JPH09161583A - Manufacture of contact member for vacuum circuit breaker - Google Patents

Manufacture of contact member for vacuum circuit breaker

Info

Publication number
JPH09161583A
JPH09161583A JP7324661A JP32466195A JPH09161583A JP H09161583 A JPH09161583 A JP H09161583A JP 7324661 A JP7324661 A JP 7324661A JP 32466195 A JP32466195 A JP 32466195A JP H09161583 A JPH09161583 A JP H09161583A
Authority
JP
Japan
Prior art keywords
copper
contact member
contact
powder
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7324661A
Other languages
Japanese (ja)
Inventor
Yoshiko Minami
淑子 南
Akihisa Nitta
晃久 新田
Kunpei Kobayashi
薫平 小林
Hiromichi Horie
宏道 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7324661A priority Critical patent/JPH09161583A/en
Publication of JPH09161583A publication Critical patent/JPH09161583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce influence of a brazing material, allow exertion of stable breaking characteristics, and enhance the reliability of a vacuum breaker even in case it is assembled by joining contact members using a brazing material. SOLUTION: Chromium powder as an arc-resisting component is mixed with copper powder as a high conductivity component so that a mixture as crude material is prepared, and the obtained material is shaped to produce a copper- chromium molding, and in the condition that this is in contact with a copper material having a thickness below 0.5mm, they are heated to a temp. between 900 and 1080 deg.C and kept for 0.5hr or more. Thereby the copper-chromium molding is baked to form a sintered body, and at the same time, copper material is diffused in the surface of the sinter and joined fast so that a copper layer 15 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は真空遮断器用接点部
材の製造方法に係り、特に接点部材をろう材で接合して
真空遮断器を組立てた場合においても、ろう材の影響を
低減して安定した遮断特性を発揮することができ、真空
遮断器の信頼性を向上させることが可能な真空遮断器用
接点部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a contact member for a vacuum circuit breaker, and particularly when a vacuum circuit breaker is assembled by joining the contact member with a brazing material, the influence of the brazing material is reduced and the stability is improved. The present invention relates to a method of manufacturing a contact member for a vacuum circuit breaker, which can exhibit the above-mentioned breaking characteristics and can improve the reliability of the vacuum circuit breaker.

【0002】[0002]

【従来の技術】遮断器は平常状態の電路を開閉したり、
接地事故や短絡事故などの異常時に、故障状態を検知す
る過電流継電器などと組み合わされて、自動的に瞬時に
電路を遮断するために、電力設備,変電所内機器,高速
鉄道車輌等に広く使用されている。特に真空遮断器は、
10-7Torr程度の高真空に維持した容器(真空バルブ)
内に対向配置した1対の接点部材を開閉することによ
り、電路の開閉を行うものである。
2. Description of the Related Art Circuit breakers open and close electric circuits in a normal state,
Widely used in electric power equipment, substation equipment, high-speed railway vehicles, etc. to automatically and instantaneously cut off the power line in combination with an overcurrent relay that detects a fault condition in the event of a grounding accident or short-circuit accident. Has been done. In particular, vacuum circuit breakers
Container (vacuum valve) maintained at high vacuum of about 10 -7 Torr
The electric circuit is opened and closed by opening and closing a pair of contact members that are arranged inside to face each other.

【0003】図2は一般的な真空遮断器の構造例を示す
断面図である。図2において接点の開閉動作が行なわれ
る遮断室1は、絶縁材料から成り略円筒状に形成された
絶縁容器2と、この絶縁容器2の上下端に封止金属3
a,3bを介して設けた金属製の蓋体4a,4bとによ
って区画形成され真空気密に構成されている。遮断室1
内には軸方向に対向するように1対の導電棒5,6が配
置され、その各導電棒5,6の対向する端部に、一対の
電極7,8が取付けられている。図においては上部側の
電極7を固定電極とする一方、下部側の電極8を可動電
極としている。また可動電極8の導電棒6には、伸縮自
在のベローズ9が装着されており、遮断室1内を真空気
密に保持した状態で、可動電極8の軸方向における往復
動を可能にしている。このベローズ9の上部には金属製
のアークシールド10が設けられており、このアークシ
ールド10によってベローズ9がアーク蒸気によって覆
われることを防止している。
FIG. 2 is a sectional view showing a structural example of a general vacuum circuit breaker. In FIG. 2, the shutoff chamber 1 in which the contacts are opened and closed includes an insulating container 2 made of an insulating material and formed into a substantially cylindrical shape, and a sealing metal 3 at the upper and lower ends of the insulating container 2.
It is partitioned and formed by metal lids 4a and 4b provided via a and 3b to be vacuum-tight. Isolation room 1
Inside, a pair of conductive rods 5, 6 are arranged so as to face each other in the axial direction, and a pair of electrodes 7, 8 are attached to the ends of the conductive rods 5, 6 facing each other. In the figure, the upper electrode 7 is a fixed electrode, while the lower electrode 8 is a movable electrode. A telescopic bellows 9 is mounted on the conductive rod 6 of the movable electrode 8 to enable the movable electrode 8 to reciprocate in the axial direction while the interior of the shut-off chamber 1 is maintained in a vacuum-tight manner. An arc shield 10 made of metal is provided on the bellows 9 to prevent the bellows 9 from being covered with the arc vapor by the arc shield 10.

【0004】また遮断室1内には、対向する一対の電極
7,8を覆うように金属製のアークシールド11が配設
されており、このアークシールド11によって絶縁容器
2がアーク蒸気によって覆われることが防止される。
A metal arc shield 11 is disposed in the cut-off chamber 1 so as to cover the pair of electrodes 7 and 8 facing each other. The arc shield 11 covers the insulating container 2 with arc vapor. Is prevented.

【0005】また図3に拡大して示すように、電極8は
導電棒6の端部に形成されるろう付け部12に加熱接合
により固定されるか、または、かしめ加工によって圧着
接続される。接点部材13aは電極8の端面中央部にろ
う材14を介して一体に固着されている。なお、図2に
示す固定側接点部材13bも同様に、固定電極7の端面
にろう材を介して一体に接合されている。
Further, as shown in an enlarged manner in FIG. 3, the electrode 8 is fixed to the brazing portion 12 formed at the end of the conductive rod 6 by heat bonding or is crimped by caulking. The contact member 13a is integrally fixed to the center of the end face of the electrode 8 via a brazing material 14. The fixed-side contact member 13b shown in FIG. 2 is also integrally joined to the end face of the fixed electrode 7 via a brazing material.

【0006】上記構成の真空遮断器によれば、高真空中
における高い絶縁耐力を利用できるため、対向する接点
部材の開閉ストロークを短くできる特徴を有している。
According to the vacuum circuit breaker having the above structure, since a high dielectric strength in a high vacuum can be utilized, the opening and closing stroke of the opposed contact member can be shortened.

【0007】上記接点部材としては、高頻度にわたる接
点の開閉時に発生するアークによって溶着しないように
耐アーク性(耐弧性)や耐溶着性が必須となる一方、低
接触抵抗性を維持するために高い導電特性を有すること
が必須の要件とされる。具体的な接点構成材料として
は、例えば、Ag系,Ag−Cu系材料,Ag−CdO
系材料,30%Cu−W系材料,50%Cu−Cr系材
料などが使用されている。特にCu−W系接点材料は導
電性に優れている一方、Cu−Cr系接点材料は耐電圧
特性に優れているため、特に高出力用電気機器の接点材
料として普及している。
As the above-mentioned contact member, arc resistance (arc resistance) and welding resistance are indispensable so as not to be welded by an arc generated when a contact is frequently opened and closed, while maintaining low contact resistance. It is an essential requirement to have high conductivity characteristics. Specific contact constituent materials include, for example, Ag-based materials, Ag-Cu-based materials, and Ag-CdO.
Based materials, 30% Cu-W based materials, 50% Cu-Cr based materials, etc. are used. In particular, the Cu-W-based contact material has excellent conductivity, while the Cu-Cr-based contact material has excellent withstand voltage characteristics, and thus is widely used as a contact material for high-power electric devices.

【0008】上記接点材料のうち、特に高出力用機器の
接点材料として好適なCu−Cr系接点材料は、例えば
Cr粉とCu粉との混合体を粉末冶金法によって焼結体
として形成されたり、多孔質のCr仮焼体にCuを溶浸
させた溶浸材として形成されたものが使用されている。
Among the above-mentioned contact materials, Cu-Cr based contact materials which are particularly suitable as contact materials for high-power equipment are, for example, formed by a powder metallurgy method as a sintered body of a mixture of Cr powder and Cu powder. A porous Cr calcined body formed by infiltrating Cu is used as the infiltrant.

【0009】粉末冶金法においては、その一連の加工工
程が簡素であり、接点部材を容易かつ安価に製造できる
利点を有している。しかも粉末冶金法で製造した接点部
材となる焼結体内部に体積率で数パーセントの空孔が残
存しているため、Cr仮焼体にCuを溶浸させて製造し
た接点部材と比較して、特に耐溶着性に優れているた
め、高電流・高耐圧クラスの遮断器用接点部材としての
需要が大きい。
In the powder metallurgy method, the series of processing steps are simple, and there is an advantage that the contact member can be manufactured easily and inexpensively. Moreover, since several percent by volume of pores remain inside the sintered body which is the contact member manufactured by the powder metallurgy method, compared with the contact member manufactured by infiltrating Cu into the Cr calcined body. Especially, since it has excellent welding resistance, it is in great demand as a contact member for a circuit breaker of a high current / high breakdown voltage class.

【0010】[0010]

【発明が解決しようとする課題】しかしながら粉末冶金
法によって製造した接点部材をろう付け処理によって電
極に接合した遮断器においては、接点部材に空孔が存在
するため、接合処理時に溶融したろう材が、空孔を通っ
て毛細管現象により接点部材内部に染み上がる傾向があ
り、場合によっては接点部材の表面に染み出す場合もあ
る。この現象は接点部材の再点弧現象,溶着現象を引き
起し、さらに遮断可能電流特性,耐圧特性などの遮断特
性全般において不安定化を増大せしめ、特定低下を招く
原因となっており、さらには真空遮断器自体の信頼性を
低下させる要因となっている。
However, in a circuit breaker in which a contact member manufactured by a powder metallurgy method is joined to an electrode by a brazing process, since there are holes in the contact member, the brazing material melted during the joining process is There is a tendency to seep into the inside of the contact member through the holes due to the capillary phenomenon, and in some cases, it may seep out to the surface of the contact member. This phenomenon causes re-ignition phenomenon and welding phenomenon of the contact member, and further increases destabilization in the whole breaking characteristics such as breakable current characteristics and withstand voltage characteristics, which causes a specific decrease. Is a factor that reduces the reliability of the vacuum circuit breaker itself.

【0011】上記のような、ろう材の染み上がり現象を
最少限度に抑制するために、従来から接合時に使用する
ろう材量や熱処理条件を厳密に制御調整する工夫もなさ
れているが、操作が煩雑であり、依然として、上記染み
上がり現象を完全に回避することは困難であった。
In order to suppress the above-described phenomenon of the brazing filler metal bleeding to a minimum, it has been conventionally attempted to strictly control and adjust the amount of the brazing filler metal used at the time of joining and the heat treatment conditions. It is complicated and it is still difficult to completely avoid the above phenomenon of bleeding.

【0012】今後、Cu−Cr系接点部材を使用する高
電流・高耐圧クラスの遮断器の需要増大に対応するため
に、特に上記染み上がり現象を防止して信頼性の向上を
図ることが望まれている。
[0012] In the future, in order to meet the increasing demand for circuit breakers of high current and high withstand voltage class using Cu-Cr type contact members, it is particularly desired to prevent the above-mentioned bleeding phenomenon and improve reliability. It is rare.

【0013】一方、従来のろう付け法によって接点部材
を接合した場合には、接合面が不均一であるため接合強
度が不十分となる傾向があり、特に粉末冶金法で製造し
たCu−Cr系接点部材を使用する高電流・高耐圧クラ
スの遮断器では、特にその接合強度を向上させることが
大きな課題となっている。
On the other hand, when the contact members are joined by the conventional brazing method, the joining surface tends to be insufficient and the joining strength tends to be insufficient. Particularly, the Cu--Cr system manufactured by the powder metallurgy method is used. In the case of a high-current / high-voltage class circuit breaker that uses contact members, it is a major issue to improve the joint strength.

【0014】本発明は上記課題を解決するためになされ
たものであり、接点部材をろう材で接合して真空遮断器
を組立てた場合においても、ろう材の影響を低減して安
定した遮断特性を発揮でき、真空遮断器の信頼性を向上
させることが可能な真空遮断器用接点部材の製造方法を
提供することを目的とする。
The present invention has been made to solve the above problems. Even when a vacuum circuit breaker is assembled by joining contact members with a brazing material, the effect of the brazing material is reduced and stable breaking characteristics are obtained. It is an object of the present invention to provide a method for manufacturing a contact member for a vacuum circuit breaker, which is capable of exhibiting the above-mentioned effects and improving the reliability of the vacuum circuit breaker.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る真空遮断器用接点部材の製造方法は、
耐弧成分としてのクロム粉末と高導電成分としての銅粉
末とを混合して原料混合体を調製する工程と,上記原料
混合体を成形して銅−クロム成形体を形成する工程と,
上記銅−クロム成形体と厚さ0.5mm以下の銅材とを
接触させた状態で温度900〜1080℃に加熱して
0.5時間以上保持することにより、銅−クロム成形体
を焼成して焼結体とすると同時に銅材を焼結体表面に拡
散接合せしめて銅層を形成する工程とを備えることを特
徴とする。また原料混合体のクロム粉末含有量を20〜
80重量%の範囲に設定するとよい。
In order to achieve the above object, a method of manufacturing a contact member for a vacuum circuit breaker according to the present invention comprises:
Mixing chromium powder as an arc-resistant component and copper powder as a highly conductive component to prepare a raw material mixture; molding the raw material mixture to form a copper-chromium compact;
The copper-chromium compact is fired by heating the copper-chromium compact to a temperature of 900 to 1080 ° C. in a state where the copper-chromium compact is in contact with a copper material having a thickness of 0.5 mm or less and holding it for 0.5 hour or more. And forming a copper layer by diffusing and bonding a copper material to the surface of the sintered body. In addition, the content of chromium powder in the raw material mixture is 20 to
It may be set in the range of 80% by weight.

【0016】すなわち本発明方法が指向するCu−Cr
系接点部材は、粉末冶金法の処理手順に従ってCr粉末
とCu粉末との混合粉により形成された成形体を、銅材
と接触させた状態で焼結して製造される。
That is, the Cu--Cr to which the method of the present invention is directed
The system contact member is manufactured by sintering a molded body formed of a mixed powder of Cr powder and Cu powder according to a processing procedure of powder metallurgy in a state of being in contact with a copper material.

【0017】ここで耐弧成分としてのCrは、耐アーク
性および耐溶着性に優れ、接点の長寿命化を図るための
成分であり、20〜80重量%の範囲で含有される。含
有量が20wt%未満においては、耐弧性が低下して接
点の長寿命化が困難である。一方、含有量が80重量%
を超える場合には、後述する高導電成分としてのCuの
含有量の相対的低下を招き、接触抵抗の増大により接点
としての通電機能が低下してしまう。
Here, Cr as an arc-resistant component is a component that is excellent in arc resistance and welding resistance and extends the life of the contact, and is contained in the range of 20 to 80% by weight. If the content is less than 20 wt%, the arc resistance is reduced and it is difficult to extend the life of the contact. On the other hand, the content is 80% by weight
If it exceeds, the content of Cu as a highly conductive component, which will be described later, is relatively decreased, and the contact resistance is increased, so that the energizing function as a contact is deteriorated.

【0018】また高導電成分としてのCuは高い導電率
を有し、接点の接触抵抗値を下げるために上記Cr成分
を除く残余成分として80〜20重量%(wt%)含有
される。Cu含有量が20wt%未満の場合には導電性
が低下し接触抵抗が増大し接点材料としての機能が低下
する。一方、含有量が80wt%を超える場合は、前記
耐弧成分の含有量が相対的に低下し接点開閉動作時に発
生するアーク(電弧)によって接点が溶着し易くなり耐
消耗性が低下してしまう。
Cu, which has a high conductivity, has a high conductivity, and is contained in an amount of 80 to 20% by weight (wt%) as a residual component excluding the Cr component in order to reduce the contact resistance value of the contact. If the Cu content is less than 20% by weight, the conductivity decreases, the contact resistance increases, and the function as a contact material decreases. On the other hand, if the content exceeds 80 wt%, the content of the arc resistant component relatively decreases, and the arc (electric arc) generated at the time of the contact opening / closing operation causes the contacts to be easily welded, resulting in reduced wear resistance. .

【0019】そして耐弧成分として平均粒径30〜20
0μm程度のCr粉末と,このCr粉末と同程度の平均
粒径を有する球状のCu粉末とを上記所定比率で均一に
混合して原料混合体を調製する。次に調製した原料混合
体を使用し、金型プレス等で600〜1000MPa程
度の加圧力でプレス成形し、所定形状のCu−Cr成形
体を調製する。
The arc-resistant component has an average particle size of 30 to 20.
A Cr powder of about 0 μm and a spherical Cu powder having an average particle diameter of about the same as that of the Cr powder are uniformly mixed in the above predetermined ratio to prepare a raw material mixture. Next, the prepared raw material mixture is used to press-mold with a pressing force of about 600 to 1000 MPa by a die press or the like to prepare a Cu-Cr molded body having a predetermined shape.

【0020】次に得られたCu−Cr成形体を焼成する
焼結工程に移る。本発明方法では、この焼結工程におい
てCu−Cr成形体と厚さ0.5mm以下の銅材とを接
触させた状態で温度900〜1080℃に加熱して0.
5時間以上保持することにより、成形体を焼結体にする
とともに銅材を焼結体表面に拡散接合せしめて合金化さ
せ、焼結体表面に緻密な銅層を形成した接点部材とする
ことを大きな特徴としている。
Next, the sintering step of firing the obtained Cu-Cr compact is started. In the method of the present invention, in this sintering step, the Cu—Cr compact and the copper material having a thickness of 0.5 mm or less are brought into contact with each other and heated to a temperature of 900 to 1080 ° C.
By holding for 5 hours or more, the molded body is made into a sintered body and the copper material is diffusion-bonded to the surface of the sintered body to be alloyed to form a contact member having a dense copper layer formed on the surface of the sintered body. Is a major feature.

【0021】銅層は、接点部材をろう付けする場合にお
いて、ろう材の染み上がりを防止するバリア層として機
能する他に、接点部材表面の均一性を改善してろう付け
強度(接合強度)を高め、真空遮断器のバルブの機械的
特性を向上させるものである。
When brazing a contact member, the copper layer functions as a barrier layer that prevents the brazing material from bleeding up, and also improves the uniformity of the surface of the contact member to improve brazing strength (bonding strength). It improves the mechanical characteristics of the valve of the vacuum circuit breaker.

【0022】上記銅層を形成するための銅材の厚さを
0.5mm以下に設定した理由は下記の通りである。す
なわち銅材の厚さが0.5mmを超える場合、焼結工程
における処理温度が900〜1080℃で保持時間が
0.5時間未満という条件では、拡散接合が十分に進行
せず、銅層の付着強度が劣化するため、却って接点の信
頼性を損うことになる。従って銅材の厚さは0.5mm
以下に設定されるが、より好ましくは0.1mm以下の
箔状の銅材が望ましい。
The reason why the thickness of the copper material for forming the copper layer is set to 0.5 mm or less is as follows. That is, when the thickness of the copper material exceeds 0.5 mm, diffusion bonding does not proceed sufficiently under the conditions that the processing temperature in the sintering step is 900 to 1080 ° C. and the holding time is less than 0.5 hours, and the copper layer Since the adhesion strength is deteriorated, the reliability of the contact is deteriorated. Therefore, the thickness of the copper material is 0.5 mm
Although it is set as follows, it is more preferable to use a foil-shaped copper material having a thickness of 0.1 mm or less.

【0023】上記焼結温度が900℃未満の場合では、
たとえ保持時間を0.5時間以上に設定しても、接点部
材の固相焼結を十分に進行させることが困難になる。一
方、焼結温度が1080℃を超えると、銅の融点が10
83℃であることから、固相焼結を行うことが事実上不
可能になる。また保持時間が0.5時間未満では、接点
部材の固相焼結が十分に進行せず、組織上均一な接点部
材を得ることができず、しかも銅の拡散接合も不十分と
なるため、所期の目的を達成することができない。従っ
て焼結工程における処理温度は900〜1080℃の範
囲および保持時間は0.5時間以上に設定されるが、処
理温度1050℃以上とし、保持時間を2〜3時間の範
囲に設定することが、より好ましい。
When the sintering temperature is lower than 900 ° C.,
Even if the holding time is set to 0.5 hours or more, it becomes difficult to sufficiently proceed the solid phase sintering of the contact member. On the other hand, when the sintering temperature exceeds 1080 ° C, the melting point of copper is 10
Since it is 83 degreeC, it becomes practically impossible to perform solid phase sintering. If the holding time is less than 0.5 hours, solid-phase sintering of the contact member does not proceed sufficiently, a uniform contact member cannot be obtained in terms of structure, and copper diffusion bonding becomes insufficient. Unable to achieve the intended purpose. Therefore, the treatment temperature in the sintering step is set in the range of 900 to 1080 ° C. and the holding time is set to 0.5 hours or more, but the treatment temperature is set to 1050 ° C. or more and the holding time is set to a range of 2 to 3 hours. , And more preferable.

【0024】上記構成に係る真空遮断器用接点部材の製
造方法によれば、接点部材表面に空孔がない緻密な銅層
が形成される。この銅層は、接点部材を電極にろう付け
接合した場合に、溶融したろう材に対してバリアとして
機能する。そのため、接点部材の内部および表面にろう
材が染み上がることが効果的に防止でき、接点部材によ
る電路遮断特性の安定化に寄与する。
According to the method of manufacturing a contact member for a vacuum circuit breaker having the above structure, a dense copper layer having no holes is formed on the surface of the contact member. This copper layer functions as a barrier to the molten brazing material when the contact member is brazed to the electrode. Therefore, it is possible to effectively prevent the brazing material from soaking into the inside and the surface of the contact member, which contributes to the stabilization of the electric circuit interruption characteristic of the contact member.

【0025】また、接点部材表面に均一で平滑な銅層が
形成されるため、接点部材のろう付け強度(接合強度)
が大幅に増加する。そのため、上記接点部材を用いた真
空遮断器の信頼性および耐久性を大幅に改善することが
できる。
Further, since a uniform and smooth copper layer is formed on the surface of the contact member, the brazing strength (bonding strength) of the contact member
Will increase significantly. Therefore, the reliability and durability of the vacuum circuit breaker using the above contact member can be greatly improved.

【0026】[0026]

【発明の実施の形態】次に本発明の実施形態について、
以下の実施例を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described.
A description will be given with reference to the following examples.

【0027】実施例1 平均粒径が100μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としてのCu
粉とを、50:50の重量比で均一に混合して原料混合
体とした。次に、原料混合体を金型プレス機に充填し、
800MPaの加圧力でプレス成形してCu−Cr成形
体とした。さらに、このCu−Cr成形体を厚さ50μ
mの銅材としての無酸素銅箔上に接触配置した状態で真
空雰囲気中にて5℃/minの昇温速度によって温度1
050℃まで加熱し、3時間保持して焼成するとともに
銅材を拡散接合せしめた後に炉冷し、加熱炉から取り出
した。取り出した接点素材を所定の接点形状に加工する
ことにより、実施例1に係る接点部材を多数調製した。
Example 1 Cr powder as an arc-resistant component having an average particle size of 100 μm and Cu as a highly conductive component having an average particle size of 50 μm
The powder and the powder were uniformly mixed at a weight ratio of 50:50 to obtain a raw material mixture. Next, the raw material mixture was filled in a die press machine,
A Cu-Cr molded body was obtained by press molding with a pressure of 800 MPa. Furthermore, this Cu-Cr compact is made to have a thickness of 50 μm.
m at a temperature of 1 at a heating rate of 5 ° C./min in a vacuum atmosphere while being placed in contact with an oxygen-free copper foil as a copper material.
The mixture was heated to 050 ° C., held for 3 hours for firing, and the copper material was diffusion-bonded, then cooled in a furnace and taken out from the heating furnace. A large number of contact members according to Example 1 were prepared by processing the taken out contact material into a predetermined contact shape.

【0028】実施例2 平均粒径が100μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としてのCu
粉とを、50:50の重量比で均一に混合して原料混合
体とした。次に、原料混合体を金型プレス機に充填し、
800MPaの加圧力でプレス成形してCu−Cr成形
体とした。さらに、このCu−Cr成形体を厚さ50μ
mの銅材としての無酸素銅箔上に接触配置した状態で真
空雰囲気中にて5℃/minの昇温速度によって温度9
00℃まで加熱し、3時間保持して焼成するとともに銅
材を拡散接合せしめた後に炉冷し、加熱炉から取り出し
た。取り出した接点素材を所定の接点形状に加工するこ
とにより、実施例2に係る接点部材を多数調製した。
Example 2 Cr powder as an arc-resistant component having an average particle size of 100 μm and Cu as a highly conductive component having an average particle size of 50 μm
The powder and the powder were uniformly mixed at a weight ratio of 50:50 to obtain a raw material mixture. Next, the raw material mixture was filled in a die press machine,
A Cu-Cr molded body was obtained by press molding with a pressure of 800 MPa. Furthermore, this Cu-Cr compact is made to have a thickness of 50 μm.
m at a temperature of 9 at a temperature rising rate of 5 ° C./min in a vacuum atmosphere while being placed in contact with an oxygen-free copper foil as a copper material.
The mixture was heated to 00 ° C., held for 3 hours for firing, and diffusion-bonded with a copper material, followed by furnace cooling and removal from the heating furnace. A large number of contact members according to Example 2 were prepared by processing the extracted contact material into a predetermined contact shape.

【0029】比較例1 平均粒径が100μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としてのCu
粉とを、50:50の重量比で均一に混合して原料混合
体とした。次に、原料混合体を金型プレス機に充填し、
800MPaの加圧力でプレス成形してCu−Cr成形
体とした。さらに、このCu−Cr成形体を厚さ1mm
の銅材としての無酸素銅箔上に接触配置した状態で真空
雰囲気中にて5℃/minの昇温速度によって温度10
50℃まで加熱し、3時間保持して焼成するとともに銅
材を拡散接合せしめた後に炉冷し、加熱炉から取り出し
た。取り出した接点素材を所定の接点形状に加工するこ
とにより、比較例1に係る接点部材を調製した。
Comparative Example 1 Cr powder as an arc-resistant component having an average particle size of 100 μm and Cu as a highly conductive component having an average particle size of 50 μm.
The powder and the powder were uniformly mixed at a weight ratio of 50:50 to obtain a raw material mixture. Next, the raw material mixture was filled in a die press machine,
A Cu-Cr molded body was obtained by press molding with a pressure of 800 MPa. Furthermore, this Cu-Cr molded body is 1 mm thick.
At a temperature rise rate of 5 ° C / min in a vacuum atmosphere while being placed in contact with the oxygen-free copper foil as the copper material of
It was heated to 50 ° C., held for 3 hours to be fired, and the copper material was diffusion-bonded, then cooled in a furnace and taken out from the heating furnace. A contact member according to Comparative Example 1 was prepared by processing the extracted contact material into a predetermined contact shape.

【0030】比較例2 平均粒径が100μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としてのCu
粉とを、50:50の重量比で均一に混合して原料混合
体とした。次に、原料混合体を金型プレス機に充填し、
800MPaの加圧力でプレス成形してCu−Cr成形
体とした。さらに、このCu−Cr成形体を厚さ50μ
mの銅材としての無酸素銅箔上に接触配置した状態で真
空雰囲気中にて5℃/minの昇温速度によって温度8
00℃まで加熱し、3時間保持して焼成するとともに銅
材を拡散接合せしめた後に炉冷し、加熱炉から取り出し
た。取り出した接点素材を所定の接点形状に加工するこ
とにより、比較例2に係る接点部材を調製した。
Comparative Example 2 Cr powder as an arc-resistant component having an average particle size of 100 μm and Cu as a highly conductive component having an average particle size of 50 μm.
The powder and the powder were uniformly mixed at a weight ratio of 50:50 to obtain a raw material mixture. Next, the raw material mixture was filled in a die press machine,
A Cu-Cr molded body was obtained by press molding with a pressure of 800 MPa. Furthermore, this Cu-Cr compact is made to have a thickness of 50 μm.
m at a temperature of 8 at a heating rate of 5 ° C./min in a vacuum atmosphere while being placed in contact with an oxygen-free copper foil as a copper material.
The mixture was heated to 00 ° C., held for 3 hours for firing, and diffusion-bonded with a copper material, followed by furnace cooling and removal from the heating furnace. A contact member according to Comparative Example 2 was prepared by processing the taken out contact material into a predetermined contact shape.

【0031】比較例3 平均粒径が100μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としてのCu
粉とを、50:50の重量比で均一に混合して原料混合
体とした。次に、原料混合体を金型プレス機に充填し、
800MPaの加圧力でプレス成形してCu−Cr成形
体とした。さらに、このCu−Cr成形体を厚さ1mm
の銅材としての無酸素銅箔上に接触配置した状態で真空
雰囲気中にて5℃/minの昇温速度によって温度10
50℃まで加熱し、20分間保持して焼成するとともに
銅材を拡散接合せしめた後に炉冷し、加熱炉から取り出
した。取り出した接点素材を所定の接点形状に加工する
ことにより、比較例3に係る接点部材を調製した。
Comparative Example 3 Cr powder as an arc-resistant component having an average particle size of 100 μm and Cu as a highly conductive component having an average particle size of 50 μm.
The powder and the powder were uniformly mixed at a weight ratio of 50:50 to obtain a raw material mixture. Next, the raw material mixture was filled in a die press machine,
A Cu-Cr molded body was obtained by press molding with a pressure of 800 MPa. Furthermore, this Cu-Cr molded body is 1 mm thick.
At a temperature rise rate of 5 ° C / min in a vacuum atmosphere while being placed in contact with the oxygen-free copper foil as the copper material of
The mixture was heated to 50 ° C., held for 20 minutes for firing, and diffusion-bonded with a copper material, followed by furnace cooling and removal from the heating furnace. A contact member according to Comparative Example 3 was prepared by processing the taken out contact material into a predetermined contact shape.

【0032】比較例4 平均粒径が100μmである耐弧成分としてのCr粉
と、平均粒径が50μmである高導電成分としてのCu
粉とを、50:50の重量比で均一に混合して原料混合
体とした。次に、原料混合体を金型プレス機に充填し、
800MPaの加圧力でプレス成形してCu−Cr成形
体とした。さらに、このCu−Cr成形体を真空雰囲気
中にて5℃/minの昇温速度によって温度1050℃
まで加熱し、3時間保持して焼成した後に炉冷し、加熱
炉から取り出した。取り出した接点素材を所定の接点形
状に加工することにより、比較例4に係る接点部材を調
製した。
Comparative Example 4 Cr powder as an arc-resistant component having an average particle size of 100 μm and Cu as a highly conductive component having an average particle size of 50 μm.
The powder and the powder were uniformly mixed at a weight ratio of 50:50 to obtain a raw material mixture. Next, the raw material mixture was filled in a die press machine,
A Cu-Cr molded body was obtained by press molding with a pressure of 800 MPa. Further, this Cu-Cr compact was heated in a vacuum atmosphere at a temperature of 1050 ° C at a temperature rising rate of 5 ° C / min.
After heating for 3 hours and firing, the furnace was cooled and taken out of the heating furnace. A contact member according to Comparative Example 4 was prepared by processing the extracted contact material into a predetermined contact shape.

【0033】こうして調製した実施例および比較例に係
る各接点部材13を図1に示すように、銅層15を形成
した側を接合面としてAgろう材14を使用して電極8
の端面中央部に真空ろう付けした。一方、電極8を導電
棒6の端面にろう付け部12を介して一体に接合した。
そして、ろう付け後における接点部材の断面組織を比較
観察して、ろう材の“染み上がり”現象の発生割合を計
測した。また各接点部材の平均接合強度を併せて測定し
た。なお平均接合強度は、比較例4の場合を基準値1と
して相対的に表示した。
As shown in FIG. 1, each contact member 13 according to the example and the comparative example prepared in this manner is used as an electrode 8 by using an Ag brazing material 14 with the side on which the copper layer 15 is formed as a joint surface.
Was vacuum brazed to the center part of the end face. On the other hand, the electrode 8 was integrally joined to the end face of the conductive rod 6 via the brazing portion 12.
Then, the cross-sectional structures of the contact members after brazing were compared and observed, and the occurrence rate of the "bleeding up" phenomenon of the brazing material was measured. The average bonding strength of each contact member was also measured. In addition, the average bonding strength is shown relative to the reference value of Comparative Example 4.

【0034】さらに、各接点部材13をろう付け接合し
た電極7,8を使用して図2に示すような真空遮断器を
組み立て、遮断特性の良否を比較した。すなわち所定の
電圧、電流値の回路を2万回遮断したときの再点弧発生
頻度を測定して、下記表1に示す結果を得た。
Further, a vacuum circuit breaker as shown in FIG. 2 was assembled using the electrodes 7 and 8 in which the respective contact members 13 were brazed and joined, and the quality of the breaking characteristics was compared. That is, the frequency of re-ignition when a circuit having a predetermined voltage and current value was cut off 20,000 times was measured, and the results shown in Table 1 below were obtained.

【0035】[0035]

【表1】 [Table 1]

【0036】上記表1に示す結果から明らかなように、
本発明方法で規定する所定の処理条件で製造した各実施
例に係る接点部材においては、緻密な銅層が形成されて
いるため、接点部材内部や表面へのろう材の染み上がり
が皆無であり、しかも接点部材の接合強度も高くなって
いる。なお実施例1〜2の接点部材の接合強度を測定し
た場合に、母材部分において破壊を生じた。したがっ
て、真空遮断器を稼動させた場合の再点弧発生頻度が、
従来例を示す比較例4と比較して大幅に減少し、真空遮
断器の信頼性および耐久性が大幅に改善されることが確
認できた。
As is clear from the results shown in Table 1,
In the contact members according to the respective examples manufactured under the predetermined treatment conditions specified by the method of the present invention, since the dense copper layer is formed, there is no bleeding of the brazing material inside or on the surface of the contact member. Moreover, the joint strength of the contact members is also high. When the bonding strength of the contact members of Examples 1 and 2 was measured, breakage occurred in the base material portion. Therefore, the frequency of re-ignition when operating the vacuum circuit breaker is
It was confirmed that the vacuum circuit breaker was significantly reduced in comparison with Comparative Example 4 showing the conventional example, and the reliability and durability of the vacuum circuit breaker were significantly improved.

【0037】一方、銅材厚さが過大な場合(比較例
1)、焼結温度が低い場合(比較例2)や焼結工程にお
ける保持時間が過少な場合(比較例3)においては、銅
材の拡散接合が不十分となり、接点部材の接合強度が低
下して実用に耐えないことが判明した。また比較例4に
おいて、各接点部材の厚さ方向の半分の位置までろう材
が染み上がったものおよび染み上がったろう材が表面に
まで達したものが2%発生した。
On the other hand, when the thickness of the copper material is excessive (Comparative Example 1), the sintering temperature is low (Comparative Example 2), or the holding time in the sintering process is too short (Comparative Example 3), copper is used. It was found that the diffusion bonding of the materials became insufficient, and the bonding strength of the contact member decreased, and it could not be put to practical use. Further, in Comparative Example 4, 2% of the brazing filler metal was soaked up to the half position in the thickness direction of each contact member, and 2% of the brazing filler metal reached the surface.

【0038】なお、上記実施例においては、図2に示す
ように、対向する一対の電極7,8にそれぞれ各実施例
で製造された接点部材13a,13bをろう付け接合し
て真空遮断器を形成したが、一方の電極にのみ本実施例
に係る接点部材を接合した場合においても、同様に高い
遮断特性が発揮されることが確認できた。
In the above embodiment, as shown in FIG. 2, the contact members 13a and 13b manufactured in each embodiment are brazed to the pair of electrodes 7 and 8 facing each other to form a vacuum circuit breaker. Although it was formed, it was confirmed that similarly high breaking characteristics are exhibited even when the contact member according to this example is joined to only one electrode.

【0039】[0039]

【発明の効果】以上説明の通り、本発明に係る真空遮断
器用接点部材の製造方法によれば、接点部材表面に空孔
がない緻密な銅層が形成される。この銅層は、接点部材
を電極にろう付け接合した場合に溶融したろう材に対し
てバリアとして機能する。そのため、接点部材の内部お
よび表面にろう材が染み上がることが効果的に防止で
き、接点部材による電路遮断特性の安定化に寄与する。
As described above, according to the method for manufacturing a contact member for a vacuum circuit breaker according to the present invention, a dense copper layer having no holes is formed on the surface of the contact member. This copper layer functions as a barrier against the molten brazing material when the contact member is brazed to the electrode. Therefore, it is possible to effectively prevent the brazing material from soaking into the inside and the surface of the contact member, which contributes to the stabilization of the electric circuit interruption characteristic of the contact member.

【0040】また、接点部材表面に均一で平滑な銅層が
形成されるため、接点部材のろう付け強度(接合強度)
が大幅に増加する。そのため、上記接点部材を用いた真
空遮断器の信頼性および耐久性を大幅に改善することが
できる。
Further, since a uniform and smooth copper layer is formed on the surface of the contact member, the brazing strength (joint strength) of the contact member
Will increase significantly. Therefore, the reliability and durability of the vacuum circuit breaker using the above contact member can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法によって製造した接点部材を真空遮
断器の電極に接合した状態を示す断面図。
FIG. 1 is a cross-sectional view showing a state in which a contact member manufactured by the method of the present invention is joined to an electrode of a vacuum circuit breaker.

【図2】真空遮断器の構造を示す断面図。FIG. 2 is a sectional view showing the structure of a vacuum circuit breaker.

【図3】図2に示す電極部を拡大して示す断面図。FIG. 3 is an enlarged cross-sectional view showing an electrode portion shown in FIG.

【符号の説明】[Explanation of symbols]

1 遮断室 2 絶縁容器 3a,3b 封止金属 4a,4b 蓋体 5 導電棒 6 導電棒 7 電極(固定電極) 8 電極(可動電極) 9 ベローズ 10 アークシールド 11 アークシールド 12 ろう付け部 13,13a,13b 接点部材 14 ろう材(Agろう材) 15 銅層 DESCRIPTION OF SYMBOLS 1 Breaking chamber 2 Insulating container 3a, 3b Sealing metal 4a, 4b Lid body 5 Conductive rod 6 Conductive rod 7 Electrode (fixed electrode) 8 Electrode (movable electrode) 9 Bellows 10 Arc shield 11 Arc shield 12 Brazing part 13, 13a , 13b Contact member 14 Brazing material (Ag brazing material) 15 Copper layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀江 宏道 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromichi Horie Inventor Hiromichi Horie 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Toshiba Corporation Yokohama Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐弧成分としてのクロム粉末と高導電成
分としての銅粉末とを混合して原料混合体を調製する工
程と,上記原料混合体を成形して銅−クロム成形体を形
成する工程と,上記銅−クロム成形体と厚さ0.5mm
以下の銅材とを接触させた状態で温度900〜1080
℃に加熱して0.5時間以上保持することにより、銅−
クロム成形体を焼成して焼結体とすると同時に銅材を焼
結体表面に拡散接合せしめて銅層を形成する工程とを備
えることを特徴とする真空遮断器用接点部材の製造方
法。
1. A step of preparing a raw material mixture by mixing chromium powder as an arc-resistant component and copper powder as a highly conductive component, and forming the raw material mixture to form a copper-chromium compact. Process, the above-mentioned copper-chromium compact and thickness 0.5mm
Temperature 900 to 1080 in the state of contacting with the following copper materials
By heating to ℃ and holding for 0.5 hours or more, copper-
And a step of forming a copper layer by diffusing and bonding a copper material to the surface of the sintered body at the same time as baking the chrome compact to form a sintered body.
【請求項2】 原料混合体のクロム粉末含有量を20〜
80重量%の範囲に設定することを特徴とする請求項1
記載の真空遮断器用接点部材の製造方法。
2. The chromium powder content of the raw material mixture is 20 to
The range of 80% by weight is set.
A method for manufacturing a contact member for a vacuum circuit breaker according to claim 1.
JP7324661A 1995-12-13 1995-12-13 Manufacture of contact member for vacuum circuit breaker Pending JPH09161583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7324661A JPH09161583A (en) 1995-12-13 1995-12-13 Manufacture of contact member for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7324661A JPH09161583A (en) 1995-12-13 1995-12-13 Manufacture of contact member for vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPH09161583A true JPH09161583A (en) 1997-06-20

Family

ID=18168322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7324661A Pending JPH09161583A (en) 1995-12-13 1995-12-13 Manufacture of contact member for vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH09161583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266757A (en) * 2008-04-30 2009-11-12 Fuji Electric Fa Components & Systems Co Ltd Method for manufacturing electrical contact
KR101445447B1 (en) * 2011-09-27 2014-09-26 가부시키가이샤 히타치세이사쿠쇼 Joining structures, electrical contacts, and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266757A (en) * 2008-04-30 2009-11-12 Fuji Electric Fa Components & Systems Co Ltd Method for manufacturing electrical contact
KR101445447B1 (en) * 2011-09-27 2014-09-26 가부시키가이샤 히타치세이사쿠쇼 Joining structures, electrical contacts, and manufacturing method for the same

Similar Documents

Publication Publication Date Title
US4032301A (en) Composite metal as a contact material for vacuum switches
WO2011162398A1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
EP1742238B1 (en) Electrical contacts for vacuum circuit breakers and methods of manufacturing the same
US5241745A (en) Process for producing a CUCB contact material for vacuum contactors
JP2908071B2 (en) Contact material for vacuum valve
EP0118844A2 (en) Vacuum switch and method of manufacturing the same
JPH09161583A (en) Manufacture of contact member for vacuum circuit breaker
JP4129304B2 (en) Contact material for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JP4143308B2 (en) Contact material for vacuum valve, manufacturing method thereof, and vacuum valve
JP4209183B2 (en) Contact material for vacuum valves
JP4621336B2 (en) Contact material for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JP4988489B2 (en) Electrical contact
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker
JP2002208335A (en) Vacuum bulb contact point and its manufacturing method
JP2003183749A (en) Vacuum circuit-breaker and contact material for this
JPH1031942A (en) Contact material for vacuum circuit-breaker and its manufacture
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JPH06103858A (en) Manufacture of contact material for vacuum valve
JPH09190730A (en) Manufacture of contact member for vacuum circuit breaker
JPH11176298A (en) Contact material for vacuum circuit breaker, manufacture of the contact material, and vacuum circuit breaker
JP2002080923A (en) Contact material for vacuum circuit breaker, its producion method and vacuum breaker