JP3067318B2 - Manufacturing method of electrode material - Google Patents

Manufacturing method of electrode material

Info

Publication number
JP3067318B2
JP3067318B2 JP3257681A JP25768191A JP3067318B2 JP 3067318 B2 JP3067318 B2 JP 3067318B2 JP 3257681 A JP3257681 A JP 3257681A JP 25768191 A JP25768191 A JP 25768191A JP 3067318 B2 JP3067318 B2 JP 3067318B2
Authority
JP
Japan
Prior art keywords
chromium
copper
powder
electrode material
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3257681A
Other languages
Japanese (ja)
Other versions
JPH05101750A (en
Inventor
泰司 野田
信行 吉岡
伸尚 鈴木
利真 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP3257681A priority Critical patent/JP3067318B2/en
Publication of JPH05101750A publication Critical patent/JPH05101750A/en
Application granted granted Critical
Publication of JP3067318B2 publication Critical patent/JP3067318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アトマイズ法による銅
−クロム合金の微粉末を原料とする電極材料の製造方法
に関し、特に真空インタラプタの電極に用いて好適であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material from a fine powder of a copper-chromium alloy by an atomizing method, and is particularly suitable for use as an electrode of a vacuum interrupter.

【0002】[0002]

【従来の技術】真空インタラプタの電極材料として要求
される重要な性能の一つに電流遮断性能の高いことが挙
げられる。
2. Description of the Related Art One of the important performances required as an electrode material of a vacuum interrupter is a high current interruption performance.

【0003】銅(Cu)−クロム(Cr)合金は、この電流遮断
性能が非常に優れている電極材料として知られており、
従来では電解法等により製造された銅の粉体と、粉砕法
等により製造されたクロムの粉体とを混合したものを圧
縮加圧成形し、これを高温で焼結する粉末冶金法による
製造方法が一般的である。
[0003] A copper (Cu) -chromium (Cr) alloy is known as an electrode material having an extremely excellent current interruption performance.
Conventionally, a mixture of copper powder manufactured by an electrolytic method and chromium powder manufactured by a pulverization method is compression-pressed and molded by a powder metallurgy method in which this is sintered at a high temperature. The method is general.

【0004】この他、圧縮加圧成形した銅の粉体の空隙
部分にクロムを溶浸させる溶浸法や、或いは銅とクロム
との混合粉体を圧縮加圧成形し、これを低温で焼結した
後、その空隙部分に銅を溶浸させるようにした方法、或
いは鋳造による方法等も試みられている。
[0004] In addition, an infiltration method in which chromium is infiltrated into voids of the compression-pressed copper powder, or a mixed powder of copper and chromium is compression-pressed and fired at a low temperature. After sintering, a method of infiltrating copper into the voids or a method of casting has been attempted.

【0005】[0005]

【発明が解決しようとする課題】この銅−クロム合金
は、銅のマトリックス中にクロムが分散したものである
が、電極材料としての電気的特性に着目した場合、微細
なクロムが銅マトリックス中に均一に分散している方が
好ましい。
This copper-chromium alloy has chromium dispersed in a copper matrix. However, when attention is paid to the electrical characteristics as an electrode material, fine chromium is contained in the copper matrix. It is preferable that they are uniformly dispersed.

【0006】ところが、粉末冶金法により製造される従
来の銅−クロム合金の場合、粉砕法により機械的に粉砕
して得られるクロム粉末の粒度分布の幅が非常に大き
く、しかもその平均粒径が40μm程度にも達するた
め、銅の粉体とクロムの粉体とを混合する際にこれらの
比重差や粉体の粒度、或いは粒度分布の相違により、均
一に混合され難い欠点を有する。この結果、焼結後にお
ける銅マトリックス中のクロムが微細且つ均一に分散せ
ず、その電気的特性が期待できるほど良好ではなかっ
た。
However, in the case of a conventional copper-chromium alloy produced by powder metallurgy, the width of the particle size distribution of chromium powder obtained by mechanical pulverization by a pulverization method is very large, and the average particle diameter is large. Since it reaches about 40 μm, there is a drawback that when mixing the copper powder and the chromium powder, uniform mixing is difficult due to the difference in specific gravity, the particle size of the powder, or the difference in particle size distribution. As a result, chromium in the copper matrix after sintering was not finely and uniformly dispersed, and the electrical characteristics were not as good as expected.

【0007】そこで、クロム粉末を更に機械的に粉砕し
てその粒径を小さくすることが考えられるが、この場合
には粉砕の過程及び保管時にクロム粉体の表面が酸化が
進行し、酸素含有量の増加に伴って焼結性が低下してし
まう問題も生ずる。又、粉砕法により得られるクロム粉
末をふるいで分級し、微細径のクロム粉末のみを使用す
ることも考えられるが、この方法では歩留りが極めて悪
くなってしまい、製造コストが嵩む原因となる。
[0007] Therefore, it is conceivable to further mechanically pulverize the chromium powder to reduce its particle size. In this case, the surface of the chromium powder is oxidized during the pulverization process and during storage, and oxygen-containing powder is contained. There is also a problem that the sinterability is reduced as the amount increases. It is also conceivable to classify the chromium powder obtained by the pulverization method by sieving and use only the chromium powder having a fine diameter. However, in this method, the yield is extremely deteriorated and the production cost is increased.

【0008】一方、溶浸法により製造される従来の銅−
クロム合金の場合、クロム粉体は酸化し易いため、その
品質管理を徹底する必要がある上、表面が酸化したクロ
ムの粉末は銅との濡れ性が悪く、溶浸ができなくなる欠
点を有する。
[0008] On the other hand, conventional copper produced by the infiltration method
In the case of a chromium alloy, chromium powder is easily oxidized, so it is necessary to thoroughly control its quality, and chromium powder having an oxidized surface has poor wettability with copper and has a disadvantage that it cannot be infiltrated.

【0009】又、鋳造法により製造される従来の銅−ク
ロム合金の場合、凝固時の冷却速度が遅いため、銅のマ
トリックス中のクロム粒子が成長してしまい、均一で微
細なクロムの分散が困難となる上、凝固偏析が生じ易い
ことから得られる銅−クロム合金の品質にばらつきが生
じ易い欠点を有する。
In the case of a conventional copper-chromium alloy produced by a casting method, chromium particles in a copper matrix grow due to a low cooling rate during solidification, and uniform and fine chromium is dispersed. In addition to the difficulty, there is a disadvantage that the quality of the obtained copper-chromium alloy is apt to vary due to the tendency of solidification segregation.

【0010】[0010]

【発明の目的】本発明は、微細なクロムが銅マトリック
ス中に均一に分散した高品質な銅−クロム合金の電極材
料を製造し得る方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a high-quality copper-chromium alloy electrode material in which fine chromium is uniformly dispersed in a copper matrix.

【0011】[0011]

【課題を解決するための手段】本発明者らは、微細化が
困難で表面酸化の問題を抱えたクロムの機械的粉砕法を
採用せず、アトマイズ法により銅−クロム合金の微粉末
を製造し、これを焼結して電極材料の製造が可能である
か否かを調べた。
SUMMARY OF THE INVENTION The present inventors have manufactured a fine powder of a copper-chromium alloy by an atomizing method without using a mechanical pulverizing method of chromium, which is difficult to miniaturize and has a problem of surface oxidation. Then, this was sintered to examine whether it was possible to produce an electrode material.

【0012】そこで、銅とクロムとの混合物を真空等の
非酸化性雰囲気にて溶融し、その溶湯を5〜8MPa(メ
ガパスカル)の圧力のアルゴン(Ar)ガスを用いたガスア
トマイズ法により急冷凝固させて微粉末化し、銅マトリ
ックス中にクロムが分散した銅−クロム合金の微粉末を
得るようにした。
Therefore, a mixture of copper and chromium is melted in a non-oxidizing atmosphere such as vacuum, and the molten metal is rapidly solidified by a gas atomization method using argon (Ar) gas at a pressure of 5 to 8 MPa (megapascal). In this way, a fine powder of a copper-chromium alloy in which chromium was dispersed in a copper matrix was obtained.

【0013】上記方法を実施するに際し、溶融前の銅と
クロムとの混合物における銅とクロムとの重量割合を
4:1に設定した。なお、クロムの重量割合がこれより
も多くなると、クロムのマトリックス中に銅が分散した
ものが生成してしまい、目標とする銅−クロム合金粉末
が得られない。
In carrying out the above method, the weight ratio of copper and chromium in the mixture of copper and chromium before melting was set to 4: 1. If the weight ratio of chromium is larger than this, copper dispersed in a chromium matrix is generated, and a target copper-chromium alloy powder cannot be obtained.

【0014】又、銅とクロムとの混合物を溶融する際に
は、溶湯の酸素含有量を低減するために酸素含有量の低
い銅及びクロムを選定する一方、上述した非酸化性雰囲
気にて溶融するか、或いは脱酸して酸素含有量を100
0ppm以下に抑えた。この場合、原料等に混入している
不可避の不純物、例えば鉄(Fe)やニッケル(Ni)等の存在
は許容した。
When melting a mixture of copper and chromium, copper and chromium having a low oxygen content are selected in order to reduce the oxygen content of the molten metal, while melting in a non-oxidizing atmosphere as described above. Or deoxidize to an oxygen content of 100
It was suppressed to 0 ppm or less. In this case, the presence of unavoidable impurities, such as iron (Fe) and nickel (Ni), mixed in the raw materials and the like was allowed.

【0015】これにより得られた銅−クロム合金微粉末
の粒径は150μm以下であり、その成分割合も元の銅
とクロムとの混合物の割合と同等であった。又、この銅
−クロム合金微粉末を電子顕微鏡にて観察した結果、5
μm以下のクロム粒子が銅マトリックス中に均一に分散
していることを確認できた。
[0015] The particle size of the copper-chromium alloy fine powder thus obtained was 150 µm or less, and its component ratio was equivalent to that of the original mixture of copper and chromium. Also, as a result of observing this copper-chromium alloy fine powder with an electron microscope, 5
It was confirmed that the chromium particles having a size of μm or less were uniformly dispersed in the copper matrix.

【0016】本発明による電極材料の製造方法は、かか
る知見に鑑みてなされたものであり、上述したアトマイ
ズ法により得られる銅とクロムとの合金微粉末を100
0℃以下で溶融しない軟質の金属製の容器に充填し、こ
の容器毎950±50℃の加熱温度にて熱間押出加工を
行った後、前記容器の部分を除去するようにしたことを
特徴とするものである。
The method for producing an electrode material according to the present invention has been made in view of the above-mentioned knowledge, and the method for producing an alloy fine powder of copper and chromium obtained by the above-mentioned atomizing method is 100%.
After filling in a soft metal container that does not melt at 0 ° C. or less, and performing hot extrusion at a heating temperature of 950 ± 50 ° C. for each container, the portion of the container is removed. It is assumed that.

【0017】ここで、1000℃以下で溶融しない軟質
の金属としては、軟鋼やステンレス鋼或いは銅等を使用
することができる。
Here, as the soft metal that does not melt at 1000 ° C. or lower, mild steel, stainless steel, copper, or the like can be used.

【0018】[0018]

【作用】アトマイズ法によって得られる銅−クロム合金
微粉末は、銅マトリックス中に微小な粒径のクロムが均
一に分散している。これを1000℃以下で溶融しない
軟質の金属製の容器に充填し、この容器毎950±50
℃の加熱温度にて熱間押出加工を行うことにより、合金
粉末が焼結して高密度に一体化される。しかる後、容器
の部分を除去して焼結した銅−クロム合金を取り出す。
In the copper-chromium alloy fine powder obtained by the atomization method, chromium having a small particle diameter is uniformly dispersed in a copper matrix. This is filled in a soft metal container that does not melt at 1000 ° C. or less, and the container is 950 ± 50
By performing the hot extrusion at a heating temperature of ° C., the alloy powder is sintered and integrated at a high density. Thereafter, the portion of the container is removed and the sintered copper-chromium alloy is taken out.

【0019】[0019]

【実施例】真空インタラプタは、その概略構造の一例を
表す図1に示すようなものであり、相互に一直線状をな
す一対のリード棒11,12の対向端面には、それぞれ
電極13,14が図示しないろう材を介して一体的に設
けてある。これら電極13,14を囲む筒状のシールド
15の外周中央部は、このシールド15を囲む一対の絶
縁筒16,17の間に挟まれた状態で保持されている。
一方の前記リード棒11は、一方の絶縁筒16の一端に
接合された金属端板18を気密に貫通した状態で、この
金属端板18に一体的に固定されている。図示しない駆
動装置に連結される他方のリード棒12は、他方の絶縁
筒17の他端に気密に接合された他方の金属端板19に
ベローズ20を介して連結され、駆動装置の作動に伴っ
て電極13,14の対向方向に往復動可能に可動側の電
極14が固定側の電極13に対して開閉動作するように
なっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A vacuum interrupter is shown in FIG. 1 which shows an example of a schematic structure of the vacuum interrupter. Electrodes 13 and 14 are respectively provided on opposing end surfaces of a pair of lead rods 11 and 12 which form a straight line. It is provided integrally via a brazing material (not shown). A central portion of the outer periphery of a cylindrical shield 15 surrounding the electrodes 13 and 14 is held in a state sandwiched between a pair of insulating cylinders 16 and 17 surrounding the shield 15.
The one lead bar 11 is integrally fixed to the metal end plate 18 in a state where the lead rod 11 air-tightly penetrates the metal end plate 18 joined to one end of the one insulating cylinder 16. The other lead rod 12 connected to a drive device (not shown) is connected via a bellows 20 to the other metal end plate 19 airtightly joined to the other end of the other insulating cylinder 17, and is driven by the operation of the drive device. The movable electrode 14 opens and closes with respect to the fixed electrode 13 so as to be able to reciprocate in the direction opposite to the electrodes 13 and 14.

【0020】本実施例における前記電極13,14は、
アトマイズ法による原料を軟質の金属容器に充填し、こ
の容器毎950±50℃の加熱温度にて熱間押出加工
し、これによって得られる銅−クロム合金の焼結体で主
要部が構成される。
In the present embodiment, the electrodes 13 and 14 are:
The raw material by the atomizing method is filled in a soft metal container, and the container is subjected to hot extrusion at a heating temperature of 950 ± 50 ° C., and a main part is formed of a sintered body of a copper-chromium alloy obtained by this. .

【0021】本発明によるこの電極13,14の製造方
法の一例を以下に記すと、銅に対して20重量%の割合
のクロムを有するアトマイズ粉末(粒径が150μm以
下でクロムの平均粒径が3.5μm)を長さが170mm
で外径が70mm、肉厚が3mmの軟鋼製カプセルに充填し
た後、この軟鋼製カプセルを950℃にて熱間押出加工
し、直径を45mmに絞って内部のアトマイズ粉末を焼結
一体化した。次いで、カプセル部分を除去すべくこれを
長さが160mmで直径が36mmのビレットに加工した
後、図1に示す如き所定の電極形状に機械加工した。
An example of a method for producing the electrodes 13 and 14 according to the present invention is as follows. 3.5 μm) with a length of 170 mm
After filling into a mild steel capsule having an outer diameter of 70 mm and a wall thickness of 3 mm, the mild steel capsule was hot-extruded at 950 ° C., the diameter was reduced to 45 mm, and the internal atomized powder was sintered and integrated. . Next, to remove the capsule portion, it was processed into a billet having a length of 160 mm and a diameter of 36 mm, and then machined into a predetermined electrode shape as shown in FIG.

【0022】このようにして得られたクロムが20重量
%含まれる銅−クロム合金中に占めるクロムの平均粒径
は10μmでその粒径の分布幅も狭く、均一に分散して
いることを確認した。又、その導電率(IACS)は6
0%であり、密度充填率は99%であった。なお、この
密度充填率は単位体積当たりの銅−クロム合金の実際の
質量を、気泡等を含まない理想的な銅−クロム合金にお
ける単位体積当たりの理論的な質量で除算し、これに1
00を乗算した値である。
The average particle diameter of chromium in the copper-chromium alloy containing 20% by weight of chromium thus obtained was 10 μm, and the distribution width of the particle diameter was narrow, and it was confirmed that the chromium was uniformly dispersed. did. The conductivity (IACS) is 6
0%, and the density filling rate was 99%. The density filling rate is obtained by dividing the actual mass of the copper-chromium alloy per unit volume by the theoretical mass per unit volume of an ideal copper-chromium alloy containing no bubbles and the like.
This is a value obtained by multiplying 00.

【0023】この銅−クロム合金を所定の電極形状に機
械加工し、図1に示す真空インタラプタに組み込んで従
来のものと比較した結果、クロムが均一に分散されてい
ることにより、発生したアークの拡散がスムーズに行わ
れ、しゃ断性能が向上したことが判った。又、クロムの
微細化に伴って接触抵抗が低下し、これに伴って耐溶着
力も低下させることができた。
This copper-chromium alloy was machined into a predetermined electrode shape, incorporated into a vacuum interrupter shown in FIG. 1 and compared with a conventional one. As a result, the chromium was uniformly dispersed, and the It was found that the diffusion was smooth and the breaking performance was improved. In addition, the contact resistance was reduced with the refinement of chromium, and the welding resistance was also reduced.

【0024】[0024]

【発明の効果】本発明の電極材料の製造方法によると、
アトマイズ法により得られる銅−クロム合金の微粉末を
1000℃以下で溶融しない軟質の金属製の容器に充填
し、この容器毎950±50℃の加熱温度にて熱間押出
加工を行った後、前記容器の部分を除去するようにした
ので、銅マトリックス中に微細な粒径のクロムが均一に
分散した高品質の銅−クロム合金を得ることができ、従
来の焼結冶金法等による銅−クロム合金と比べて、しゃ
断電流値や接触抵抗値、或いは耐溶着性等の優れた電極
材料を提供することができる。
According to the method for producing an electrode material of the present invention,
The copper-chromium alloy fine powder obtained by the atomizing method is filled into a soft metal container that does not melt at 1000 ° C. or less, and after hot-extruding at a heating temperature of 950 ± 50 ° C. for each container, Since the portion of the container is removed, a high-quality copper-chromium alloy in which chromium having a fine particle diameter is uniformly dispersed in a copper matrix can be obtained. As compared with a chromium alloy, it is possible to provide an electrode material having excellent breaking current value, contact resistance value, welding resistance and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】真空インタラプタの一例を表す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a vacuum interrupter.

【符号の説明】[Explanation of symbols]

11,12はリード棒、13,14は電極である。 11 and 12 are lead rods, and 13 and 14 are electrodes.

フロントページの続き (72)発明者 深井 利真 東京都品川区大崎二丁目1番17号 株式 会社 明電舍内 (56)参考文献 特開 昭53−146904(JP,A) 特開 昭60−141802(JP,A) 特開 昭49−53104(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 33/66 H01H 1/02 H01H 11/04 B22F 5/00 Continuation of the front page (72) Inventor Toshina Fukai 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd. (56) References JP-A-53-146904 (JP, A) JP-A-60- 141802 (JP, A) JP-A-49-53104 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01H 33/66 H01H 1/02 H01H 11/04 B22F 5/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アトマイズ法により得られた銅とクロム
との合金微粉末を1000℃以下で溶融しない軟質の金
属製の容器に充填し、この容器毎950±50℃の加熱
温度にて熱間押出加工を行った後、前記容器の部分を除
去するようにしたことを特徴とする電極材料の製造方
法。
1. An alloy fine powder of copper and chromium obtained by an atomizing method is filled in a soft metal container that does not melt at 1000 ° C. or less, and the container is heated at a heating temperature of 950 ± 50 ° C. A method for producing an electrode material, wherein a portion of the container is removed after performing an extrusion process.
JP3257681A 1991-10-04 1991-10-04 Manufacturing method of electrode material Expired - Lifetime JP3067318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3257681A JP3067318B2 (en) 1991-10-04 1991-10-04 Manufacturing method of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3257681A JP3067318B2 (en) 1991-10-04 1991-10-04 Manufacturing method of electrode material

Publications (2)

Publication Number Publication Date
JPH05101750A JPH05101750A (en) 1993-04-23
JP3067318B2 true JP3067318B2 (en) 2000-07-17

Family

ID=17309630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3257681A Expired - Lifetime JP3067318B2 (en) 1991-10-04 1991-10-04 Manufacturing method of electrode material

Country Status (1)

Country Link
JP (1) JP3067318B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD646729S1 (en) 2010-07-14 2011-10-11 Tomy Company, Ltd. Toy top
USD660918S1 (en) 2010-07-14 2012-05-29 Tomy Company, Ltd. Toy top
USD667894S1 (en) 2010-07-14 2012-09-25 Tomy Company, Ltd. Toy top
US8715032B2 (en) 2010-10-06 2014-05-06 Tomy Company, Ltd. Spinner for toy top
US10183226B2 (en) 2015-03-27 2019-01-22 Tomy Company, Ltd. Spinning top toy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375689B1 (en) * 2001-03-06 2008-06-18 Kiyohito Ishida Member having separation structure and method for manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD646729S1 (en) 2010-07-14 2011-10-11 Tomy Company, Ltd. Toy top
USD660918S1 (en) 2010-07-14 2012-05-29 Tomy Company, Ltd. Toy top
USD667894S1 (en) 2010-07-14 2012-09-25 Tomy Company, Ltd. Toy top
US8715032B2 (en) 2010-10-06 2014-05-06 Tomy Company, Ltd. Spinner for toy top
US10183226B2 (en) 2015-03-27 2019-01-22 Tomy Company, Ltd. Spinning top toy
US10500511B2 (en) 2015-03-27 2019-12-10 Tomy Company, Ltd. Spinning top toy

Also Published As

Publication number Publication date
JPH05101750A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
JP2705998B2 (en) Manufacturing method of electrical contact material
JP2530484B2 (en) Contact for vacuum circuit breaker and manufacturing method thereof
JP3067318B2 (en) Manufacturing method of electrode material
US4766274A (en) Vacuum circuit interrupter contacts containing chromium dispersions
JP3168630B2 (en) Manufacturing method of electrode material
US5352404A (en) Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. %
JPS59163726A (en) Vacuum breaker
JPH05217473A (en) Manufacture of electrode material
JP3106605B2 (en) Manufacturing method of electrode material
JP3067317B2 (en) Manufacturing method of electrode material
JP3168635B2 (en) Manufacturing method of electrode material
JP3106598B2 (en) Manufacturing method of electrode material
JP3106609B2 (en) Manufacturing method of electrode material
JP3106610B2 (en) Manufacturing method of electrode material
JP2853308B2 (en) Manufacturing method of electrode material
JP3298129B2 (en) Manufacturing method of electrode material
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JPH05198230A (en) Manufacture of electrode material
JPH0472896B2 (en)
JPS62116736A (en) Production of electrode for vacuum valve circuit breaker
JPH04141924A (en) Manufacture of electrode material
JPH09167534A (en) Contact member for vacuum breaker and its manufacture
JPH09190730A (en) Manufacture of contact member for vacuum circuit breaker
JPH09209057A (en) Copper-chromium base contact material and its production
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000418