JPS6055580B2 - Method for manufacturing sintered molded parts with few pores mainly composed of chromium and copper - Google Patents

Method for manufacturing sintered molded parts with few pores mainly composed of chromium and copper

Info

Publication number
JPS6055580B2
JPS6055580B2 JP51090883A JP9088376A JPS6055580B2 JP S6055580 B2 JPS6055580 B2 JP S6055580B2 JP 51090883 A JP51090883 A JP 51090883A JP 9088376 A JP9088376 A JP 9088376A JP S6055580 B2 JPS6055580 B2 JP S6055580B2
Authority
JP
Japan
Prior art keywords
chromium
copper
sintering
mainly composed
few pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51090883A
Other languages
Japanese (ja)
Other versions
JPS5220263A (en
Inventor
ハインリツヒ、ヘスラー
ホルスト、キツペンベルク
ホルスト、シユタイナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS5220263A publication Critical patent/JPS5220263A/en
Publication of JPS6055580B2 publication Critical patent/JPS6055580B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は、クロムと銅より成る混合粉末素材が圧縮さ
れ、引続き真空中で焼結され、例えば真空中電圧電力用
開閉器用接触片として使用される、クロム・銅を主成分
とする孔の少ない焼結成形部品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a chromium-copper powder material, which is produced by compressing a mixed powder material of chromium and copper and subsequently sintering it in a vacuum, to be used, for example, as a contact piece for a voltage power switch in a vacuum. The present invention relates to a method for manufacturing sintered molded parts with few pores as a main component.

真空中電圧電力用開閉器の接触片材料としては、クロ
ム・銅及びバナジウム・銅を主成分とする複合材料が高
い信頼性を持つている。
Composite materials whose main components are chromium/copper and vanadium/copper are highly reliable as contact piece materials for voltage power switches in vacuum.

なぜならばこれらは、高い開閉能力、良好な耐熱性及び
充分に低いさい断電流を示す他に電力遮断の前後に於け
る絶縁破壊強度が高いからである。従来この材料は、種
々の困難を伴う含浸法によつて製造された。 過剰の銅
を用いて真空含浸することにより充分良質の素成品が得
られるが、クロム或はバナジウムの反応親和力がるつぼ
材料乃至含浸基底体と合金を作り、従つてこれらは1目
しか使用できない。
This is because they exhibit high switching ability, good heat resistance, and sufficiently low breaking current, as well as high dielectric breakdown strength before and after power interruption. Traditionally, this material has been produced by impregnation methods, which are accompanied by various difficulties. Vacuum impregnation with an excess of copper yields sufficiently good quality components, but the reaction affinity of the chromium or vanadium forms an alloy with the crucible material or impregnated substrate, so that they can only be used once.

その外、素成品の過剰含浸部の削除、腐蝕区域の除去及
びフライス加工等を施すためには、高い割合で粗大なり
ロム粒子(100TrLμ以上)を含んでいる好ましく
ない材料組成のために、多大の費用がかかる。 含浸る
つぼの損失を回避するため、小面積の支持体上に焼結素
材を載せるようにしたるつぼなし含浸法が適用される。
In addition, due to the unfavorable material composition, which contains a high proportion of coarse or ROM particles (more than 100 TrLμ), a large amount of costs. In order to avoid the loss of the impregnation crucible, a crucible-less impregnation method is applied, in which the sintered material is placed on a small-area support.

しかしこの方法に於いては、接点素材の載置点に含浸銅
の界面張力の変化が生じ、そのために銅の溶析と接触片
の不足含浸が避けられない。その外この方法に於いては
、含浸された素成品に数?の深さに達する腐蝕帯域が認
められ、このため正確に成形すべき電極部材を製作する
ことは不可能である。含浸銅に適当な含浸温度に於いて
飽和濃度までのクロムが添加されるならば、このような
腐蝕帯域は回避できるはずである。しかしクロムの酸素
に対する親和力のために、真空中で含浸処理を施してい
る間でも、酸素の成分を有する含浸合金の富化を起し、
これが焼結素成品の含浸を不完全ならしめる。特に、酸
化物被膜のために、クロム或はバナジウム粉末の焼結作
用が著しく低下されるという理由で、クロム或はバナジ
ウム及び銅の粉末から、形状安定的に且つ孔が殆んどな
いように粉末被圧縮体を焼結することはできなかつた。
従つて例えば1:1の比率のクロムと銅の粉末より成る
被圧縮体を、約1300′Cの温度で焼結した場合、殆
んど体積の減少が生せず、即ち焼結処理の前後に於ける
小孔の残留分が不変である。本発明の目的は、クロムと
銅の成分を有する混合粉末から成形される接触片用素材
を、形状が安定しかつ孔が殆んどないように焼結するこ
とを可能にする方法を提供することにある。
However, in this method, a change in the interfacial tension of the impregnated copper occurs at the point where the contact material is placed, so that copper melting and insufficient impregnation of the contact piece are unavoidable. In addition, in this method, the number of impregnated components? Corrosion zones up to a depth of 100 mm are observed, which makes it impossible to produce precisely molded electrode parts. Such corrosion zones could be avoided if the impregnated copper was doped with chromium up to a saturation concentration at a suitable impregnation temperature. However, due to the affinity of chromium for oxygen, even during the impregnation process in vacuum, enrichment of the impregnated alloy with oxygen components occurs.
This results in incomplete impregnation of the sintered blank. In particular, chromium or vanadium and copper powders can be made shape-stable and with almost no pores, since the sintering effect of the chromium or vanadium powder is significantly reduced due to the oxide coating. It was not possible to sinter the powder compacted body.
Therefore, for example, when a compacted body made of chromium and copper powder in a 1:1 ratio is sintered at a temperature of about 1300'C, there is almost no volume reduction, i.e. before and after the sintering process. The residual amount of pores in the pores remains unchanged. An object of the present invention is to provide a method that makes it possible to sinter a contact piece material formed from a mixed powder containing chromium and copper components so that the shape is stable and there are almost no pores. There is a particular thing.

本発明によればこの目的は、クロム成分の焼結作用を高
めるためにクロムと銅の混合粉末に少なくとも3%の鉄
、コバルト或いはニッケルの粉末が添加され、焼結温度
は1300℃とすることより達成される。
According to the invention, this purpose is to add at least 3% iron, cobalt or nickel powder to the chromium and copper mixed powder to enhance the sintering action of the chromium component, and the sintering temperature is 1300°C. more achieved.

この場合添加金属である鉄、コバルト或いはニッケルが
溶融銅相との間の可溶性に基づきクロム内に拡散し、ク
ロムと混合結晶体を形成.する。これにより次のような
効果が得られる。すなわち上記の添加金属によつて、特
にクロムの場合焼結を妨げる酸化物層が溶解され、その
結果残留多孔率を低減させる好ましい焼結作用が得られ
る。更に焼結温度を1300℃とすることにより添加.
金属粉末が液状の銅内を拡散により移送され、また添加
金属とクロムとの混合結晶体が経済的に見合う時間(約
1時間)で達成される。なお1300Cの焼結温度は基
準値であり、一定の偏差が許されるが、しかしこの温度
は明らかに融点(1085℃)−以上であることまた添
加金属の融点(1500C)以下であることが重要であ
る。タングステン・銅及びモリブデン・銅のような合金
系に於いてはニッケルが百分の数%程度存在しただけで
既に焼結の促進が生ずるが、このような合金系とは異な
り本発明の材料組成に於いては、残留多孔率を3%以下
に抑えるためには少くとも3%の添加物を添加しなけれ
ばならない。
In this case, the added metals iron, cobalt, or nickel diffuse into chromium due to their solubility with the molten copper phase, forming a mixed crystal with chromium. do. This provides the following effects. That is, by means of the above-mentioned additive metals, in particular in the case of chromium, oxide layers which hinder sintering are dissolved, resulting in a favorable sintering effect that reduces residual porosity. Furthermore, it is added by increasing the sintering temperature to 1300℃.
The metal powder is transported by diffusion through the liquid copper, and a mixed crystalline form of the added metal and chromium is achieved in an economical time (approximately 1 hour). Note that the sintering temperature of 1300C is a standard value and a certain deviation is allowed, but it is important that this temperature is clearly above the melting point (1085℃) and below the melting point of the additive metal (1500C). It is. In alloy systems such as tungsten-copper and molybdenum-copper, sintering is already accelerated by the presence of only a few percent of nickel, but unlike these alloy systems, the material composition of the present invention In order to keep the residual porosity below 3%, at least 3% of the additive must be added.

これは、モリブデン及びタングステンに於ける促進作用
が、クロムに於ける場合とその特性が根本的に異なるこ
とに基いている。タングステンとモリブデンに於いて、
添加物が極めて僅かな濃度に於いて既に効果を表わすこ
との意義は、先づ第1に焼結速度の増大にある。この焼
結速度はモリブデン及びタングステンに於いて問題とな
る約1200C乃至1400′Cの温度に於いては溶融
点との関係が殆んどない。これに対しクロムに於ける上
述の添加金属の作用は、主として焼結を妨げる酸化物の
層の溶解にある。次に実施例に基つき本発明の作用及び
効果を更に詳細に説明する。
This is based on the fact that the properties of the promoting effect in molybdenum and tungsten are fundamentally different from those in chromium. In tungsten and molybdenum,
The significance of the fact that the additives exhibit an effect even at very low concentrations is primarily that of increasing the sintering rate. This sintering rate has little relationship to the melting point at temperatures of about 1200 to 1400'C, which is a problem for molybdenum and tungsten. In contrast, the effect of the above-mentioned additive metals in chromium is primarily to dissolve the oxide layer that prevents sintering. Next, the functions and effects of the present invention will be explained in more detail based on Examples.

実施例1 70pm以下の粒径を有するクロム粉末が、同程度の粒
径の銅粉末45%及びコバルト粉末10%と混合され、
4MpIc71fのブレス圧力を以て圧縮された。
Example 1 Chromium powder with a particle size of 70 pm or less is mixed with 45% copper powder and 10% cobalt powder of similar particle size,
It was compressed with a breath pressure of 4MpIc71f.

引続き被圧縮体が10−4T0rr以下の真空中で13
00℃に於いて1時間焼結された。この場合、最初約2
熔積%に及ぶ多孔率が、3容積%以下に低減した。この
熱処理法により焼結体は型通りに成形された。従つて複
雑な構造も圧縮成形できることが判明した。実施例2 70pm以下の粒径を有するクロム粉末が、同程度の粒
径の銅粉末40%及び鉄粉末15%と混合され、5Mp
1c1iのプレスカを以て圧縮された。
Subsequently, the compressed object is 13 in a vacuum of 10-4T0rr or less.
It was sintered at 00°C for 1 hour. In this case, initially about 2
The porosity, which corresponds to % by volume, was reduced to 3% by volume or less. By this heat treatment method, the sintered body was molded according to the mold. Therefore, it was found that even complex structures can be compression molded. Example 2 Chromium powder with particle size below 70pm is mixed with 40% copper powder and 15% iron powder of similar particle size to produce 5Mp
Compressed with 1c1i presca.

Claims (1)

【特許請求の範囲】[Claims] 1 クロムと銅より成る混合粉末素材を圧縮し、引き続
き真空中で焼結することよりなるクロム・銅を主成分と
する孔の少ない焼結成形部品の製造方法において、クロ
ム成分の焼結作用を高めるために、前記混合粉末素材に
少なくとも3%の鉄、コバルト或いはニッケルの粉末を
添加し、焼結温度を1300℃とすることを特徴とする
クロム・銅を主成分とする孔の少ない焼結成形部品の製
造方法。
1. In a method for manufacturing sintered molded parts with few pores mainly composed of chromium and copper, which involves compressing a mixed powder material consisting of chromium and copper and then sintering it in a vacuum, the sintering effect of the chromium component is sintered chromium/copper-based material with few pores, characterized in that at least 3% of iron, cobalt or nickel powder is added to the mixed powder material and the sintering temperature is set at 1300°C to increase the Method of manufacturing shaped parts.
JP51090883A 1975-08-06 1976-07-29 Method for manufacturing sintered molded parts with few pores mainly composed of chromium and copper Expired JPS6055580B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19752535184 DE2535184B2 (en) 1975-08-06 1975-08-06 PROCESS FOR MANUFACTURING LOW-PORE-Sintered FINISHED PARTS BASED ON CHROME-COPPER OR VANADIUM-COPPER
DE2535184.2 1975-08-06

Publications (2)

Publication Number Publication Date
JPS5220263A JPS5220263A (en) 1977-02-16
JPS6055580B2 true JPS6055580B2 (en) 1985-12-05

Family

ID=5953392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51090883A Expired JPS6055580B2 (en) 1975-08-06 1976-07-29 Method for manufacturing sintered molded parts with few pores mainly composed of chromium and copper

Country Status (3)

Country Link
JP (1) JPS6055580B2 (en)
DE (1) DE2535184B2 (en)
GB (1) GB1550640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276726U (en) * 1985-10-31 1987-05-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3303170A1 (en) * 1983-01-31 1984-08-02 Siemens AG, 1000 Berlin und 8000 München METHOD FOR PRODUCING COPPER-CHROME MELTING ALLOYS AS A CONTACT MATERIAL FOR VACUUM CIRCUIT BREAKER
US4687515A (en) * 1986-04-10 1987-08-18 General Electric Company Vacuum interrupter contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276726U (en) * 1985-10-31 1987-05-16

Also Published As

Publication number Publication date
DE2535184B2 (en) 1977-06-02
GB1550640A (en) 1979-08-15
JPS5220263A (en) 1977-02-16
DE2535184A1 (en) 1977-02-24

Similar Documents

Publication Publication Date Title
US4032301A (en) Composite metal as a contact material for vacuum switches
US4162160A (en) Electrical contact material and method for making the same
JPS6362122A (en) Manufacture of electrode for vacuum breaker
US4014659A (en) Impregnated compound metal as contact material for vacuum switches and method for its manufacture
US3969112A (en) Process for preparing silver-cadmium oxide alloys
JPS6055580B2 (en) Method for manufacturing sintered molded parts with few pores mainly composed of chromium and copper
CN105761956A (en) Contact material, vacuum arc-extinguishing chamber contact and manufacturing method thereof
US3337338A (en) Tungsten powder bodies infiltrated with copper-titanium bismuth or copper-titanium-tin
US5822674A (en) Electrical contact material and method of making the same
US4450135A (en) Method of making electrical contacts
JPS6337072B2 (en)
US3505065A (en) Method of making sintered and infiltrated refractory metal electrical contacts
US2180826A (en) Electric contact
US2818633A (en) Electrical contact
KR20180118617A (en) METHOD FOR MANUFACTURING CARBON COMPOSITE MATERIAL
US3423203A (en) Tungsten-indium powder bodies infiltrated with copper
RU2522584C1 (en) Method of material manufacturing for arc-quenching and electric break contacts and material
US3353931A (en) Tungsten-indium powder bodies infiltrated with copper
US3272603A (en) Refractory metal composite
JPS5925903A (en) Manufacture of vacuum interrupter contact material
US4028063A (en) Compacts for preparing silver-cadmium oxide alloys
US4249944A (en) Method of making electrical contact material
JP3106598B2 (en) Manufacturing method of electrode material
CN114921679B (en) Silver sulfide-resistant electrical contact material and preparation method thereof
JPS5938301A (en) Manufacture of sintered ag-w contact