスが放出され
るが、更に溶融点以上で加熱放置すると、極めて短時間
(例えばミリ秒程度)ではあるがAルス的な突発性ガス
の放出(数回ないし数百回突発する)が観察される。こ
れら突発性ガスにはC2H2、CH4等が若干含まれる
が、主体はC01CO□、0゜等の酸素系であることか
ら、これら突発性ガスは接点材料に含まれる酸化物の分
解により放出されるものと考えられる。本発明者らの研
究によれば、再点弧現象の多く発生する接点刷料には、
突発性ガスの放出も多い。したがって、上述の知見より
すれば、接点材料をその融点以上の温度で保持して、こ
の突発性ガスを予め放出させておくことにより、再点弧
現象の発生を防止することが考えられる。しかしながら
、真空しゃ断器用接点材料は、Cuを相当量含有し、こ
れらの酸化物を分解して除くためには、たとえば10−
〜1〇−Torrの真空度において約1200℃以上の
温度が必要となるので、蒸気圧の高いBi、 pb、 
Te%sb等の溶着防止材を含む接点材料について上記
のような熱処理を行うことは、高価な溶着防止材の損失
を招き、また接点材料の基本的な機能の一つである溶着
防止性能が失われる。一方、溶着防止材として、例えば
B1を加熱して行くと、400〜550℃近傍で極めて
激しく複数種のガスを放出する。
The present inventors made detailed observations on the total amount of gas released during the process of heating the contact material and the form of the release, and found that there is an important correlation between these factors and the occurrence of the restriking phenomenon. It has been found that the restriking phenomenon can be effectively suppressed by controlling the release of these gases, especially the release of gases that suddenly occur near the melting point, for each of the raw materials that make up the material. In other words, when the contact material is heated, most of the adsorbed gas is degassed below the melting point, and the gas dissolved in solid solution near the melting point is released. However, if the contact material is further heated above the melting point, it will degas for a very short time. (for example, about milliseconds), but a sudden gas release (several to hundreds of bursts) is observed. These sudden gases contain a small amount of C2H2, CH4, etc., but since they are mainly oxygen-based such as CO1CO□ and 0°, these sudden gases are released by the decomposition of oxides contained in the contact material. considered to be a thing. According to the research conducted by the present inventors, contact printing materials that often cause restriking phenomena include:
There are also many sudden gas releases. Therefore, based on the above findings, it is possible to prevent the restriking phenomenon by holding the contact material at a temperature higher than its melting point and releasing this sudden gas in advance. However, contact materials for vacuum breakers contain a considerable amount of Cu, and in order to decompose and remove these oxides, for example, 10-
Since a temperature of approximately 1,200°C or higher is required at a vacuum level of ~10-Torr, Bi, pb, which has a high vapor pressure,
Performing the above heat treatment on contact materials containing anti-welding materials such as Te%sb will result in loss of the expensive anti-welding materials, and will also reduce the anti-welding performance, which is one of the basic functions of contact materials. Lost. On the other hand, when B1, for example, is heated as a welding prevention material, it emits multiple types of gas extremely violently at around 400 to 550°C.

このような放出ガスの一部は、昇温過程にあるCu等と
結合し、比較的安定な化合物を作り溶解作業中に一部は
分解するが、他の一部はなお残存し突発性ガスの一因と
なる。このような突発性ガスの放出は、たとえば純度9
9.9999%のBiを原料として使用しても、酸化あ
るいはガス吸着が進行する状態で放置しておく場合には
なお認められる。
A part of such released gas combines with Cu, etc. during the temperature rising process to form a relatively stable compound, and part of it decomposes during the melting process, but the other part still remains and generates sudden gas. This is a contributing factor. Such a sudden release of gas may occur, for example, if the purity level is 9.
Even if 9.9999% Bi is used as a raw material, it is still observed when left in a state where oxidation or gas adsorption progresses.

上述のような観察は、溶着防止材を含む接点材料におい
て、 Cu等の高導電性材料と溶着防止成分材とについ
て個別の熱処理により突発性ガスの原因となる不純物を
予め除いておくことの必要性を示唆する。本発明の真空
しゃ断器用接点合金の製造方法は、このような知見に基
づくものであり、その第1は、Cu及び/又はAgから
なる高導電性材を予じめ1200℃以上で溶融熱処理し
、この熱処理した高導電性材の1000〜1300℃の
溶湯と、別途予じめ400〜1000℃の温度で溶融熱
処理したB1%Pb、 Te、 Sb  の少なくとも
一種よりなる溶着防止材とを混合し、冷却固化して合金
化することを特徴とするものである。
The above observation indicates that in contact materials containing anti-adhesion materials, it is necessary to remove impurities that cause sudden gas through separate heat treatments for highly conductive materials such as Cu and anti-adhesion materials. Suggests sex. The method for manufacturing a contact alloy for a vacuum breaker of the present invention is based on such knowledge, and the first step is to melt and heat-treat a highly conductive material made of Cu and/or Ag at 1200°C or higher in advance. , a molten metal of this heat-treated highly conductive material at 1000 to 1300°C is mixed with a welding prevention material made of at least one of B1%Pb, Te, and Sb, which has been separately heat-treated for melting at a temperature of 400 to 1000°C. It is characterized by being cooled, solidified, and alloyed.

また上述した高導電性材料と溶着防止成分材との個別熱
処理の効果は、焼結型接点合金の溶浸材を得る際にも見
出された。すなわち、本発明の真空しゃ断器用接点合金
の製造方法の第2は、上記第1の方法にしたがって溶浸
材を得、別途W。
Furthermore, the effect of the separate heat treatment of the highly conductive material and the welding prevention component described above was also found when obtaining an infiltration material for a sintered contact alloy. That is, in the second method of manufacturing a contact alloy for a vacuum breaker of the present invention, an infiltration material is obtained according to the first method, and then W is added separately.

Mo、Cr、 Tiおよびこれらの炭化物から選ばれた
耐アーク性材単独又はこれとCu及び/又はAgからな
る高導電性材との混合物の圧粉焼結体を用意し、この圧
粉焼結体に前記溶浸材を溶融含浸させることを特徴とす
るものである。
A compacted sintered body of an arc-resistant material selected from Mo, Cr, Ti, and their carbides alone or a mixture of this and a highly conductive material consisting of Cu and/or Ag is prepared, and this compacted sintered body is prepared. The method is characterized in that the body is melted and impregnated with the infiltrating material.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、図面を参照しつつ本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to the drawings.

以下の記載において、組成を表わす「%」はいずれもN
量基準とする。
In the following description, "%" representing the composition is N
Based on quantity.

第1図は、本発明の接点材料を適用する真空しゃ断器の
一構成例を示す正断面図であり、第2図はその要部拡大
図である。図面を参照して、しゃ断案1は、セラミック
等の絶縁材料によりほぼ円筒状に形成された絶縁容器2
と、この1ibi端に密閉機構3.3aを介して設けた
金属製蓋体4および5とで真空気密に区画されている。
FIG. 1 is a front sectional view showing a configuration example of a vacuum breaker to which the contact material of the present invention is applied, and FIG. 2 is an enlarged view of the main parts thereof. Referring to the drawings, a breaking plan 1 includes an insulating container 2 made of an insulating material such as ceramic and having a substantially cylindrical shape.
and metal lids 4 and 5 provided at this end via a sealing mechanism 3.3a, and are vacuum-tightly partitioned.

しかして、このしゃ断案1内には、一対の電極棒6.7
の互いに対向する端部にそれぞれ固定電極8および可動
電極9が配設されている。また上記可動電極9の電極棒
7には、ベローズ10が取付けられ、しゃ断案1内を真
空気密に保持しながら、電極9の往復動による一対の電
極8.9の開閉を可能にしている。またこのベローズ1
0はフード11により榎われアーク蒸気の被着を防止し
ており、またしゃ断案1内には更に円筒状金属容器12
が設けられ、絶縁容器2へのアーク蒸気の被着を防止し
ている。
However, inside this cutoff guide 1, a pair of electrode rods 6.7
A fixed electrode 8 and a movable electrode 9 are arranged at mutually opposing ends of the electrode. Further, a bellows 10 is attached to the electrode rod 7 of the movable electrode 9, so that the pair of electrodes 8.9 can be opened and closed by the reciprocating movement of the electrode 9 while keeping the interior of the breaker guide 1 vacuum-tight. Also this bellows 1
0 is covered by a hood 11 to prevent arc vapor from adhering to it, and there is also a cylindrical metal container 12 inside the shutoff guide 1.
is provided to prevent arc vapor from adhering to the insulating container 2.

一方、可動電極9は、その拡大構造を第2図に示すよう
に、導電棒7にロウ材13によって固定されるか、又は
かしめによって圧着接続(図示せず)されており、その
上には可動接点14がロウ材15によって接合されてい
る。また固定電極8の詳細構造(図示せず)も向きが逆
となるのみでほぼ同様であり、これKは固定接点14a
が設けられている。
On the other hand, as the enlarged structure of the movable electrode 9 is shown in FIG. A movable contact 14 is joined by a brazing material 15. Further, the detailed structure (not shown) of the fixed electrode 8 is almost the same except that the direction is reversed, and K is the fixed contact 14a.
is provided.

本発明により製造する接点合金は、上記したような接点
14.14aの双方またはいずれか一方を構成するのに
適したものである。
The contact alloys produced in accordance with the present invention are suitable for constructing contacts 14, 14a as described above.

本発明の方法で接点合金を製造するために用いる素材は
、従来のそれと特に異るものではない。
The materials used to produce contact alloys in the method of the present invention are not particularly different from conventional materials.

すなわち、高導電性材としては、Cu又は/及びAgが
用いられ、これら高導電性材は、本発明の第1の方法に
したがい溶融型接点合金を製造するときは、後述する成
分の残部をなす量で用いられ、また第2の方法にしたが
い焼結型接点合金を製造するときは、接点合金の15〜
65%をなす量で用いられる。
That is, Cu and/or Ag are used as the highly conductive material, and when producing a melt-type contact alloy according to the first method of the present invention, these highly conductive materials are mixed with the remainder of the components described below. and when manufacturing the sintered contact alloy according to the second method, the amount of the contact alloy
It is used in an amount making up 65%.

また溶着防止材としては、Bi、 Pb、 Te、 s
bの少なくとも一種が用いられ、これら浴着防止材は接
点合金に要求される耐溶着性の程度に応じその0.1〜
15%をなす量範囲で用いられる。
In addition, as welding prevention materials, Bi, Pb, Te, s
At least one of b is used, and these bath adhesion prevention materials have a range of 0.1 to 0.1 to
It is used in an amount range of 15%.

更に、本発明の第2の方法にしたがい、焼結型接点合金
を製造する際の耐アーク性材としては、W、 MO,c
r%TIおよびこれらの炭化物から選択したものが用い
られ、これらは上記した各成分の残部をなす量で用いら
れる。
Furthermore, according to the second method of the present invention, as the arc-resistant material when manufacturing the sintered contact alloy, W, MO, c
A selection of r% TI and carbides thereof is used, and these are used in amounts that make up the balance of each component listed above.

次に上記した各素材から、本発明の第1の方法により接
点合金を製造する工程について説明する。
Next, a process of manufacturing a contact alloy from each of the above-mentioned materials by the first method of the present invention will be explained.

まず、上記した高導電性材をるつぼに入れ、1200℃
以上の温度で熱処理する。熱処理条件は、高導電性材の
種類によって異なり、Agは126゜℃以上で充分であ
るが、Cuの場合は、1300℃以上、特に1500℃
以上が好ましい。熱処理はI X IQ  Torr、
以下の真空あるいはH2雰囲気で行うことが好ましく、
熱処理時間は、温度等の条件によって異なるJことえば
Cu について、1300℃の温度の場合、10分以上
熱処理することが好ましい。これにより、Cu2O、C
uO等の酸化物を分解し、これら不純物を一層減少させ
た高導電性材を得る。
First, the above-mentioned highly conductive material was placed in a crucible and heated to 1200°C.
Heat treatment is performed at a temperature higher than that. Heat treatment conditions vary depending on the type of highly conductive material; for Ag, 126°C or higher is sufficient, but for Cu, 1300°C or higher, especially 1500°C
The above is preferable. Heat treatment is IXIQ Torr,
It is preferable to carry out in the following vacuum or H2 atmosphere,
The heat treatment time varies depending on conditions such as temperature. For Cu, in the case of a temperature of 1300° C., it is preferable to conduct the heat treatment for 10 minutes or more. As a result, Cu2O, C
Oxides such as uO are decomposed to obtain a highly conductive material in which these impurities are further reduced.

一方、上記のような溶融熱処理を、溶着防止材について
も、ただし400〜1000℃とより低温で行う。これ
は、蒸気圧の高い溶着防止材の損失を防止しつつ再点弧
現象の発生原因となる突発性ガス成分を効果的に除くた
めであり、雰囲気は10−2〜10−’Torrの真空
あるいはH2雰囲気が好ましく、熱処理時間は10〜3
0分程度が適当である。
On the other hand, the above-described melt heat treatment is also performed on the anti-welding material at a lower temperature of 400 to 1000°C. This is to prevent the loss of the welding prevention material, which has a high vapor pressure, and to effectively remove the sudden gas component that causes the restriking phenomenon.The atmosphere is a vacuum of 10-2 to 10-'Torr. Alternatively, H2 atmosphere is preferable, and the heat treatment time is 10 to 3
Approximately 0 minutes is appropriate.

次いでこのように熱処理した溶着防止材を前記のように
熱処理した高導電性材の1000〜1300℃の溶湯に
添加し、溶融混合する。一般に高導電性材の溶湯のlこ
の温度代上記した熱処理温度よりも低い温度とし混合の
際の溶着防止材の損失を防止する。高導電性材は、上記
熱処理後、一旦冷却固化し再度溶融したものを用いても
よい。これに対し、溶着防止材は上記熱処理後、で診る
だけ速やかに高導電性材の溶湯に添加して混合すること
が好ましい。なぜならば、溶着防止材を一旦熱処理後、
固化すると、常温のデシケータ内放置においても突発性
ガス成分の形成が進み再点弧の発生の要因となるからで
ある。
Next, the welding prevention material heat-treated in this manner is added to the molten metal of the highly conductive material heat-treated as described above at 1000 to 1300° C., and the mixture is melt-mixed. Generally, the temperature of the molten metal of the highly conductive material is lower than the above-mentioned heat treatment temperature to prevent loss of the welding prevention material during mixing. The highly conductive material may be one that is once cooled and solidified after the heat treatment and then melted again. On the other hand, it is preferable to add the welding prevention material to the molten metal of the highly conductive material and mix it as soon as possible after the heat treatment. This is because once the anti-welding material is heat-treated,
This is because, if solidified, even if left in a desiccator at room temperature, the formation of explosive gas components will progress and become a factor in the occurrence of restriking.

溶融混合は、10 〜10  Torr程度の真空中で
ω分以内に済ますことが望ましい。溶融混合物を冷却固
化することにより本発明の第1の方法による接点合金が
得られる。冷却固化は、ゾーンメルト法に準じて、るつ
ぼを炉内の高温域より低温域接点合金の溶浸材として用
いるものである。
It is desirable that the melt mixing be completed within ω minutes in a vacuum of about 10 to 10 Torr. A contact alloy according to the first method of the invention is obtained by cooling and solidifying the molten mixture. In cooling solidification, a crucible is used as an infiltration material for a contact alloy in a lower temperature range than a high temperature range in a furnace, in accordance with the zone melt method.

すなわち、通常の焼結型接点合金の製造におけると同様
に、100〜400メツシユ程度の耐アーク性材粉末の
単独又は、これと高導電性材粉末との渭合物に、必要に
応じて1%前後のAラフインを添加して得られた原料粉
末を1〜7トン/cIL2程度の圧力で成形し、成形体
を非酸化性雰囲気中、1000℃以上の温度で焼結して
空隙率が関〜(資)容量%程度の焼結体を得る。
That is, as in the production of normal sintered contact alloys, about 100 to 400 meshes of arc-resistant material powder alone or in combination with highly conductive material powder are added with The raw material powder obtained by adding approximately % A rough-in is molded at a pressure of about 1 to 7 tons/cIL2, and the molded body is sintered at a temperature of 1000°C or higher in a non-oxidizing atmosphere to reduce the porosity. A sintered body with a capacity of about % is obtained.

この際、高導電性材を含む成形体の焼結には1150℃
以上の温度での熱処理を行うことが望ましい。
At this time, the temperature is 1150℃ for sintering the compact containing the highly conductive material.
It is desirable to perform heat treatment at a temperature higher than that.

一方、溶着防止材と好ましくはその2重量倍以上である
高導電性材の残部とについて、上記第1の方法と全く同
じ操作を実施することにより溶浸材を得る。
On the other hand, an infiltration material is obtained by carrying out exactly the same operation as in the first method for the welding prevention material and the remainder of the highly conductive material, which is preferably at least twice the weight of the welding prevention material.

この溶浸材の溶湯に上記焼結体を浸漬するか、あるいは
、この溶浸材の成形体と焼結体とを積層し、前者の溶湯
を焼結体の空隙に浸入させ、冷却固化することにより本
発明の第2の方法による接点合金が得られる。
The sintered body is immersed in the molten metal of the infiltrant, or the molded body of the infiltrant and the sintered body are laminated, and the molten metal of the former is allowed to enter the voids of the sintered body, and then cooled and solidified. A contact alloy according to the second method of the invention is thus obtained.

〔発明の実施例、比較例〕[Examples of the invention, comparative examples]

比較例1 約32.?のBi  (溶解中の蒸発損量を見込んで約
0.8%秤量)と約4 K9のCuを内径70flのる
つぼ中で1200℃、10−’Torr台の真空度で、
約15分加熱の条件により合金化の後、2關/分の移動
速度で鉛分間かけてゾーンメルトを行い、長さ約111
のインゴットを得た。この間に放出されたガスの総量は
3〜5ppm、・突発性ガスの放出回数は9〜33回で
あった。
Comparative Example 1 Approximately 32. ? of Bi (approximately 0.8% weighed considering evaporation loss during melting) and Cu of approximately 4K9 in a crucible with an inner diameter of 70 fl at 1200°C and a vacuum of 10-' Torr.
After alloying under the conditions of heating for about 15 minutes, zone melting was performed for lead minutes at a moving speed of 2 steps/minute, and the length was about 111 mm.
Obtained an ingot. The total amount of gas released during this period was 3 to 5 ppm, and the number of bursts of gas released was 9 to 33 times.

上記インゴットを接点に加工後、試験用真空バルブに組
込んで、6kV、415Aの電流を2000回しゃ断し
た。しゃ断中の再点弧数は2.8回(2,4%)であっ
た。
After processing the above ingot into a contact, it was assembled into a test vacuum valve, and a current of 6 kV and 415 A was interrupted 2000 times. The number of restrikes during shutdown was 2.8 times (2.4%).

実施例1 比較例1と同量のB1  を石英管中で真空度7×1O
−3Torr 、温度約850℃で10分間加熱処理し
たものを、別途、同じ真空度で最高1580”Cまで加
熱し1時間保持後1200’Cまで降温した溶融Cu中
に速やかに投入し、10−’Torr台の真空度で15
分間保持して合金化後、21/分の速度で約ω分間かけ
て冷却固化した。
Example 1 The same amount of B1 as in Comparative Example 1 was placed in a quartz tube at a vacuum degree of 7×1O.
-3 Torr and a temperature of approximately 850°C for 10 minutes, the product was separately heated to a maximum of 1580'C at the same degree of vacuum, held for 1 hour, and immediately poured into molten Cu whose temperature was lowered to 1200'C. '15 at Torr level vacuum
After alloying by holding for a minute, the mixture was cooled and solidified at a rate of 21 minutes over a period of about ω minutes.

合金化過程以後におけるガスの放出量は0.1ppm以
下、突発性ガス放出回数は0回であり、得られた合金か
ら比較例1と同様に加工して接点を得、同様なしゃ断テ
ストを行ったが、再点弧の発生は認められなかった。
The amount of gas released after the alloying process was 0.1 ppm or less, and the number of sudden gas emissions was 0. The obtained alloy was processed in the same manner as in Comparative Example 1 to obtain a contact, and the same breaking test was performed. However, no restrike was observed.

比較例2〜7.実施例2〜6 上記した比較例1あるいは実施例1と同様にして、ただ
し、原料の前処理の有無ならびにその条件を変え、ある
いは約31のBl 0代りに329のpbまたは32.
9のTeを溶着防止材として用いて、接点合金を得た。
Comparative Examples 2-7. Examples 2 to 6 The procedure was the same as in Comparative Example 1 or Example 1, except that the presence or absence of pretreatment of the raw materials and its conditions were changed, or 329 pb or 32.
A contact alloy was obtained using Te No. 9 as a welding prevention material.

これら条件ならびに得られた接点合金についてのしゃ断
テスト結果を、比較例1および実施例1の結果とまとめ
て、下表−1に記すO 上表−1の結果を見ると、いずれも本発明の方法にした
がい原料の前処理を行うことにより再点弧の発生を著し
く低減できることがわかる。また比較例−2および3の
ごとく、溶着防止材のみ、あるいは高導電材のみを前処
理した場合を比較すると前者の方が効果は大きいが、両
者を前処理する本発明の実施例にはおよばないことがわ
かる。
These conditions and the results of the breaking test for the obtained contact alloys are summarized with the results of Comparative Example 1 and Example 1, and are listed in Table 1 below. It can be seen that the occurrence of restriking can be significantly reduced by pre-treating the raw material according to the method. Furthermore, when comparing the cases where only the anti-adhesive material or only the highly conductive material is pretreated as in Comparative Examples 2 and 3, the former has a greater effect, but the embodiment of the present invention in which both are pretreated is not as effective. It turns out that there isn't.

更に浴着防止材の前処理温度は350℃では効果が乏し
く(比較例−4)、少なくとも400℃(実施例−4)
が必要である。前処理の雰囲気は真空中のみならずH2
雰囲気も使用可能である(実施例−4)。
Furthermore, the pretreatment temperature of the bath adhesion prevention material is not effective at 350°C (Comparative Example-4), and at least 400°C (Example-4).
is necessary. The pretreatment atmosphere is not only vacuum but also H2
An atmosphere can also be used (Example-4).

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明によれば、接点合金を構成する
高導電性材と溶着防止材について個別に異なる条件で熱
処理を行い、その後合金化を行うことにより、溶着防止
成分の損失を防止しつつ再点弧の発生を効果的に減少さ
せた真空しゃ断器用接点合金が得られる。
As described above, according to the present invention, the highly conductive material and the anti-welding material constituting the contact alloy are individually heat-treated under different conditions, and then alloyed, thereby preventing loss of the anti-welding component. A contact alloy for a vacuum breaker is obtained which effectively reduces the occurrence of restriking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による接点合金を適用する真空しゃ断器
の一構成例を示す正断面図、第2図はその要部拡大図で
ある。 1・・・しゃ断案、2・・・絶縁容器、6,7・・・電
極棒、8・・・固定電極、9・・・可動電極、14.1
4a・・・接点、13.5・・・ロウ材。
FIG. 1 is a front sectional view showing an example of the configuration of a vacuum breaker to which the contact alloy according to the present invention is applied, and FIG. 2 is an enlarged view of the main parts thereof. DESCRIPTION OF SYMBOLS 1... Breaking plan, 2... Insulating container, 6, 7... Electrode rod, 8... Fixed electrode, 9... Movable electrode, 14.1
4a... Contact, 13.5... Brazing material.

Claims (1)

【特許請求の範囲】 1、 Cu又は/及びAgからなる高導電性材を予じめ
1200℃以上で溶融熱処理し、この熱処理した高導電
性材の1000〜1300℃の浴湯と、別途子じめ40
0〜1000℃の温度で溶融熱処理したBi、 pb、
 Fe、 Sb  の少なくとも一種よりなる溶着防止
材とを混合し、冷却固化して合金化することを特徴とす
る真空しゃ断器用接点合金の製造方法。 2、高導電性材を1200℃以上で溶融熱処理後、一旦
冷却固化したのち、再度1000〜1300℃で再溶融
した溶湯と、別途熱処理した溶着防止材とを混合するこ
とを特徴とする特許請求の範囲第1項記載の真空しゃ断
器用接点合金の製造方法。 3、高4電性材を1200℃以上で溶融熱処理後、10
00〜1300℃に降温し、直ちに別途熱処理した溶着
防止材と混合することを特徴とする特FFM求の範囲第
1項記載の真空しゃ断器用接点合金の製造方法。 4、Cu及び/又はAgからなる高導電性材を予じめ1
200℃以上で溶融熱処理し、この熱処理した高導電性
材の1000〜1300℃の溶湯と、別途子じめ400
〜1000”Cの温度で溶融熱処理したBi、 pbS
Fe、 Sbの少な(とも一種よりなる溶着防止材とを
混合して溶浸材を得、別途W、Mo、 Cr、 ’rl
およびこれらの炭化物から選ばれた耐アーク性材単独又
はこれとCu又は/及びAgからなる高導電性材との混
合物の圧粉焼結体を用意し、この圧粉焼結体に前記溶浸
材を溶融含浸させることを特徴とする真空しゃ断器用接
点合金の製造方法。 5、圧粉焼結体を予じめ1000〜1300℃で熱処理
したのちに溶浸材を溶融含浸させることを特徴とする特
許請求の範囲第4項記載の真空しや断器用接点合金の製
造方法。
[Claims] 1. A highly conductive material made of Cu or/and Ag is melt-heat treated in advance at 1200°C or higher, and the heat-treated highly conductive material is heated in a bath water of 1000 to 1300°C, and separately heated. Jime 40
Bi, pb, melt heat treated at a temperature of 0 to 1000°C
1. A method for producing a contact alloy for a vacuum breaker, which comprises mixing a welding prevention material consisting of at least one of Fe and Sb, and solidifying the mixture by cooling to form an alloy. 2. A patent claim characterized in that a highly conductive material is melted and heat-treated at 1200°C or higher, once cooled and solidified, and then re-melted at 1000 to 1300°C, and the molten metal is mixed with a separately heat-treated welding prevention material. A method for producing a contact alloy for a vacuum breaker according to item 1. 3. After melt heat treatment of high 4-electroconductivity material at 1200℃ or higher, 10
A method for producing a contact alloy for a vacuum breaker according to item 1, which is characterized in that the temperature is lowered to 00 to 1300° C. and immediately mixed with a separately heat-treated anti-welding material. 4. A highly conductive material made of Cu and/or Ag is prepared in advance.
Melting heat treated at 200℃ or higher, 1000-1300℃ molten metal of this heat-treated highly conductive material and a separate 400℃
Bi, pbS melt heat treated at a temperature of ~1000”C
An infiltration material is obtained by mixing a welding prevention material containing a small amount of Fe and Sb (both of which are one type of welding prevention material), and separately prepared with W, Mo, Cr, 'rl.
A compacted sintered body of an arc-resistant material selected from these carbides alone or a mixture of this and a highly conductive material made of Cu and/or Ag is prepared, and the compacted sintered body is infiltrated with the above-mentioned infiltration. A method for producing a contact alloy for a vacuum breaker, the method comprising melting and impregnating a material. 5. Production of a contact alloy for vacuum shield breakers as set forth in claim 4, characterized in that the powder sintered body is heat-treated at 1000 to 1300°C in advance and then melted and impregnated with an infiltrant. Method.
JP17025182A 1982-09-29 1982-09-29 Method of producing contact alloy for vacuum breaker Pending JPS5960827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17025182A JPS5960827A (en) 1982-09-29 1982-09-29 Method of producing contact alloy for vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17025182A JPS5960827A (en) 1982-09-29 1982-09-29 Method of producing contact alloy for vacuum breaker

Publications (1)

Publication Number Publication Date
JPS5960827A true JPS5960827A (en) 1984-04-06

Family

ID=15901471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17025182A Pending JPS5960827A (en) 1982-09-29 1982-09-29 Method of producing contact alloy for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS5960827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4927952B2 (en) * 2007-11-21 2012-05-09 株式会社コナミデジタルエンタテインメント Game device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4927952B2 (en) * 2007-11-21 2012-05-09 株式会社コナミデジタルエンタテインメント Game device

Similar Documents

Publication Publication Date Title
KR100315732B1 (en) Vacuum circuit breaker and the vacuum valve and electrical contacts used therein
US3379846A (en) Electrodes for electric devices operable in a vacuum
KR970004578B1 (en) Process for manufacturing a contact material for a vacuum circuit breakers
JP6253494B2 (en) Contact material for vacuum valve and vacuum valve
JPS59163726A (en) Vacuum breaker
KR0170052B1 (en) Contact material for vacuum valve & method of manufacturing the same
JPS5960827A (en) Method of producing contact alloy for vacuum breaker
KR950006738B1 (en) Contact point for a vacuum interrupter
JP3251779B2 (en) Manufacturing method of contact material for vacuum valve
JP3106598B2 (en) Manufacturing method of electrode material
JP2006032036A (en) Contact material for vacuum valve
EP0097906B1 (en) Contacts for vacuum switches
JPS6353252B2 (en)
JPH01258330A (en) Manufacture of contact material for vacuum bulb
US3505037A (en) Hypereutectic silicon alloys
JPS5960828A (en) Method of producing contact alloy for vacuum breaker
KR0171607B1 (en) Vacuum circuit breaker and contact
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JP2937620B2 (en) Manufacturing method of contact alloy for vacuum valve
JP3627712B2 (en) Vacuum circuit breaker and vacuum valve and electrical contact used therefor
JP2853308B2 (en) Manufacturing method of electrode material
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JPS6362852B2 (en)
JPH07192565A (en) Contact material and its manufacture