JPS6353252B2 - - Google Patents

Info

Publication number
JPS6353252B2
JPS6353252B2 JP12869483A JP12869483A JPS6353252B2 JP S6353252 B2 JPS6353252 B2 JP S6353252B2 JP 12869483 A JP12869483 A JP 12869483A JP 12869483 A JP12869483 A JP 12869483A JP S6353252 B2 JPS6353252 B2 JP S6353252B2
Authority
JP
Japan
Prior art keywords
chromium
producing
contact material
copper
vacuum shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12869483A
Other languages
Japanese (ja)
Other versions
JPS5925903A (en
Inventor
Kitsupenberuku Horusuto
Hesuraa Hainritsuhi
Hyuunrain Manfureeto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS5925903A publication Critical patent/JPS5925903A/en
Publication of JPS6353252B2 publication Critical patent/JPS6353252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 〔発明の関連する技術分野〕 本発明は高圧用真空遮断器用の接触子材料とし
てのクロムおよび銅から成る複合材料の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention relates] The present invention relates to a method for manufacturing a composite material comprising chromium and copper as a contact material for a high-pressure vacuum circuit breaker.

〔従来技術〕[Prior art]

真空遮断器用接触子材料としてはすでに約40な
いし60%のクロムを含むCrCu複合材料が良いこ
とが分かつている。この材料によれば、成分の銅
が十分な電気伝導度および熱伝導度を保証し、一
方、基材のクロムがアークによる消耗を減らしま
たタングステンに比較して低い2173Kの融点によ
つて有害な熱電子放出の危険を除く。そのほかに
クロムに接触子の溶着性を著しく低減し、しかも
良好なゲツター性を有する。
CrCu composite materials containing approximately 40 to 60% chromium have already been found to be suitable as contact materials for vacuum circuit breakers. According to this material, the copper component ensures sufficient electrical and thermal conductivity, while the chromium base material reduces the wear and tear caused by arcing and has a lower melting point of 2173K compared to tungsten. Excludes thermionic emission hazard. In addition, it significantly reduces the adhesion of contacts to chromium and has good getter properties.

CrCu複合材料の製造に対しては、Cr―Cu系に
混合ギヤツプがあるため、40ないし60%というク
ロム含有量の所望の濃度範囲においては、粉末冶
金法だけが考慮される。最も普通には、クロム粉
末またはCrCu粉末混合物から圧縮体を作成し、
圧縮体の空孔が焼結後、溶けた銅によつて充てん
される方法が最も普通に行なわれている。そのよ
うな焼結溶浸法も普通の公知の粉末冶金法も、ク
ロムの酸化傾向のために制御するのが困難であ
る。特に、個々の粒子面の濡れ性が悪いこと、ま
たは不働態膜が形成されることによる空孔欠陥あ
るいは溶浸欠陥が形成される危険がある。この空
孔欠陥または溶浸欠陥が5ないし50μm程度の大
きさで存在する場合でも、これらの欠陥によつて
遮断特性を害するおそれがある。実際上は、それ
から遮断能力にあるばらつき幅が生ずる。
For the production of CrCu composites, only powder metallurgy methods are considered in the desired concentration range of 40 to 60% chromium content, due to the mixing gap in the Cr--Cu system. Most commonly, compacts are made from chromium powder or CrCu powder mixtures,
The most common method is for the pores in the compact to be filled with molten copper after sintering. Both such sinter infiltration methods and the common known powder metallurgy methods are difficult to control due to the oxidation tendency of chromium. In particular, there is a risk that pore defects or infiltration defects may be formed due to poor wettability of individual particle surfaces or the formation of a passive film. Even when these void defects or infiltration defects exist with a size of about 5 to 50 μm, there is a risk that the blocking characteristics will be impaired by these defects. In practice, this results in a certain range of variations in the blocking ability.

他の公知の方法では、例えば純粋のクロム粉末
からなるか、または焼結の際の液相を得るために
一つまたは複数の別の粉末添加物がクロム粉末に
混合された金属粉末の圧縮または注ぎ込みにより
多孔質の中間生成物が作られる。それに続く高真
空あるいは純粋な保護ガス中での1573Kないし
1773Kの温度における焼結により、粉末核の間に
所望の焼結ブリツジが形成され、その結果基材強
度は上昇し、焼結過程後の多孔質焼結中間生成物
の問題のない取扱いが可能となる。別の工程にお
いて中間生成物は溶浸型の中に入れられるか溶浸
台の上に載せられ、被覆物または基台として空孔
容積に相応する量の溶浸金属、この場合は銅が付
加され、そして再び高真空中あるいは純粋な保護
ガス中で溶浸金属の融点以上に加熱される。そし
て毛管力によつて多孔質の基材に溶浸が起こる。
Other known methods include the compaction or compaction of metal powders, for example consisting of pure chromium powder or in which one or more other powder additives are mixed into the chromium powder to obtain a liquid phase during sintering. Pouring creates a porous intermediate product. followed by 1573K or more in high vacuum or pure protective gas.
Sintering at a temperature of 1773 K results in the formation of the desired sinter bridges between the powder cores, resulting in increased substrate strength and problem-free handling of the porous sintered intermediate after the sintering process. becomes. In a further step, the intermediate product is placed in an infiltration mold or placed on an infiltration table, and an amount of infiltrant metal, in this case copper, is added as a coating or base in proportion to the pore volume. and then heated again in a high vacuum or in pure protective gas above the melting point of the infiltrated metal. Infiltration of the porous substrate then occurs due to capillary forces.

しかしながら、Cr―Cu複合材料製造のための
上述の溶浸法によつては、慎重な作業方法にも拘
らず、完全に欠陥のない溶浸は得られない。それ
は本質的に次の三つの理由に基づくものである。
However, the above-mentioned infiltration method for producing Cr--Cu composites does not result in completely defect-free infiltration, despite careful working methods. This is essentially based on the following three reasons.

焼結工程および溶浸工程の間の炉の装入換えの
際、強いゲツタ活性のクロム基材の場合には薄い
酸化物皮膜または化学的に吸着されたガス皮膜に
より基材表面が新しく被覆され、それが溶けた溶
浸金属との濡れを困難にする。熱力学的な理由か
ら、この酸化過程は高真空および純粋な保護ガス
中でさえ、約1000Kより低いところですでに起こ
る。なぜなら経済的に使用できるような炉におい
ては10-10mb以下の酸素分圧が得られないからで
ある。この現象の結果として、微小空洞および空
孔の形であらわれる溶浸欠陥が生ずる。
When recharging the furnace during the sintering and infiltration processes, the substrate surface is newly coated with a thin oxide film or chemically adsorbed gas film in the case of strongly getter-active chromium substrates. , making it difficult to wet with the molten infiltrated metal. For thermodynamic reasons, this oxidation process takes place already below about 1000 K, even in high vacuum and pure protective gas. This is because oxygen partial pressures below 10 -10 mb cannot be obtained in economically viable furnaces. As a result of this phenomenon, infiltration defects appear in the form of microcavities and voids.

焼結過程とそれに結び付いて生ずる焼結ブリツ
ジの形成によつて、溶けた溶浸金属が全然到達し
ないか不完全に到達するだけの、入りにくい空孔
領域が得られる。それによつて、例えば炭素のよ
うな還元物質を、溶けた溶浸金属相を介して基材
金属にもたらす可能性も制約され、その結果焼結
ブリツジ形成に基づくこの残留空孔領域中に残留
酸化物が存在し、それが接触子材料のしや断能力
を害する。
The sintering process and the consequent formation of sinter bridges result in difficult-to-enter void areas to which the molten infiltrated metal does not reach at all or only incompletely. This also limits the possibility of introducing reducing substances, e.g. carbon, into the base metal via the melted infiltrated metal phase, with the result that residual oxidation in this residual void area due to the formation of sinter bridges is also limited. material is present that impairs the shearing ability of the contact material.

固い焼結ブリツジの硬直化作用により、基材の
変形に対する可能性は著しく低減される。銅ある
いはその合金によつて浸透されたクロム基材が、
溶けた溶浸金属の溶浸温度から冷却される場合、
クロムおよび銅の間の異なる熱膨脹のために、基
材金属および溶浸金属の共通のつりあつた収縮に
よつて吸収することのできない容積不足があらわ
れる。この公知の現象は同様に欠陥部および光学
顕微鏡で観察できない微小空孔に導き、それが高
負荷遮断責務に対する材料の品質を劣化させるこ
とがあり得る。
Due to the stiffening effect of the hard sintered bridge, the possibility of deformation of the substrate is significantly reduced. A chromium base material infiltrated with copper or its alloys
When the molten infiltrated metal is cooled from the infiltration temperature,
Due to the different thermal expansions between chromium and copper, a volume deficit appears that cannot be absorbed by the common proportional contraction of the base metal and the infiltrated metal. This known phenomenon likewise leads to defects and microporosity that cannot be observed with an optical microscope, which can deteriorate the quality of the material for high load shedding duties.

これらの障害を除去することが研究されてき
た。すなわち、例えばクロム粉末および銅粉末を
混合し、それによつてクロム粒の直接の接触が広
範囲に行われないようにし、つづく焼結過程にお
いて変形を妨げる離れ離れの焼結ブリツジが全く
形成されないか、またはごく僅か形成されるよう
にすることができる。この製造工程がクロム粒子
の立体障害を打消すとしても、そのような材料に
よつては十分な遮断能力を得ることができない。
その原因は通常約500ppmの酸素不純物を含む銅
粉末とゲツタ活性のクロム粉末との間の相互作用
である。すでに1273Kより低温で、すなわち1000
℃ですでに、Cu2O解離を使用する場合、酸化し
やすいクロム粉末が酸化される。クロムの高い酸
化熱のために、安定な表面酸化物が形成され、そ
れは普通の真空脱ガスではもはや除去することが
できない。
Efforts have been made to eliminate these obstacles. That is, for example, by mixing chromium powder and copper powder so that there is no extensive direct contact of the chromium grains and no separate sintered bridges are formed which prevent deformation during the subsequent sintering process, or It is possible to form only a small amount. Even though this manufacturing process overcomes the steric hindrance of the chromium particles, sufficient blocking ability cannot be obtained with such materials.
The cause is the interaction between the copper powder, which usually contains about 500 ppm of oxygen impurities, and the Getta-active chromium powder. Already at a temperature lower than 1273K, i.e. 1000
Already at °C, when using Cu 2 O dissociation, the oxidizable chromium powder will be oxidized. Due to the high heat of oxidation of chromium, a stable surface oxide is formed, which can no longer be removed by ordinary vacuum degassing.

〔発明の開示〕[Disclosure of the invention]

それ故本発明の目的は、36kVまでの使用電圧
と30kA以上の遮断電流の真空高圧用遮断器の要
求を満足し、上述の欠陥源ならびに付加的に高い
酸素含有量の銅粉末の使用が避けられるクロムと
銅とから成る高性能接触子材料を製造することが
可能な方法を得ることにある。
It is therefore an object of the present invention to satisfy the requirements of vacuum high-voltage circuit breakers with working voltages up to 36 kV and breaking currents above 30 kA, avoiding the above-mentioned sources of defects as well as the use of copper powder with an additionally high oxygen content. The object of the present invention is to obtain a method by which it is possible to produce a high-performance contact material made of chromium and copper.

本発明によればこの目的は、クロム粉末を脱ガ
スされた型の中に注ぎ込み、そのクロム粉末上に
低酸素の銅からなる片を置き、つづいて型を多孔
質の蓋で閉じ、それからその型を高真空炉中で室
温において10-4mbより低い圧力に達するまで脱
ガスし、その後炉温を銅の融点より下のできるだ
け高い温度に高め、この炉温を10-4mbより低い
一定の炉内圧力が得られるまで一定に保持し、つ
づいて中間冷却なしに炉温を銅の融点の上100K
ないし200Kの最終値までさらに高め、この温度
をクロム粉末混合物中に含まれる多孔部分が溶け
た銅によつて完全に満されるまで保持することに
よつて達成される。
According to the invention, this purpose is achieved by pouring chromium powder into a degassed mold, placing a piece of low-oxygen copper on top of the chromium powder, then closing the mold with a porous lid, and then The mold is degassed in a high vacuum furnace at room temperature until a pressure below 10 -4 mb is reached, then the furnace temperature is increased to as high as possible below the melting point of the copper, and this furnace temperature is kept at a constant temperature below 10 -4 mb. The furnace pressure was held constant until the furnace pressure was reached, and then the furnace temperature was raised to 100K above the melting point of copper without intermediate cooling
This is achieved by increasing the temperature further to a final value of 100 to 200 K and maintaining this temperature until the pores contained in the chromium powder mixture are completely filled with molten copper.

銅の融点のすぐ下におかれる炉温は、工業的に
実施される場合には1273K(+50K,−20K)に選
ぶことができる。炉はこの温度に約1時間保持さ
れ、その際内圧力は10-5mbの範囲に得られ有利
である。銅の融点より上に保持する時間は20ない
し30分が有利である。
The furnace temperature, which is just below the melting point of copper, can be chosen to be 1273K (+50K, -20K) in industrial practice. The furnace is maintained at this temperature for approximately 1 hour, the internal pressure being advantageously achieved in the range of 10 -5 mb. A holding time above the melting point of the copper of 20 to 30 minutes is advantageous.

本発明の方法に対しては、アルミノサーミツク
または電解的に作られたクロムを使用することが
できる。第一の方法の場合、クロム粉末は50μm
ないし200μmの粒子分布を持つているのが望ま
しく、とりわけ少くとも150μmの成分を持つた
ものが有利である。第二の方法の場合には、粒子
の大きさはそれ以下、すなわち25μmより下の範
囲におくことができる。
Aluminothermics or electrolytically produced chromium can be used for the method of the invention. In the case of the first method, the chromium powder is 50μm
A particle distribution of from 1 to 200 .mu.m is preferred, with a component of at least 150 .mu.m being particularly advantageous. In the case of the second method, the particle size can be in the smaller range, ie below 25 μm.

また、グラフアイトから成る作業型を用いるの
が有利なことが分つた。それは溶けた銅に炭素が
少量溶けており、それ故溶融相における移送を介
してクロム酸化不純物に対する還元剤として用い
られるからである。
It has also been found advantageous to use a working mold made of graphite. This is because a small amount of carbon is dissolved in the molten copper and is therefore used as a reducing agent for chromium oxide impurities via transport in the melt phase.

本発明においては、強度を高める焼結過程が安
定な焼結ブリツジの形成によつて行なわれるので
はなく、型の中に注ぎ込まれたクロム粉末から出
発する点で特に有利である。炉の装入切替や焼結
中間生成物の付加的操作なしに、注ぎ込んだ粉末
の多孔容積は溶けた銅で完全に満たすことがで
き、その結果実用上孔部のない複合材料が得られ
る。
In the present invention, it is particularly advantageous that the strength-enhancing sintering process does not take place by forming stable sintered bridges, but rather starts from chromium powder poured into a mold. Without changing the furnace charge or additional manipulation of the sintered intermediate, the pore volume of the poured powder can be completely filled with molten copper, resulting in a practically pore-free composite material.

〔発明の実施例〕[Embodiments of the invention]

次に本発明を実施例について詳細に説明する。 Next, the present invention will be explained in detail with reference to examples.

500ppmの最大酸素含有量を持ちアルミノサー
ミツクに作られたクロムを使用する場合、少くと
も150μmの成分を持つ粒子の大きさのクロム粉
末を、予め脱ガスされた黒鉛型の中に充てんす
る。るつぼは、例えば85mmの直径と250mmの長さ
を持ち、約180mmの高さまでクロム粉末で満たさ
れている。クロム粉末の上に塊状の低酸素銅片を
置き、それがるつぼの残りの内容積を満たすよう
にする。そのるつぼを多孔質の黒鉛蓋で閉ざし、
高真空炉中で先ず室温で10-5mbの域、すなわち
10-4mbより低いところに達するまで脱ガスする。
つづいて加熱を始めるが、それは圧力が10-4mb
以上に昇ると常に中断する。約1273K(+50K,−
20K)の温度において、すなわち銅の融点(TSn
=1356K)より下の温度において、本来の脱ガス
温度に達し、この温度を1時間、しかし少なくと
も10-4mbより低い炉内圧力に再び達するまで保
持する。つづいて中間冷却なしに温度を、銅の融
点より100Kないし200K上にある最終値までさら
に高める。その温度は例えば1473Kであり、この
温度において約30分後には、注ぎ込まれたクロム
中の孔部は溶けた銅で実用上完全に満たされる。
When using aluminothermic chromium with a maximum oxygen content of 500 ppm, chromium powder with a particle size of at least 150 μm is filled into a graphite mold that has been degassed beforehand. The crucible has, for example, a diameter of 85 mm and a length of 250 mm and is filled with chromium powder to a height of about 180 mm. Place a chunk of low-oxygen copper piece on top of the chromium powder so that it fills the remaining internal volume of the crucible. The crucible is closed with a porous graphite lid,
In a high vacuum furnace, first at room temperature the region of 10 -5 mb, i.e.
Degas until below 10 -4 mb is reached.
Next, heating begins, but at a pressure of 10 -4 mb.
If it rises above this level, it will always be interrupted. Approximately 1273K (+50K, -
20K), i.e. the melting point of copper (T Sn
= 1356 K), the actual degassing temperature is reached and this temperature is maintained for 1 hour, but at least until the furnace pressure below 10 -4 mb is again reached. The temperature is then further increased without intercooling to a final value of 100 K to 200 K above the melting point of copper. The temperature is, for example, 1473 K, and after about 30 minutes at this temperature the holes in the poured chromium are practically completely filled with molten copper.

本発明の他の実施例においては、同様に最高
500ppmの酸素を含有した電解的に作られたクロ
ムが用いられる。それから作られたクロム粉末
は、この場合にはアルミノサーミツクに作られた
クロムより小さい、例えば25μmより小さい粒子
の大きさ分布を持つたものとすることができる。
それ以外の個々の製造工程は第一の実施例と同様
である。
In other embodiments of the invention, the maximum
Electrolytically produced chromium containing 500 ppm oxygen is used. The chromium powder made therefrom may have a particle size distribution which is smaller than the chromium made into aluminothermic in this case, for example smaller than 25 μm.
Other individual manufacturing steps are the same as in the first embodiment.

孔部が完全に満たされた後、上述の両実施例に
より作られた中間生成物は真空中に冷却される。
冷えた後Cr―Cu複合ブロツクは必要な幾何学的
形状を持つた接触子片に分けられる。この材料の
顕微鏡組織によれば、本発明方法によつて作られ
た複合材料が、強度を高める焼結ブリツジも、多
孔部も実際上持たないことが認められる。したが
つて本発明方法によれば、Cr―Cuを基礎にした
接触子片を再現性よく作ることができ、しかもそ
れは高圧真空しや断器に適した性質を持つてい
る。
After the holes are completely filled, the intermediate products made according to both of the examples described above are cooled in vacuum.
After cooling, the Cr--Cu composite block is divided into contact pieces with the required geometry. The microstructure of this material shows that the composite material made by the method of the invention has virtually no sintered bridges or porosity to increase its strength. Therefore, according to the method of the present invention, a contact piece based on Cr--Cu can be produced with good reproducibility, and moreover, it has properties suitable for high-pressure vacuum insulation and disconnection.

Cr―Cuを基礎にして説明した実施例において、
公知の方法で他の元素を添加物として用いること
ができる。例えば、銅に対する合金成分としてチ
タン、ジルコニウムを用いると、ゲツタ特性が改
善される。また、鉄、コバルト、またはニツケル
をクロム粉末に添加すると、濡れ性が改善され
る。
In the embodiment explained based on Cr--Cu,
Other elements can be used as additives in a known manner. For example, if titanium or zirconium is used as an alloy component for copper, the getter characteristics will be improved. Also, adding iron, cobalt, or nickel to chromium powder improves wettability.

Cr―Cu複合材料に上述の添加処理は本発明と
関連して行なうことができ、前述の製造工程につ
いて基本的に変るところはなんらない。
The above-described addition treatment to the Cr--Cu composite material can be performed in connection with the present invention, and there is no fundamental change in the manufacturing process described above.

Claims (1)

【特許請求の範囲】 1 a) クロム粉末を脱ガスされた型の中に注
ぎ込む工程と、 b) クロム粉末上に低酸素の銅から成る片を置
く工程と、 c) 続いて型を多孔質の蓋で閉じる工程と、 d) 型を高真空炉中で室温において10-4mbよ
り低い圧力に達するまで脱ガスする工程と、 e) 次いで炉温を銅の融点より下のできるだけ
高い温度に高める工程と、 f) 前記炉温を10-4mbより低い一定の炉内圧
力が得られるまで一定に保持する工程と、 g) 次いで中間冷却なしに、炉温を銅の融点よ
り100Kないし200K高い最終値までさらに高
め、この温度をクロム粉末中に含まれる多孔部
分が溶けた銅によつて完全に満たされるまで一
定に保持する工程と から成ることを特徴とするクロムと銅との複合材
料から成る真空しや断器用接触子材料の製造方
法。 2 特許請求の範囲第1項記載の方法において、
工程e)の炉温が1273K(+50K,−20K)である
ことを特徴とする真空しや断器用接触子材料の製
造方法。 3 特許請求の範囲第1項または第2項記載の方
法において、工程d)およびf)の圧力が
10-5mbの域にあることを特徴とする真空しや断
器用接触子材料の製造方法。 4 特許請求の範囲第1項記載の方法において、
工程f)における保持時間が約1時間であること
を特徴とする真空しや断器用接触子材料の製造方
法。 5 特許請求の範囲第1項記載の方法において、
工程g)における保持時間が20ないし30分である
ことを特徴とする真空しや断器用接触子材料の製
造方法。 6 特許請求の範囲第1項記載の方法において、
アルミノサーミツクに作られたクロムを用い、そ
れから得たクロム粉末が50μmないし200μmの粒
子の大きさ分布を有することを特徴とする真空し
や断器用接触子材料の製造方法。 7 特許請求の範囲第6項記載の方法において、
少くとも150μmの成分を持つ粒子の大きさのク
ロム粉末を用いることを特徴とする真空しや断器
用接触子材料の製造方法。 8 特許請求の範囲第1項記載の方法において、
電解的に作られたクロムを用い、それから得たク
ロム粉末が25μmないし200μmの粒子の大きさ分
布を有することを特徴とする真空しや断器用接触
子材料の製造方法。 9 特許請求の範囲第1項ないし第8項のいずれ
かに記載の方法において、黒鉛から成る型を用い
ることを特徴とする真空しや断器用接触子材料の
製造方法。
Claims: 1 a) pouring chromium powder into a degassed mold; b) placing a piece of low-oxygen copper on top of the chromium powder; and c) subsequently making the mold porous. d) degassing the mold in a high vacuum furnace at room temperature until a pressure below 10 -4 mb is reached; e) then increasing the furnace temperature to as high a temperature as possible below the melting point of the copper. f) holding the furnace temperature constant until a constant furnace pressure below 10 -4 mb is obtained; g) then raising the furnace temperature to 100 K to 200 K below the melting point of copper without intermediate cooling; Composite material of chromium and copper, characterized in that it comprises the steps of further increasing the temperature to a high final value and keeping this temperature constant until the pores contained in the chromium powder are completely filled with molten copper. A method for producing a contact material for a vacuum shield and disconnector comprising: 2. In the method described in claim 1,
A method for producing a contact material for a vacuum shield or disconnector, characterized in that the furnace temperature in step e) is 1273K (+50K, -20K). 3. In the method according to claim 1 or 2, the pressure in steps d) and f) is
A method for producing a contact material for a vacuum shield or disconnector, characterized in that the contact material is in the 10 -5 MB range. 4. In the method described in claim 1,
A method for producing a contact material for a vacuum shield or disconnector, characterized in that the holding time in step f) is about 1 hour. 5. In the method described in claim 1,
A method for producing a contact material for a vacuum shield, characterized in that the holding time in step g) is 20 to 30 minutes. 6. In the method recited in claim 1,
A method for producing a contact material for a vacuum shield or breaker using chromium made of aluminothermic material, characterized in that the chromium powder obtained therefrom has a particle size distribution of 50 μm to 200 μm. 7 In the method described in claim 6,
A method for producing a contact material for a vacuum shield or breaker, characterized by using chromium powder having a particle size of at least 150 μm. 8. In the method described in claim 1,
1. A method for producing a contact material for a vacuum shield or breaker using electrolytically produced chromium, characterized in that the chromium powder obtained therefrom has a particle size distribution of 25 μm to 200 μm. 9. A method for manufacturing a contactor material for a vacuum shield or disconnector, characterized in that a mold made of graphite is used in the method according to any one of claims 1 to 8.
JP12869483A 1982-07-16 1983-07-14 Manufacture of vacuum interrupter contact material Granted JPS5925903A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19823226604 DE3226604A1 (en) 1982-07-16 1982-07-16 Process for the preparation of a composite material based on Cr/Cu for medium-voltage vacuum power switches
DE3226604.9 1982-07-16
DE3322866.3 1983-06-24

Publications (2)

Publication Number Publication Date
JPS5925903A JPS5925903A (en) 1984-02-10
JPS6353252B2 true JPS6353252B2 (en) 1988-10-21

Family

ID=6168566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12869483A Granted JPS5925903A (en) 1982-07-16 1983-07-14 Manufacture of vacuum interrupter contact material

Country Status (2)

Country Link
JP (1) JPS5925903A (en)
DE (1) DE3226604A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3347550A1 (en) * 1983-12-30 1985-07-11 Siemens AG, 1000 Berlin und 8000 München Chromium and copper composite material, method of producing it and shaped contact points made of said material
JPH0760623B2 (en) * 1986-01-21 1995-06-28 株式会社東芝 Contact alloy for vacuum valve
JP2705998B2 (en) * 1990-08-02 1998-01-28 株式会社明電舎 Manufacturing method of electrical contact material
EP0538896A3 (en) * 1991-10-25 1993-11-18 Meidensha Electric Mfg Co Ltd Process for forming contact material
CN106710897B (en) * 2016-12-28 2018-05-25 陕西斯瑞新材料股份有限公司 A kind of preparation method of copper chromium composite contact

Also Published As

Publication number Publication date
JPS5925903A (en) 1984-02-10
DE3226604A1 (en) 1984-01-19

Similar Documents

Publication Publication Date Title
US3957453A (en) Sintered metal powder electric contact material
US4032301A (en) Composite metal as a contact material for vacuum switches
US4836978A (en) Method for making vacuum circuit breaker electrodes
CA1220630A (en) Method of producing copper-chromium fusion alloys as contact material for vacuum power switches
US4503010A (en) Process of producing a compound material of chromium and copper
US4014659A (en) Impregnated compound metal as contact material for vacuum switches and method for its manufacture
KR970004578B1 (en) Process for manufacturing a contact material for a vacuum circuit breakers
JPS6353252B2 (en)
KR102062674B1 (en) Manufacturing method of ternary contact material
JPS59163726A (en) Vacuum breaker
JPH0554208B2 (en)
KR950008375B1 (en) Process for forming contact material
CA2410805C (en) Method for preparing reinforced platinum material
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
US5130068A (en) Method of manufacturing vacuum switch contact material from Cr2 O3 powder
US5701993A (en) Porosity-free electrical contact material, pressure cast method and apparatus
US4971866A (en) Vacuum switch contact materials and the manufacturing methods
JP2557143B2 (en) Method for producing silver-tin oxide composite material
CN115354185B (en) Preparation method of high-purity copper-chromium contact with ultralow gas content
JPH0458130B2 (en)
JPS62116736A (en) Production of electrode for vacuum valve circuit breaker
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker
JPS6055580B2 (en) Method for manufacturing sintered molded parts with few pores mainly composed of chromium and copper
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JPS60158524A (en) Composite material for electric contactor and method of producing same