JP3106598B2 - Manufacturing method of electrode material - Google Patents

Manufacturing method of electrode material

Info

Publication number
JP3106598B2
JP3106598B2 JP03257682A JP25768291A JP3106598B2 JP 3106598 B2 JP3106598 B2 JP 3106598B2 JP 03257682 A JP03257682 A JP 03257682A JP 25768291 A JP25768291 A JP 25768291A JP 3106598 B2 JP3106598 B2 JP 3106598B2
Authority
JP
Japan
Prior art keywords
copper
brazing
electrode material
chromium
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03257682A
Other languages
Japanese (ja)
Other versions
JPH05101751A (en
Inventor
信行 吉岡
泰司 野田
伸尚 鈴木
利真 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP03257682A priority Critical patent/JP3106598B2/en
Publication of JPH05101751A publication Critical patent/JPH05101751A/en
Application granted granted Critical
Publication of JP3106598B2 publication Critical patent/JP3106598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アトマイズ法による銅
−クロム合金の微粉末を原料とするろう付け作業性が良
好な電極材料の製造方法に関し、特に真空インタラプタ
の電極に用いて好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material having good brazing workability by using a fine powder of a copper-chromium alloy as a raw material by an atomizing method, and is particularly suitable for use as an electrode of a vacuum interrupter. .

【0002】[0002]

【従来の技術】真空インタラプタの電極材料として要求
される重要な性能の一つに電流遮断性能の高いことが挙
げられる。
2. Description of the Related Art One of the important performances required as an electrode material of a vacuum interrupter is a high current interruption performance.

【0003】銅(Cu)−クロム(Cr)合金は、この電流遮断
性能が非常に優れている電極材料として知られており、
従来では電解法等により製造された銅の粉体と、粉砕法
等により製造されたクロムの粉体とを混合したものを圧
縮加圧成形し、これを高温で焼結する粉末冶金法による
製造方法が一般的である。
[0003] A copper (Cu) -chromium (Cr) alloy is known as an electrode material having an extremely excellent current interruption performance.
Conventionally, a mixture of copper powder manufactured by an electrolytic method and chromium powder manufactured by a pulverization method is compression-pressed and molded by a powder metallurgy method in which this is sintered at a high temperature. The method is general.

【0004】この銅−クロム合金は、銅のマトリックス
中にクロムが分散したものであるが、電極材料としての
電気的特性に着目した場合、微細なクロムが銅マトリッ
クス中に均一に分散している方が好ましい。
In this copper-chromium alloy, chromium is dispersed in a copper matrix. When attention is paid to the electrical characteristics as an electrode material, fine chromium is uniformly dispersed in the copper matrix. Is more preferred.

【0005】ところが、粉末冶金法により製造される従
来の銅−クロム合金の場合、粉砕法により機械的に粉砕
して得られるクロム粉末の粒度分布の幅が非常に大き
く、しかもその平均粒径が40μm程度にも達するた
め、銅の粉体とクロムの粉体とを混合する際にこれらの
比重差や粉体の粒度、或いは粒度分布の相違により、均
一に混合され難い欠点を有する。この結果、焼結後にお
ける銅マトリックス中のクロムが微細且つ均一に分散せ
ず、その電気的特性が期待できるほど良好ではなかっ
た。
However, in the case of a conventional copper-chromium alloy produced by powder metallurgy, the width of the particle size distribution of chromium powder obtained by mechanical pulverization by a pulverization method is very large, and the average particle diameter is large. Since it reaches about 40 μm, there is a drawback that when mixing the copper powder and the chromium powder, uniform mixing is difficult due to the difference in specific gravity, the particle size of the powder, or the difference in particle size distribution. As a result, chromium in the copper matrix after sintering was not finely and uniformly dispersed, and the electrical characteristics were not as good as expected.

【0006】そこで、本発明者らはアトマイズ法により
得られる銅とクロムとの合金微粉末を焼結させてなる電
極材料を提案し、銅マトリックス中に微細な粒径のクロ
ムが均一に分散した高品質の銅−クロム合金を得ること
に成功した。
Accordingly, the present inventors have proposed an electrode material obtained by sintering an alloy fine powder of copper and chromium obtained by an atomizing method, and chromium having a fine particle diameter is uniformly dispersed in a copper matrix. A high quality copper-chromium alloy was successfully obtained.

【0007】このアトマイズ法により得られる銅とクロ
ムとの合金微粉末を焼結させてなる電極材料は、焼結可
能な温度の範囲が狭く、得られる電極材料は微小な空隙
部分を有する多孔質であることから、真空インタラプタ
等を製造する際のろう付け作業時に一般的なろう材で
は、その一部が電極材料の内部に浸透してしまい、ろう
付け不良を招く虞があるため、これらを機械的にかしめ
て一体化したり、或いは特殊なろう材を使用してこれら
を接合することが試みられている。
The electrode material obtained by sintering the alloy fine powder of copper and chromium obtained by the atomizing method has a narrow sinterable temperature range, and the obtained electrode material is a porous material having minute voids. Therefore, in a brazing material generally used in a brazing operation when manufacturing a vacuum interrupter or the like, a part of the brazing material may penetrate into the inside of the electrode material, and there is a fear that a brazing defect may be caused. Attempts have been made to integrate them by mechanical caulking or by using special brazing materials.

【0008】[0008]

【発明が解決しようとする課題】真空インタラプタの電
極とリード棒とを機械的にかしめて一体化する方法の場
合、そのかしめ工程が新たに必要となって生産性が悪く
なり、製造コストの上昇を招来する上に、これらをろう
付けする方法と比較すると、長期的な信頼性に劣る欠点
を有する。
In the case of a method in which the electrode of the vacuum interrupter and the lead bar are mechanically caulked and integrated, a new caulking step is required, which lowers productivity and increases manufacturing cost. In addition, it has a drawback that its long-term reliability is inferior to the method of brazing them.

【0009】又、真空インタラプタの電極とリード棒と
をろう付けする方法の場合、特殊なろう材を用いる必要
があるため、このようなろう材の使用に伴う製造コスト
の上昇を招く等の欠点がある。
In the case of the method of brazing the electrode of the vacuum interrupter and the lead rod, it is necessary to use a special brazing material, and thus the use of such a brazing material causes an increase in manufacturing cost. There is.

【0010】[0010]

【発明の目的】本発明は、真空インタラプタのリード棒
に対し一般的なろう材を用いてろう付けすることの可能
なアトマイズ法による銅−クロム合金の電極材料を製造
し得る方法を提供することを目的とする。
An object of the present invention is to provide a method for producing an electrode material of a copper-chromium alloy by an atomizing method which can be brazed to a lead rod of a vacuum interrupter using a general brazing material. With the goal.

【0011】[0011]

【課題を解決するための手段】本発明による電極材料の
製造方法は、アトマイズ法により得られた銅とクロムと
の合金微粉末を非酸化性雰囲気にて加熱して焼結させ、
これによって得られる電極素材のろう付け部分を機械加
工した後、このろう付け部分にろう付け用の表面処理層
を形成したことを特徴とするものである。
According to a method of manufacturing an electrode material according to the present invention, an alloy fine powder of copper and chromium obtained by an atomizing method is heated and sintered in a non-oxidizing atmosphere.
After the brazing portion of the electrode material obtained by this is machined, a surface treatment layer for brazing is formed on the brazing portion.

【0012】ここで、ろう付け用の表面処理層として
は、1〜50μmの厚さの銅或いはニッケルをめっきや
蒸着或いは溶射等で形成することが好適であり、この電
極材料を用いて真空インタラプタを製造する場合、この
電極材料の表面処理層を形成した部分とリード棒とを一
般的なろう材を用いてろう付けする。
Here, as the surface treatment layer for brazing, it is preferable that copper or nickel having a thickness of 1 to 50 μm is formed by plating, vapor deposition, thermal spraying or the like. Is manufactured, the portion of the electrode material on which the surface treatment layer is formed and the lead bar are brazed using a general brazing material.

【0013】なお、上述した銅或いはニッケルの厚さが
1μm未満の場合には、この表面処理層を形成したこと
によるろう材の浸入抑制効果を余り得ることができな
い。逆に、この銅或いはニッケルが50μmを越える厚
さの場合には、このための処理時間が嵩むことに伴うコ
スト上昇を避けることができず、しかも表面処理層を形
成した部分とろう材との界面での接触抵抗値が増大す
る。
When the thickness of the copper or nickel is less than 1 μm, the effect of suppressing the infiltration of the brazing material due to the formation of this surface treatment layer cannot be obtained. On the other hand, if the thickness of the copper or nickel is more than 50 μm, an increase in processing time due to the increase in processing time cannot be avoided. The contact resistance value at the interface increases.

【0014】[0014]

【作用】アトマイズ法により得られる銅−クロム合金の
微粉末を非酸化性雰囲気にて焼結し、これによって得ら
れる電極素材のろう付け部分を機械加工した後、このろ
う付け部分にろう付け用の表面処理層を形成ことによ
り、電極素材のろう付け部分に存在していた微小な空隙
部分が埋められた状態となる。
The fine powder of the copper-chromium alloy obtained by the atomizing method is sintered in a non-oxidizing atmosphere, and the brazing portion of the electrode material thus obtained is machined and then brazed to the brazing portion. By forming the surface treatment layer described above, the minute void portions existing in the brazed portion of the electrode material are filled.

【0015】この結果、ろう材は表面処理層によって電
極素材の内部には浸入できなくなり、ろう材の不足等に
伴うろう付け不良を招来することなく、良好なろう付け
がなされる。
As a result, the brazing material cannot penetrate into the electrode material due to the surface treatment layer, and good brazing can be performed without causing brazing failure due to shortage of the brazing material.

【0016】[0016]

【実施例】真空インタラプタは、その概略構造の一例を
表す図2に示すようなものであり、相互に一直線状をな
す一対のリード棒11,12の対向端面には、それぞれ
電極13,14が図示しないろう材を介して一体的に設
けてある。これら電極13,14を囲む筒状のシールド
15の外周中央部は、このシールド15を囲む一対の絶
縁筒16,17の間に挟まれた状態で保持されている。
一方の前記リード棒11は、一方の絶縁筒16の一端に
接合された金属端板18を気密に貫通した状態で、この
金属端板18に一体的に固定されている。図示しない駆
動装置に連結される他方のリード棒12は、他方の絶縁
筒17の他端に気密に接合された他方の金属端板19に
ベローズ20を介して連結され、駆動装置の作動に伴っ
て電極13,14の対向方向に往復動可能に可動側の電
極14が固定側の電極13に対して開閉動作するように
なっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A vacuum interrupter is shown in FIG. 2 which shows an example of a schematic structure of the vacuum interrupter. Electrodes 13 and 14 are respectively provided on opposing end surfaces of a pair of lead rods 11 and 12 which are linear with each other. It is provided integrally via a brazing material (not shown). A central portion of the outer periphery of a cylindrical shield 15 surrounding the electrodes 13 and 14 is held in a state sandwiched between a pair of insulating cylinders 16 and 17 surrounding the shield 15.
The one lead bar 11 is integrally fixed to the metal end plate 18 in a state where the lead rod 11 air-tightly penetrates the metal end plate 18 joined to one end of the one insulating cylinder 16. The other lead rod 12 connected to a drive device (not shown) is connected via a bellows 20 to the other metal end plate 19 airtightly joined to the other end of the other insulating cylinder 17, and is driven by the operation of the drive device. The movable electrode 14 opens and closes with respect to the fixed electrode 13 so as to be able to reciprocate in the direction opposite to the electrodes 13 and 14.

【0017】本実施例における前記電極13,14は、
アトマイズ法による原料を焼結してなる銅−クロム合金
で主要部が構成される。
The electrodes 13 and 14 in this embodiment are:
The main part is composed of a copper-chromium alloy obtained by sintering a raw material by an atomizing method.

【0018】本発明によるこの電極材料の製造方法の一
例を以下に記すと、銅とクロムとの混合物を真空等の非
酸化性雰囲気にて溶融し、その溶湯を5〜8MPa(メガ
パスカル)の圧力のアルゴン(Ar)ガスを用いたガスアト
マイズ法により急冷凝固させて微粉末化し、銅マトリッ
クス中にクロムが分散した銅−クロム合金の微粉末を得
る。
An example of the method for producing this electrode material according to the present invention will be described below. A mixture of copper and chromium is melted in a non-oxidizing atmosphere such as a vacuum, and the molten metal is melted at 5 to 8 MPa (megapascal). It is rapidly cooled and solidified by a gas atomization method using argon (Ar) gas at a pressure to obtain a fine powder, and a fine powder of a copper-chromium alloy in which chromium is dispersed in a copper matrix is obtained.

【0019】上記方法を実施するに際し、溶融前の銅と
クロムとの混合物における銅とクロムとの重量割合を
4:1に設定した。なお、クロムの重量割合がこれより
も多くなると、クロムのマトリックス中に銅が分散した
ものが生成してしまい、目標とする銅−クロム合金粉末
が得られない。
In carrying out the above method, the weight ratio of copper and chromium in the mixture of copper and chromium before melting was set to 4: 1. If the weight ratio of chromium is larger than this, copper dispersed in a chromium matrix is generated, and a target copper-chromium alloy powder cannot be obtained.

【0020】又、銅とクロムとの混合物を溶融する際に
は、溶湯の酸素含有量を低減するために酸素含有量の低
い銅及びクロムを選定する一方、上述した非酸化性雰囲
気にて溶融するか、或いは脱酸して酸素含有量を100
0ppm以下に抑えた。この場合、原料等に混入している
不可避の不純物、例えば鉄(Fe)やニッケル(Ni)等の存在
は許容した。
When the mixture of copper and chromium is melted, copper and chromium having a low oxygen content are selected in order to reduce the oxygen content of the molten metal, while melting in a non-oxidizing atmosphere as described above. Or deoxidize to an oxygen content of 100
It was suppressed to 0 ppm or less. In this case, the presence of unavoidable impurities, such as iron (Fe) and nickel (Ni), mixed in the raw materials and the like was allowed.

【0021】これにより得られた銅−クロム合金微粉末
の粒径は150μm以下であり、その成分割合も元の銅
とクロムとの混合物の割合と同等であった。又、この銅
−クロム合金微粉末を電子顕微鏡にて観察した結果、5
μm以下のクロム粒子が銅マトリックス中に均一に分散
していることを確認できた。
The copper-chromium alloy fine powder thus obtained had a particle size of 150 μm or less, and its component ratio was equivalent to that of the original mixture of copper and chromium. Also, as a result of observing this copper-chromium alloy fine powder with an electron microscope, 5
It was confirmed that the chromium particles having a size of μm or less were uniformly dispersed in the copper matrix.

【0022】本実施例による製造手順を表す図1に示す
ように、この銅−クロム合金微粉末Aを内径が70mmの
アルミナセラミックス製の容器B内に300g充填した
後、5×10-5Torrの真空中にて1080℃に30分間
加熱して焼結させ、充填密度率が85%の電極素材Cを
得た。なお、この充填密度率は単位体積当たりの銅−ク
ロム合金の実際の質量を、気泡等を含まない理想的な銅
−クロム合金における単位体積当たりの理論的な質量で
除算し、これに100を乗算した値である。
As shown in FIG. 1 showing the manufacturing procedure according to the present embodiment, 300 g of this copper-chromium alloy fine powder A was filled into an alumina ceramic container B having an inner diameter of 70 mm, and then 5 × 10 -5 Torr. The material was heated at 1080 ° C. for 30 minutes in a vacuum and sintered to obtain an electrode material C having a packing density of 85%. In addition, this packing density ratio is obtained by dividing the actual mass of the copper-chromium alloy per unit volume by the theoretical mass per unit volume of an ideal copper-chromium alloy containing no bubbles or the like, and dividing 100 by this. This is the value obtained by multiplication.

【0023】このようにして得られたクロムが20重量
%含まれる銅−クロム合金製の電極素材C中に占めるク
ロムの平均粒径は10μmでその粒径の分布幅も狭く、
均一に分散していることを確認した。
The average particle diameter of chromium in the electrode material C made of a copper-chromium alloy containing 20% by weight of chromium thus obtained is 10 μm, and the distribution width of the particle diameter is narrow.
It was confirmed that they were uniformly dispersed.

【0024】しかる後、この電極素材Cを直径が60mm
で厚さが10mmの円盤Dに機械加工し、図1に示すリー
ド棒11,12がろう付けされる一方の端面に5μmの
厚さの銅めっきEを施し、最終的に図2に示す如き電極
13,14の形状に仕上げた。そして、0.1mmの厚さの
銅−マンガン(Mn)−ニッケル(Ni)系のろう材を用い、5
×10-4Torrの真空中にて960℃で15分間加熱処理
を施し、リード棒11,12と電極13,14とをろう付
けした。
After that, the electrode material C was removed to a diameter of 60 mm.
Then, a copper plate E having a thickness of 5 μm is applied to one end face to which the lead rods 11 and 12 shown in FIG. 1 are brazed, and finally, as shown in FIG. The shapes of the electrodes 13 and 14 were finished. Then, a copper-manganese (Mn) -nickel (Ni) -based brazing material having a thickness of 0.1 mm is used.
Heat treatment was performed at 960 ° C. for 15 minutes in a vacuum of × 10 −4 Torr, and the lead rods 11 and 12 and the electrodes 13 and 14 were brazed.

【0025】このようにしてろう付けされたリード棒1
1,12と電極13,14とをろう付け部分を交差するよ
うに切断し、このろう付け部分の状態を観察したとこ
ろ、電極13,14の内部へのろう材の浸入が抑制され
ていることを確認できた。
The lead rod 1 thus brazed
When the brazing portions were cut so as to intersect the brazing portions 1 and 12 and the electrodes 13 and 14, and the state of the brazing portions was observed, the penetration of the brazing material into the electrodes 13 and 14 was suppressed. Was confirmed.

【0026】上述した実施例と同一の条件で5μmの厚
さのニッケルめっきを施した電極13,14について
も、同様な結果を得ることができた。
Similar results were obtained for the electrodes 13 and 14 plated with nickel having a thickness of 5 μm under the same conditions as in the above-described embodiment.

【0027】[0027]

【発明の効果】本発明の電極材料の製造方法によると、
アトマイズ法により得られた銅とクロムとの合金微粉末
を非酸化性雰囲気にて加熱して焼結させ、これによって
得られる電極素材のろう付け部分を機械加工した後、こ
のろう付け部分にろう付け用の表面処理層を形成したの
で、この表面処理層によって電極素材のろう付け部分に
存在していた微小な空隙部分が埋められた状態となる結
果、ろう材はこの表面処理層によって電極素材の内部に
は浸入できなくなり、ろう材の不足等に伴うろう付け不
良を招来することなく、良好なろう付けを行うことがで
きる。
According to the method for producing an electrode material of the present invention,
The alloy fine powder of copper and chromium obtained by the atomizing method is heated and sintered in a non-oxidizing atmosphere, and the brazed portion of the electrode material obtained by this is machined, and then the brazed portion is brazed. Since the surface treatment layer for attachment was formed, the minute voids existing in the brazing portion of the electrode material were filled with the surface treatment layer. It is not possible to penetrate into the inside of the solder, and good brazing can be performed without causing brazing failure due to shortage of brazing material or the like.

【0028】従って、アトマイズ法による銅−クロム合
金を原料とするその焼結体を何ら問題なく真空インタラ
プタの電極として使用することが可能となり、従来の焼
結冶金法等による銅−クロム合金と比べて、しゃ断電流
値や接触抵抗値、或いは耐溶着力等の優れた電極材料を
提供することができる。
Therefore, it is possible to use the sintered body made of the copper-chromium alloy by the atomizing method as a raw material without any problem as an electrode of a vacuum interrupter, and to compare with the copper-chromium alloy by the conventional sintering metallurgy method. As a result, it is possible to provide an electrode material excellent in breaking current value, contact resistance value, welding resistance and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電極材料の製造方法の一実施例を
表す工程図である。
FIG. 1 is a process chart showing one embodiment of a method for producing an electrode material according to the present invention.

【図2】真空インタラプタの一例を表す断面図である。FIG. 2 is a cross-sectional view illustrating an example of a vacuum interrupter.

【符号の説明】[Explanation of symbols]

Aは銅−クロム合金微粉末、Bは容器、Cは電極素材、
Dは円盤、Eは銅めっき、11,12はリード棒、13,
14は電極である。
A is a fine powder of copper-chromium alloy, B is a container, C is an electrode material,
D is a disk, E is copper plating, 11 and 12 are lead bars, 13,
14 is an electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深井 利真 東京都品川区大崎二丁目1番17号 株式 会社 明電舍内 (56)参考文献 特開 昭53−146904(JP,A) 特開 昭57−67141(JP,A) 特開 昭55−151727(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 33/66 H01H 11/04 - 11/06 C22C 9/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshina Fukai 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd. (56) References JP-A-53-146904 (JP, A) 57-67141 (JP, A) JP-A-55-151727 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01H 33/66 H01H 11/04-11/06 C22C 9 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アトマイズ法により得られた銅とクロム
との合金微粉末を非酸化性雰囲気にて加熱して焼結さ
せ、これによって得られる電極素材のろう付け部分を機
械加工した後、このろう付け部分にろう付け用の表面処
理層を形成したことを特徴とする電極材料の製造方法。
1. An alloy fine powder of copper and chromium obtained by an atomizing method is heated and sintered in a non-oxidizing atmosphere, and a brazed portion of an electrode material obtained by this is machined. A method for manufacturing an electrode material, comprising forming a surface treatment layer for brazing on a brazing portion.
【請求項2】 ろう付け用の表面処理層が1〜50μm
の厚さの銅であることを特徴とする請求項1に記載した
電極材料の製造方法。
2. A surface treatment layer for brazing having a thickness of 1 to 50 μm.
2. The method for manufacturing an electrode material according to claim 1, wherein the thickness of the electrode material is copper.
【請求項3】 表面処理層が1〜50μmの厚さのニッ
ケルであることを特徴とする請求項1に記載した電極材
料の製造方法。
3. The method according to claim 1, wherein the surface treatment layer is made of nickel having a thickness of 1 to 50 μm.
JP03257682A 1991-10-04 1991-10-04 Manufacturing method of electrode material Expired - Fee Related JP3106598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03257682A JP3106598B2 (en) 1991-10-04 1991-10-04 Manufacturing method of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03257682A JP3106598B2 (en) 1991-10-04 1991-10-04 Manufacturing method of electrode material

Publications (2)

Publication Number Publication Date
JPH05101751A JPH05101751A (en) 1993-04-23
JP3106598B2 true JP3106598B2 (en) 2000-11-06

Family

ID=17309646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03257682A Expired - Fee Related JP3106598B2 (en) 1991-10-04 1991-10-04 Manufacturing method of electrode material

Country Status (1)

Country Link
JP (1) JP3106598B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650417B2 (en) 2004-06-08 2011-03-16 千住金属工業株式会社 Method for producing high melting point metal particle dispersed foam solder
US10081852B2 (en) 2005-09-15 2018-09-25 Senju Metal Industry Co., Ltd. Solder preform and a process for its manufacture
JP5245410B2 (en) * 2005-09-15 2013-07-24 千住金属工業株式会社 Foam solder and its manufacturing method

Also Published As

Publication number Publication date
JPH05101751A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
US4032301A (en) Composite metal as a contact material for vacuum switches
JPH0495318A (en) Material for electrical contact and manufacture thereof
US3385677A (en) Sintered composition material
JPH056780B2 (en)
EP2226824A1 (en) Electrode contact member of vacuum circuit breaker and process for production of the same
KR970004578B1 (en) Process for manufacturing a contact material for a vacuum circuit breakers
US4547639A (en) Vacuum circuit breaker
JP2002313196A (en) Electric contact member and manufacturing method for the same
JP3106598B2 (en) Manufacturing method of electrode material
JP3067318B2 (en) Manufacturing method of electrode material
US5352404A (en) Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. %
US4834939A (en) Composite silver base electrical contact material
JPH0554208B2 (en)
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
JP3067317B2 (en) Manufacturing method of electrode material
KR19980087242A (en) Manufacturing Method of Base Material of Vacuum Valve
JP2748658B2 (en) Manufacturing method of brazing material
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JP3106609B2 (en) Manufacturing method of electrode material
JP3909804B2 (en) Contact material for vacuum valves
JP3168635B2 (en) Manufacturing method of electrode material
JP2002208335A (en) Vacuum bulb contact point and its manufacturing method
JP2853308B2 (en) Manufacturing method of electrode material
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH04141924A (en) Manufacture of electrode material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

LAPS Cancellation because of no payment of annual fees