JPH1150176A - Contact material for vacuum circuit breaker, its production and vacuum circuit breaker - Google Patents
Contact material for vacuum circuit breaker, its production and vacuum circuit breakerInfo
- Publication number
- JPH1150176A JPH1150176A JP9204846A JP20484697A JPH1150176A JP H1150176 A JPH1150176 A JP H1150176A JP 9204846 A JP9204846 A JP 9204846A JP 20484697 A JP20484697 A JP 20484697A JP H1150176 A JPH1150176 A JP H1150176A
- Authority
- JP
- Japan
- Prior art keywords
- circuit breaker
- vacuum circuit
- contact
- contact material
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Contacts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は真空遮断器用接点材
料,その製造方法および真空遮断器に係り、特に真空遮
断器の接点(接触子)として使用した場合に、耐電圧性
を向上させることが可能な真空遮断器用接点材料,その
製造方法および真空遮断器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact material for a vacuum circuit breaker, a method of manufacturing the same, and a vacuum circuit breaker, and more particularly to an improvement in withstand voltage when used as a contact (contact) of a vacuum circuit breaker. The present invention relates to a contact material for a vacuum circuit breaker, a method of manufacturing the same, and a vacuum circuit breaker.
【0002】[0002]
【従来の技術】遮断器は平常状態の電路を開閉したり、
接地事故や短絡事故などの異常時に、故障状態を検知す
る過電流継電器などと組み合わされて、自動的に瞬時に
電路を遮断するために、電力設備,変電所内機器,高速
鉄道車輌等に広く使用されている。特に真空遮断器は、
10-4Pa程度の高真空に維持した容器(真空バルブ)
内に対向配置した1対の接点部材を開閉することによ
り、電路の開閉を行うものである。2. Description of the Related Art Circuit breakers open and close electric circuits in a normal state,
Widely used in power equipment, substation equipment, high-speed railway vehicles, etc. to automatically and instantaneously cut off the electric circuit when combined with an overcurrent relay that detects a failure state when an abnormality such as a grounding accident or short circuit accident occurs. Have been. In particular, vacuum circuit breakers
Container (vacuum valve) maintained at a high vacuum of about 10 -4 Pa
The electric circuit is opened and closed by opening and closing a pair of contact members disposed opposite to each other.
【0003】図1は一般的な真空遮断器の構造例を示す
断面図である。図1において接点の開閉動作が行われる
遮断室1は、絶縁材料から成り略円筒状に形成された絶
縁容器2と,この絶縁容器2の上下端に封止金属3a,
3bを介して設けた金属製の蓋体4a,4bとによって
区画形成され真空気密に構成されている。遮断室1内に
は軸方向に対向するように1対の導電棒5,6が配置さ
れ、その各導電棒5,6の対向する端部に、一対の電極
7,8が取付けられている。図においては上部側の電極
7を固定電極とする一方、下部側の電極8を可動電極と
している。また可動電極8の導電棒6には、伸縮自在の
ベローズ9が装着されており、遮断室1内を真空気密に
保持した状態で、可動電極8の軸方向における往復動を
可能にしている。このベローズ9の上部には金属製のア
ークシールド10が設けられており、このアークシール
ド10によってベローズ9がアーク蒸気によって覆われ
ることを防止している。FIG. 1 is a sectional view showing an example of the structure of a general vacuum circuit breaker. In FIG. 1, a shut-off chamber 1 in which contact opening and closing operations are performed includes an insulating container 2 made of an insulating material and formed in a substantially cylindrical shape, and sealing metals 3 a at upper and lower ends of the insulating container 2.
It is partitioned and formed by metal lids 4a and 4b provided via the base 3b, and is formed in a vacuum-tight manner. A pair of conductive rods 5 and 6 are arranged in the blocking chamber 1 so as to face each other in the axial direction, and a pair of electrodes 7 and 8 are attached to opposing ends of the conductive rods 5 and 6. . In the figure, the upper electrode 7 is a fixed electrode, while the lower electrode 8 is a movable electrode. A telescopic bellows 9 is mounted on the conductive rod 6 of the movable electrode 8 to enable the movable electrode 8 to reciprocate in the axial direction while the interior of the shut-off chamber 1 is maintained in a vacuum-tight manner. An arc shield 10 made of metal is provided on the bellows 9 to prevent the bellows 9 from being covered with the arc vapor by the arc shield 10.
【0004】また遮断室1内には、対向する一対の電極
7,8を覆うように金属製のアークシールド11が配設
されており、このアークシールド11によって絶縁容器
2がアーク蒸気によって覆われることが防止される。[0004] A metal arc shield 11 is provided in the cut-off chamber 1 so as to cover the pair of electrodes 7 and 8 facing each other. The arc shield 11 covers the insulating container 2 with arc vapor. Is prevented.
【0005】また図2に拡大して示すように、電極8は
導電棒6の端部に形成されるろう付け部12に加熱接合
により固定されるか、または、かしめ加工によって圧着
接続される。接点部材13aは電極8の端面中央部にろ
う材14を介して一体に固着されている。なお、図2に
示す固定側接点部材13bも同様に、固定電極7の端面
にろう材を介して一体に接合されている。As shown in FIG. 2 in an enlarged manner, the electrode 8 is fixed to a brazing portion 12 formed at the end of the conductive rod 6 by heat bonding or crimped by crimping. The contact member 13a is integrally fixed to the center of the end face of the electrode 8 via a brazing material 14. The fixed-side contact member 13b shown in FIG. 2 is also integrally joined to the end face of the fixed electrode 7 via a brazing material.
【0006】上記構成の真空遮断器によれば、高真空中
における高い絶縁耐力を利用できるため、対向する接点
部材の開閉ストロークを短くできる特徴を有している。According to the vacuum circuit breaker having the above structure, since a high dielectric strength in a high vacuum can be utilized, the opening and closing stroke of the opposed contact member can be shortened.
【0007】一般的に接点材料として要求される特性
は、接点が高頻度にわたって開閉することから、(1)
遮断容量が大きいこと、(2)耐電圧が高いこと、
(3)接触抵抗が小さいこと、(4)溶着力が小さいこ
と、(5)接点消耗量が小さいこと、(6)裁断電流値
が小さいこと、(7)加工性が良いこと、(8)十分な
機械的強度を有すること、等である。しかし、実際の接
点材料においては、これらの特性をすべて同時に満足さ
せることは困難であり、一般には用途に応じて特に重要
な特性を満足させ、他の特性をある程度犠牲にした材料
を使用しているのが現状である。[0007] The characteristics generally required as a contact material are that the contacts are frequently opened and closed.
Large breaking capacity, (2) high withstand voltage,
(3) small contact resistance, (4) small welding force, (5) small contact wear, (6) small cutting current value, (7) good workability, (8) Have sufficient mechanical strength, and so on. However, in an actual contact material, it is difficult to satisfy all of these characteristics at the same time, and in general, a material that satisfies particularly important characteristics depending on the application and uses some material at the expense of other characteristics is used. That is the current situation.
【0008】とくに上記接点材料としては、高頻度にわ
たる接点の開閉時に発生するアークによって溶着しない
ように耐アーク性(耐弧性)や耐溶着性が必須となる一
方、低接触抵抗性を維持するために高い導電特性を有す
ることが必須の要件とされるために、耐アーク性(耐弧
性)と耐溶着性とを有する接点材料が実際には要求され
る。耐弧性と高導電性とを共に満たす具体的な接点構成
材料としては、例えば、Ag系,Ag−Cu系材料,A
g−CdO系材料,30%Cu−W系材料,50%Cu−
Cr系材料などがある。特にCu−W系接点材料は導電
性に優れている一方、Cu−Cr系接点材料は耐電圧特
性に優れているため、特に高出力用電気機器の接点材料
として普及している。In particular, the contact material must have arc resistance (arc resistance) and welding resistance so as not to be welded by an arc generated when the contacts are frequently opened and closed, while maintaining low contact resistance. Therefore, a contact material having arc resistance (arc resistance) and welding resistance is actually required since it is essential to have high conductive properties. Specific contact forming materials satisfying both arc resistance and high conductivity include, for example, Ag-based materials, Ag-Cu-based materials, and A-based materials.
g-CdO material, 30% Cu-W material, 50% Cu-
There are Cr-based materials and the like. Particularly, Cu-W-based contact materials have excellent conductivity, while Cu-Cr-based contact materials have excellent withstand voltage characteristics. Therefore, Cu-W-based contact materials have become widespread particularly as contact materials for high-output electrical equipment.
【0009】このCu−Cr接点材料は、高い導電性を
有するCuと、Cuと比較して導電性は劣るが高融点で
耐弧性や耐電圧性に優れたCrとを主体にして構成され
ており、接点材料に要求される高耐電圧性と大電流遮断
性とを両立させたものである。このような高耐電圧性と
大電流遮断性とを併せ持つCu−Cr系接点材料は、今
後も電力設備、変電設備、鉄道車輌などへの用途の拡大
が予想される一方で、真空遮断器自体の小型化への技術
的要請もあり、より一層の性能向上が求められている。This Cu-Cr contact material is mainly composed of Cu, which has high conductivity, and Cr, which is inferior in conductivity to Cu but has a high melting point and excellent arc resistance and voltage resistance. Thus, both the high withstand voltage and the large current interrupting property required for the contact material are compatible. The Cu-Cr-based contact material having both high withstand voltage and large current interrupting properties is expected to continue to be used in power equipment, substation equipment, railway vehicles, etc., while the vacuum circuit breaker itself is expected. There is also a technical demand for miniaturization, and further improvement in performance is required.
【0010】前記接点材料のうち、特に高出力用機器の
接点材料として好適なCu−Cr系接点材料は、例えば
Cu粉末とCr粉末の混合粉もしくはアトマイズ粉を成
形し1050℃程度の高温度で焼結する粉末冶金法や、
多孔質のCr仮焼体にCuを溶浸する方法、またはCr
とCuとを所定の組成比で溶解する方法等で製造されて
いる。Among the above-mentioned contact materials, a Cu-Cr-based contact material particularly suitable as a contact material for high-power equipment is, for example, a mixed powder of Cu powder and Cr powder or an atomized powder which is formed at a high temperature of about 1050 ° C. Sintering powder metallurgy,
A method of infiltrating Cu into a porous Cr calcined body, or Cr
And Cu at a predetermined composition ratio.
【0011】特に粉末冶金法においては、最終製品に近
い形状に形成することが可能であり、原料コストを低減
できる利点がある上に、Cu成分およびCr成分の組成
比の配合精度を高くできるという長所がある。その反
面、粉末冶金法においては、固相焼結によって焼結体を
形成する方法であるため、接点部材の構成材料中で最も
融点が低い材料(Cu−Cr系材料の場合はCu)の融
点以上には加熱できない制約がある。そのため、溶浸法
や溶解法と比較して、不純物の揮発による除去が困難で
ある。その結果、接点部材としての純度が、各原料粉末
の純度に大きく左右される欠点がある。そのため、従来
一般的な粉末冶金法による製造工程においては、酸素や
金属不純物による接点材料の再汚染により材料中に混入
した不純物を除去するために、水素還元雰囲気中で成形
体を焼結したり、または真空中において成形体の焼結を
実施していた。Particularly, in the powder metallurgy method, it is possible to form into a shape close to the final product, there is an advantage that the raw material cost can be reduced, and it is possible to increase the mixing accuracy of the composition ratio of the Cu component and the Cr component. There are advantages. On the other hand, in the powder metallurgy method, since a sintered body is formed by solid-phase sintering, the melting point of the material having the lowest melting point (Cu in the case of Cu-Cr-based material) among the constituent materials of the contact member is used. There is a restriction that heating is not possible. Therefore, compared to the infiltration method and the dissolution method, it is more difficult to remove impurities by volatilization. As a result, there is a drawback that the purity of the contact member is greatly affected by the purity of each raw material powder. Therefore, in a conventional manufacturing process using a general powder metallurgy method, in order to remove impurities mixed into the material due to recontamination of the contact material with oxygen or metal impurities, the compact is sintered in a hydrogen reducing atmosphere. Or sintering of the compact in a vacuum.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、従来の
製造方法においては、不可避的に不純物が混入した原材
料を使用していたため、成形体を還元雰囲気中や真空中
で焼結しても不純物含有量が十分に低減できない問題点
があった。特にLi,Na,K,Rb,Csなどのアル
カリ金属(1A族元素)やBe,Mg,Ca,Sr,B
aなどのアルカリ土類金属(2A族元素)などの含有量
が十分に低減された接点材料を製造することは非常に困
難であった。例えば粉末冶金法では、原料粉末内部に入
り込んだ不純物元素は、十分に除去できない現状であ
る。またこれらの軽金属元素が接点材料に含有される量
について、技術的に許容される限界値は明確ではなかっ
た。However, in the conventional manufacturing method, raw materials containing impurities are inevitably used. Therefore, even if the compact is sintered in a reducing atmosphere or in a vacuum, the impurity content is low. However, there was a problem that it could not be reduced sufficiently. Particularly, alkali metals (group 1A elements) such as Li, Na, K, Rb, and Cs, Be, Mg, Ca, Sr, and B
It has been very difficult to produce a contact material with a sufficiently reduced content of alkaline earth metals (group 2A elements) such as a. For example, in the powder metallurgy method, the impurity element that has entered the inside of the raw material powder cannot be sufficiently removed. Further, the technically acceptable limit values of the amounts of these light metal elements contained in the contact material were not clear.
【0013】前記不純物としての1A族、2A族の軽金
属元素が十分に低減されない主な原因としては、成形体
の焼結工程において酸素や金属不純物が十分に除去され
ない状態のまま焼結開始温度に達するように昇温速度が
大きく設定されているために、成形体の緻密化が早期に
開始され、焼結体中に多量の酸素や金属不純物が残留し
てしまうことが考えられる。特に、焼成温度がCuの融
点以下と低く、真空度も一般的に10-2〜10-4Pa程
度であるため、この条件下ではBe等は十分に揮発除去
できない。また、焼結工程終了時点において、焼結体内
部に残留した酸素や金属不純物を完全に除去することは
極めて困難である。さらに、水素雰囲気中で焼結を実施
する場合において、焼結体内に多量の空孔が残存してい
ると、焼結後に水素が空孔内に閉じ込められる割合が高
くなり、その水素成分が真空遮断器の遮断性能を劣化さ
せるという問題も生じている。[0013] The main reason why the light metal elements of the 1A group and 2A group as impurities are not sufficiently reduced is that the sintering start temperature is not sufficiently reduced in the sintering step of the compact while oxygen and metal impurities are not sufficiently removed. Since the heating rate is set to be large so as to reach the temperature, it is conceivable that the densification of the compact is started early and a large amount of oxygen and metal impurities remain in the sintered compact. In particular, since the firing temperature is as low as the melting point of Cu or lower and the degree of vacuum is generally about 10 −2 to 10 −4 Pa, Be and the like cannot be sufficiently volatilized and removed under these conditions. At the end of the sintering step, it is extremely difficult to completely remove oxygen and metal impurities remaining inside the sintered body. Furthermore, when sintering is performed in a hydrogen atmosphere, if a large amount of pores remain in the sintered body, the ratio of trapped hydrogen in the pores after sintering increases, and the hydrogen component becomes vacuum. There is also a problem that the breaking performance of the circuit breaker is deteriorated.
【0014】また、溶浸法においてもCr中の不純物は
同様に除去することが困難である。一方、溶解法では金
属不純物の揮発除去は可能であるが、一般的に使用され
るマグネシアやカルシアるつぼからの再汚染が生じる恐
れがある。また、組成の制御が困難である上、偏析の問
題等もあり従来の溶解法で製造する場合、欠点が非常に
多い。Also, it is difficult to remove impurities in Cr by the infiltration method. On the other hand, although the metal impurities can be volatilized and removed by the melting method, recontamination from a generally used magnesia or calcia crucible may occur. In addition, it is difficult to control the composition, and there is a problem of segregation, etc., and there are many disadvantages in the case of manufacturing by a conventional dissolution method.
【0015】いずれにしろ、従来の粉末冶金法、溶浸法
や溶解法による接点部材の製造方法においては、酸素や
金属不純物を十分に低減することは極めて困難であり、
この接点部材を使用して真空遮断器を形成した場合にお
いて、十分な遮断特性および耐圧性能を得ることは困難
であった。In any case, it is extremely difficult to sufficiently reduce oxygen and metal impurities in a conventional method of manufacturing a contact member by powder metallurgy, infiltration or melting.
When a vacuum circuit breaker is formed using this contact member, it has been difficult to obtain sufficient breaking characteristics and pressure resistance.
【0016】本発明は、上記課題を解決するためになさ
れたものであり、特に真空遮断器の接点(接触子)とし
て使用した場合に、耐電圧性を向上させることが可能な
真空遮断器用接点材料,その製造方法および真空遮断器
を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and particularly, when used as a contact (contact) of a vacuum circuit breaker, a contact for a vacuum circuit breaker capable of improving withstand voltage. It is an object to provide a material, a method for manufacturing the same, and a vacuum circuit breaker.
【0017】[0017]
【課題を解決するための手段】上記目的を達成するため
に、本発明者らは接点部材中に残留する金属不純物の種
類および量が接点材料の遮断特性に及ぼす影響を研究す
るとともに、接点材料中に混入する金属不純物量を低減
する方法を検討した結果、以下のような知見を得た。す
なわち、酸素などのガス状不純物成分や、Na,K,B
a等のように仕事関数が小さく、電子放射によって耐圧
性能を劣化させるような金属不純物の含有量を可及的に
低減することによりアークの安定化や遮断性能の向上に
極めて有効であることが判明した。さらに調査を進めた
結果、遮断性能のうち特に耐電圧性を向上させるために
は、接点材料に含まれる不純物としての1A族および2
A族の軽金属元素を十分に低減し、接点材料表面からの
電子放出を極力少なくすることが重要であることが判明
した。すなわち、電子放出の多い元素例えばアルカリ金
属(1A族(Li,Na,K,Rb,Cs))やアルカ
リ土類金属(2A族(Be,Mg,Ca,Sr,B
a))などの仕事関数の小さな元素の含有量を低減する
ことが重要であり、これらの1A族および2A族元素
は、Cu−Cr合金粉末などの原料粉末を作製する段階
において効果的に除去することが可能であることが判明
した。すなわち、回転電極法及び遠心噴霧法を用いるこ
とにより、上記不純物としての1A族および2A族元素
をさらに効果的に低減した原料粉末が得られ、この原料
粉末を成形・焼結することにより、高純度で遮断特性が
優れた接点材料が初めて得られることが判明した。本発
明は、上記知見に基づいて完成されたものである。In order to achieve the above object, the present inventors have studied the effects of the type and amount of metal impurities remaining in the contact member on the breaking characteristics of the contact material, and have studied the effect of the contact material. As a result of examining a method of reducing the amount of metal impurities mixed in, the following findings were obtained. That is, gaseous impurity components such as oxygen, Na, K, B
It is extremely effective for stabilizing the arc and improving the breaking performance by reducing as much as possible the content of metal impurities such as a, which have a small work function and degrade the breakdown voltage performance due to electron emission. found. As a result of further investigation, it was found that in order to particularly improve the withstand voltage among the breaking performances, it is necessary to improve the group 1A and 2 as impurities contained in the contact material.
It has been found that it is important to sufficiently reduce the group A light metal elements and to minimize electron emission from the contact material surface. That is, an element which emits a lot of electrons, for example, an alkali metal (Group 1A (Li, Na, K, Rb, Cs)) or an alkaline earth metal (Group 2A (Be, Mg, Ca, Sr, B)
It is important to reduce the content of elements having a small work function such as a)), and these Group 1A and 2A elements are effectively removed at the stage of preparing a raw material powder such as a Cu—Cr alloy powder. It turned out to be possible. That is, by using the rotating electrode method and the centrifugal spraying method, a raw material powder in which the elements of the group 1A and group 2A elements as impurities are more effectively reduced is obtained. It has been found that a contact material having a high purity and excellent breaking characteristics can be obtained for the first time. The present invention has been completed based on the above findings.
【0018】すなわち、本発明に係る真空遮断器用接点
材料は、高導電成分としてのCuと耐弧成分としてのC
rとから成る接点材料において、不純物としてのLi,
Na,K,Rb,Cs,Be,Mg,Ca,Srおよび
Baの合計含有量が20ppm以下であることを特徴と
する。また、不純物としてのLi,Na,K,Rb,C
s,Be,Mg,Ca,SrおよびBaのそれぞれの含
有量が2ppm以下であることが好ましい。That is, the contact material for a vacuum circuit breaker according to the present invention comprises Cu as a highly conductive component and C as an arc resistant component.
r, Li, as impurities,
The total content of Na, K, Rb, Cs, Be, Mg, Ca, Sr and Ba is not more than 20 ppm. Li, Na, K, Rb, C as impurities
It is preferable that each content of s, Be, Mg, Ca, Sr and Ba is 2 ppm or less.
【0019】本発明に係る真空遮断器用接点材料の製造
方法は、高導電成分としてのCuと耐弧成分としてのC
rとから成るCu−Cr材を電極棒とし、この電極棒を
高真空中で通電加熱しながら回転させる回転電極法によ
り溶融分散せしめ、不純物としてのLi,Na,K,R
b,Cs,Be,Mg,Ca,SrおよびBaの合計含
有量が20ppm以下のCu−Cr合金粉末を調製する
工程と、このCu−Cr合金粉末を成形して成形体を形
成する工程と、得られた成形体を非酸化性雰囲気中で焼
結する工程とを備えることを特徴とする。The method for producing a contact material for a vacuum circuit breaker according to the present invention is characterized in that Cu as a highly conductive component and C as an arc resistant component are used.
The electrode rod is made of a Cu—Cr material composed of R and melted and dispersed by a rotating electrode method in which the electrode rod is rotated while being energized and heated in a high vacuum, and Li, Na, K, and R as impurities are dispersed.
a step of preparing a Cu—Cr alloy powder having a total content of b, Cs, Be, Mg, Ca, Sr, and Ba of 20 ppm or less; and a step of molding the Cu—Cr alloy powder to form a compact. Sintering the obtained molded body in a non-oxidizing atmosphere.
【0020】また、本発明に係る真空遮断器用接点材料
の他の製造方法は、高導電成分としてのCuおよび耐弧
成分としてのCrの溶湯を回転する冷却媒体に噴射し、
溶湯を遠心力によって分散すると同時に冷却固化せしめ
る遠心分離法により処理し、不純物としてのLi,N
a,K,Rb,Cs,Be,Mg,Ca,SrおよびB
aの合計含有量が20ppm以下のCu−Cr合金粉末
を調製する工程と、このCu−Cr合金粉末を成形して
成形体を形成する工程と、得られた成形体を非酸化性雰
囲気中で焼結する工程とを備えることを特徴とする。In another method for producing a contact material for a vacuum circuit breaker according to the present invention, a molten metal of Cu as a highly conductive component and Cr as an arc resistant component is injected into a rotating cooling medium,
The molten metal is dispersed by a centrifugal force and, at the same time, treated by a centrifugal separation method in which the molten metal is cooled and solidified.
a, K, Rb, Cs, Be, Mg, Ca, Sr and B
a) a step of preparing a Cu—Cr alloy powder having a total content of 20 ppm or less, a step of molding the Cu—Cr alloy powder to form a molded body, and a step of subjecting the obtained molded body to a non-oxidizing atmosphere. And sintering.
【0021】さらに、本発明に係る真空遮断器は、真空
容器内に対向して配置した1対の接触子の開閉動作によ
って電路を開閉する真空遮断器において、上記接触子
が、高導電成分としてのCuと耐弧成分としてのCrと
から成り、不純物としてのLi,Na,K,Rb,C
s,Be,Mg,Ca,SrおよびBaの合計含有量が
20ppm以下である接点材料から成ることを特徴とす
る。Further, the vacuum circuit breaker according to the present invention is a vacuum circuit breaker, which opens and closes an electric circuit by opening and closing a pair of contacts arranged in a vacuum vessel so as to face each other. And Cr as an arc resistant component, and Li, Na, K, Rb, and C as impurities.
It is characterized by comprising a contact material having a total content of s, Be, Mg, Ca, Sr and Ba of 20 ppm or less.
【0022】ここで前記製造方法で用いられる回転電極
法は、粉末冶金法等で製造したCu−Cr材を電極棒と
し、この電極棒を高真空中で通電加熱しながら回転させ
て分散し、Cu−Cr合金粉末を製造する方法である。
すなわち、消費回転電極に作製すべき粉末の材料組成を
有するCu−Cr材の合金棒を一方の電極棒として装着
し、高真空中で通電加熱しながら高速で回転させる。そ
の回転電極の他端はW(タングステン)電極であり、C
u−Cr電極棒がW電極に接近すると、アークによりC
u−Cr材から成る電極棒の先端が溶けて回転により飛
散し、飛散した溶湯がタンク内に落下するまでに凝固し
て粉末となる。タンク内には、Heが充満されているた
めに酸化の心配はなく高純度の粉末が得られる。また、
このようにして製造された粉末は上記不純物が十分低減
されている上、組成の偏析が少ない。なお、Cu−Cr
合金粉末の組成は、電極棒作製時にCuとCrとの混合
比率を変えることにより容易に制御することができると
いう利点を有する。Here, the rotating electrode method used in the above manufacturing method is such that a Cu-Cr material manufactured by powder metallurgy or the like is used as an electrode rod, and the electrode rod is rotated and energized in a high vacuum while being dispersed. This is a method for producing a Cu—Cr alloy powder.
That is, an alloy rod of a Cu-Cr material having a material composition of a powder to be produced is mounted as one electrode rod on the consuming rotary electrode, and is rotated at a high speed while being electrically heated in a high vacuum. The other end of the rotating electrode is a W (tungsten) electrode, and C
When the u-Cr electrode rod approaches the W electrode, an arc causes C
The tip of the electrode rod made of a u-Cr material is melted and scattered by rotation, and the scattered molten metal is solidified and formed into a powder before falling into the tank. Since the tank is filled with He, there is no need to worry about oxidation, and high-purity powder can be obtained. Also,
In the powder thus produced, the impurities are sufficiently reduced and the composition is less segregated. In addition, Cu-Cr
The composition of the alloy powder has the advantage that it can be easily controlled by changing the mixing ratio of Cu and Cr during electrode rod fabrication.
【0023】一方、遠心噴霧法は、金属溶湯を種々の力
学的手段で細分化して微細な液滴とし、これを気相中に
分散させて冷却し所定組成の原料粉末を調製する方法で
ある。具体的には、CuとCrの溶湯を回転ドラム上に
噴射し、溶湯を冷却すると同時に遠心力を利用して分散
してCu−Cr合金粉末を製造する方法である。この遠
心噴霧法によれば、粒径が50〜100μmの範囲であ
る液滴が生成される。この遠心噴霧法によれば、冷却時
間が極めて短いので、十分微細な分散粒子を作製するこ
とにより、偏析が少なく、均一な組成を有するCu−C
r系などの多成分系微粒子が得られる。また、微粒子の
組成が広い範囲で精密に制御でき、操作条件により、微
粒子の径、形態、構造などを制御することができる。さ
らに、調製温度が比較的低いために噴霧装置壁との反応
が少なく、高純度の合金粉末が得られる。従って、この
方法はCu−Cr系などの多成分系微粒子の精密調製法
として優れている。On the other hand, the centrifugal spray method is a method in which a molten metal is subdivided by various mechanical means into fine droplets, which are dispersed in a gas phase and cooled to prepare a raw material powder having a predetermined composition. . Specifically, a method of injecting a molten metal of Cu and Cr onto a rotating drum, cooling the molten metal and simultaneously dispersing the molten metal using centrifugal force to produce a Cu—Cr alloy powder. According to this centrifugal spray method, droplets having a particle size in the range of 50 to 100 μm are generated. According to this centrifugal spraying method, since the cooling time is extremely short, by producing sufficiently fine dispersed particles, the segregation is small and the Cu—C
Multi-component type fine particles such as r type can be obtained. In addition, the composition of the fine particles can be precisely controlled in a wide range, and the diameter, shape, structure, and the like of the fine particles can be controlled by operating conditions. Furthermore, since the preparation temperature is relatively low, there is little reaction with the spray device wall, and a high-purity alloy powder can be obtained. Therefore, this method is excellent as a precise preparation method of multi-component type fine particles such as Cu-Cr type.
【0024】ここで耐弧成分としてのCrは、耐弧性お
よび耐溶着性に優れ、接点の長寿命化を図るための成分
であり、原料混合体中に30〜70重量%の範囲で含有
される。含有量が30重量%未満においては、耐弧性が
低下して接点の長寿命化が困難である。一方、含有量が
70重量%を超える場合には、後述する高導電成分とし
てのCuの含有量の相対的低下を招き、接触抵抗の増大
により接点としての通電機能が低下してしまう。Here, Cr as an arc-resistant component is a component that is excellent in arc resistance and welding resistance and extends the life of the contact, and is contained in the raw material mixture in the range of 30 to 70% by weight. Is done. If the content is less than 30% by weight, it is difficult to prolong the service life of the contact due to reduced arc resistance. On the other hand, when the content exceeds 70% by weight, the content of Cu as a high conductive component described later is relatively reduced, and the contact function is reduced due to an increase in contact resistance.
【0025】また高導電成分としてのCuは高い導電率
を有し、接点の接触抵抗値を下げるために上記Cr成分
を除く残余成分として約70〜30重量%(wt%)含
有される。Cu含有量が30重量%未満の場合には導電
性が低下し接触抵抗が増大し接点材料としての機能が低
下する。一方、含有量が70重量%を超える場合は、前
記耐弧成分の含有量が相対的に低下し接点開閉動作時に
発生するアーク(電弧)によって接点が溶着し易くなり
耐消耗性が低下してしまう。Cu as a high conductive component has a high conductivity and is contained in an amount of about 70 to 30% by weight (wt%) as a residual component excluding the Cr component in order to reduce the contact resistance value of the contact. If the Cu content is less than 30% by weight, the conductivity decreases, the contact resistance increases, and the function as a contact material decreases. On the other hand, when the content exceeds 70% by weight, the content of the arc resistant component relatively decreases, and the arc (electric arc) generated at the time of the contact opening / closing operation causes the contacts to be easily welded, resulting in reduced wear resistance. I will.
【0026】本発明に係る真空遮断器用接点材料は、例
えば以下の手順によって製造される。まずCu粉末に対
してCr粉末を30〜70重量%の割合で配合し、これ
らの原料組成から成るCu−Cr材料を用いて、上記回
転電極法もしくは遠心噴霧法によりCu−Cr合金粉末
を得る。The contact material for a vacuum circuit breaker according to the present invention is manufactured, for example, by the following procedure. First, a Cr powder is blended with a Cu powder in a ratio of 30 to 70% by weight, and a Cu-Cr alloy powder is obtained by the above-mentioned rotary electrode method or centrifugal spraying method using a Cu-Cr material having these raw material compositions. .
【0027】次に調製されたCu−Cr合金粉末をプレ
ス成形機の金型に充填し、600〜1000MPa程度
の加圧力でプレス成形して所定形状のCu−Cr成形体
を調製し、さらに得られた成形体を水素雰囲気などの非
酸化性雰囲気中で温度900〜1050℃で0.5〜3
時間焼結することにより、Cu−Cr焼結体を形成す
る。Next, the prepared Cu-Cr alloy powder is filled into a mold of a press molding machine, and press-molded under a pressure of about 600 to 1000 MPa to prepare a Cu-Cr molded body having a predetermined shape. The formed body is heated in a non-oxidizing atmosphere such as a hydrogen atmosphere at a temperature of 900 to 1050 ° C. for 0.5 to 3 hours.
By sintering for a time, a Cu—Cr sintered body is formed.
【0028】こうして形成した、Cu−Cr焼結体を所
定形状に加工して接触子(接点部材)とし、この接触子
を図1〜2に示すように対向する電極の端面にろう材を
使用して一体に接合し、さらに接触子をそれぞれ接合し
た電極を導電棒の端部に接合することにより、真空遮断
器が形成される。The Cu—Cr sintered body thus formed is processed into a predetermined shape to form a contact (contact member), and this contact is made of a brazing material on the end face of the opposing electrode as shown in FIGS. Then, the electrodes to which the respective contacts are joined are joined to the ends of the conductive rods to form a vacuum circuit breaker.
【0029】[0029]
【発明の実施の形態】次に本発明の実施の形態につい
て、以下の実施例を参照して説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the following examples.
【0030】実施例1 50wt%のCrを含有するCu−Cr材の合金棒を消
費回転電極とし、高真空中で通電加熱しながら高速で回
転させた。この電極の一端にはW(タングステン)電極
を配置し、Cu−Cr電極棒をW電極に接近させて、ア
ークによりCu−Cr材の電極棒の先端が溶け出した液
滴を回転により飛散させた。その後、Heで充満された
タンク内に液滴を落下させることにより凝固させてCr
含有量が50wt%のCu−Cr合金粉末を調製した。
このCu−Cr合金粉末を金型に充填し、最終的に得ら
れる接点材料の相対密度が94%となるような加圧力で
プレス成形して所定形状のCu−Cr成形体(圧粉体)
を作製した。そして、得られた成形体を温度1050℃
の水素雰囲気中で焼結した。次に、このCu−Cr焼結
体を所定形状に加工して図1〜2に示す接触子(接点部
材)13a,13bとし、この接触子を対向する電極
7,8の端面にろう材14を使用して一体に接合し、さ
らに接触子13a,13bをそれぞれ接合した電極7,
8を真空バルブ内の導電棒5,6の端部に接合すること
により、真空遮断器に組み立てた。 Example 1 An alloy rod of a Cu—Cr material containing 50 wt% of Cr was used as a rotating electrode for consumption, and was rotated at a high speed while being electrically heated in a high vacuum. A W (tungsten) electrode is arranged at one end of this electrode, and the Cu-Cr electrode rod is brought close to the W electrode, and the tip of the electrode rod of the Cu-Cr material is melted out by an arc to be scattered by rotation. Was. Thereafter, the droplets are allowed to solidify by dropping the droplets into a tank filled with He, thereby forming Cr.
A Cu-Cr alloy powder having a content of 50 wt% was prepared.
A mold is filled with the Cu-Cr alloy powder and press-molded with a pressing force such that the relative density of the finally obtained contact material is 94%, and a Cu-Cr compact (a green compact) having a predetermined shape is formed.
Was prepared. Then, the obtained molded body is heated to a temperature of 1050 ° C.
In a hydrogen atmosphere. Next, the Cu—Cr sintered body is processed into a predetermined shape to obtain contacts (contact members) 13 a and 13 b shown in FIGS. 1 and 2, and the brazing material 14 is attached to the end surfaces of the opposed electrodes 7 and 8. , And the electrodes 7, which are respectively joined to the contacts 13 a, 13 b,
8 was joined to the ends of the conductive rods 5 and 6 in the vacuum valve to assemble the vacuum circuit breaker.
【0031】実施例2 50wt%のCrを含有するCuとCrの溶湯を回転体
(回転ドラム)に落とし、冷却と同時に遠心力を利用し
て周囲に飛ばすことによってCu−Cr合金粉末とし
た。このCu−Cr合金粉末を金型に充填し、最終的に
得られる接点材料の相対密度が94%となるような加圧
力でプレス成形して所定形状のCu−Cr成形体(圧粉
体)を作製した。そして、得られた成形体を温度105
0℃の水素雰囲気中で焼結した。次に、このCu−Cr
焼結体を所定形状に加工して図1〜2に示す接触子(接
点部材)13a,13bとし、この接触子を対向する電
極7,8の端面にろう材14を使用して一体に接合し、
さらに接触子13a,13bをそれぞれ接合した電極
7,8を真空バルブ内の導電棒5,6の端部に接合する
ことにより、真空遮断器に組み立てた。 Example 2 A melt of Cu and Cr containing 50% by weight of Cr was dropped on a rotating body (rotary drum), and simultaneously cooled to fly around using a centrifugal force to obtain a Cu-Cr alloy powder. A mold is filled with the Cu-Cr alloy powder and press-molded with a pressing force such that the relative density of the finally obtained contact material is 94%, and a Cu-Cr compact (a green compact) having a predetermined shape is formed. Was prepared. Then, the obtained molded body is heated to a temperature of 105
It was sintered in a hydrogen atmosphere at 0 ° C. Next, this Cu-Cr
The sintered body is processed into a predetermined shape to form contacts (contact members) 13a and 13b shown in FIGS. 1 and 2, and these contacts are integrally joined to the end faces of the opposed electrodes 7 and 8 using a brazing material 14. And
Further, the electrodes 7 and 8 to which the contacts 13a and 13b were respectively joined were joined to the ends of the conductive rods 5 and 6 in the vacuum valve, thereby assembling into a vacuum circuit breaker.
【0032】比較例1 アトマイズ法で製造したCu粉末とCr粉末とを重量比
で1:1の割合で秤量し、ボールミル混合機によって均
一に混合した。このCu−Cr混合粉末をプレス成形機
の金型に充填し、最終的に得られる接点材料の相対密度
が94%となるような加圧力でプレス成形して所定形状
のCu−Cr成形体を作製した。そして、得られた成形
体を温度1050℃の水素雰囲気中で焼結した。次に、
このCu−Cr焼結体を所定形状に加工して図1〜2に
示す接触子(接点部材)13a,13bとし、この接触
子を対向する電極7,8の端面にろう材14を使用して
一体に接合し、さらに接触子13a,13bをそれぞれ
接合した電極7,8を真空バルブ内の導電棒5,6の端
部に接合することにより、真空遮断器に組み立てた。 Comparative Example 1 Cu powder and Cr powder produced by the atomizing method were weighed at a weight ratio of 1: 1 and uniformly mixed by a ball mill mixer. This Cu-Cr mixed powder is filled in a mold of a press molding machine, and press-molded with a pressing force such that the relative density of the finally obtained contact material becomes 94%, to form a Cu-Cr molded body having a predetermined shape. Produced. Then, the obtained molded body was sintered in a hydrogen atmosphere at a temperature of 1050 ° C. next,
This Cu—Cr sintered body is processed into a predetermined shape to obtain contacts (contact members) 13 a and 13 b shown in FIGS. 1 and 2, and the contacts are made of brazing material 14 on the end surfaces of the electrodes 7 and 8 facing each other. The electrodes 7 and 8 to which the contacts 13a and 13b were respectively joined were joined to the ends of the conductive rods 5 and 6 in the vacuum bulb, thereby assembling a vacuum circuit breaker.
【0033】そして各接点材料の遮断特性を比較評価す
るために、実施例1、実施例2、比較例1に係る接点材
料に含有される1A族元素(Li,Na,K,Rb,C
s)と2A族元素(Be,Mg,Ca,Sr,Ba)の
含有量をICP発光分光分析装置(セイコー電子社製:
SPS−1100型)を使用して測定するとともに、各
真空遮断器の耐電圧試験を実施した。下記表1に測定試
験結果を示す。なお、表中に示す耐電圧は比較例1に係
る真空遮断器の特性値を基準値1.00として相対値で
示している。In order to compare and evaluate the breaking characteristics of each contact material, a Group 1A element (Li, Na, K, Rb, C) contained in the contact materials according to Example 1, Example 2, and Comparative Example 1 was used.
s) and the content of group 2A elements (Be, Mg, Ca, Sr, Ba) were determined by ICP emission spectroscopy (manufactured by Seiko Instruments Inc .:
(SPS-1100 type) and a withstand voltage test of each vacuum circuit breaker. Table 1 below shows the measurement test results. The withstand voltage shown in the table is shown as a relative value with the characteristic value of the vacuum circuit breaker according to Comparative Example 1 as a reference value 1.00.
【0034】[0034]
【表1】 [Table 1]
【0035】上記表1に示す結果から明らかなように、
回転電極法を用いた製造方法に従って製造された実施例
1に係る接点部材では、特に1A族のLi,Na,Kと
2A族のBe,Caについての含有量が低減されてお
り、また軽金属元素の合計含有量も20ppm以下とな
っている。このことから回転電極法によって効果的に含
有不純物を低減できることにより、比較例1よりも耐電
圧が向上していることが判明した。As is clear from the results shown in Table 1 above,
In the contact member according to Example 1 manufactured according to the manufacturing method using the rotating electrode method, the contents of Li, Na, and K of Group 1A and Be and Ca of Group 2A were particularly reduced, and the light metal element was used. Is also 20 ppm or less. From this, it was found that the withstand voltage was improved as compared with Comparative Example 1 because the impurities contained could be effectively reduced by the rotating electrode method.
【0036】一方、遠心噴霧法を用いた製造方法に従っ
て製造された実施例2に係る接点部材では、1A族元素
の含有量低減については顕著な効果は示されていない
が、2A族のBe,Mg,Sr,Baについての含有量
が特に効果的に低減されており、実施例1と同様、軽金
属元素の合計含有量も20ppm以下となっている。こ
のことから遠心噴霧法によって効果的に含有不純物を低
減できることにより、実施例1と同様に比較例1よりも
耐電圧が向上していることが判明した。On the other hand, in the contact member according to Example 2 manufactured according to the manufacturing method using the centrifugal spray method, no remarkable effect was shown in reducing the content of the group 1A element, but the group 2A group Be, The contents of Mg, Sr, and Ba are particularly effectively reduced, and the total content of light metal elements is also 20 ppm or less, as in Example 1. From this, it was found that the withstand voltage was improved as compared with Comparative Example 1 as in Example 1 because the impurities contained could be effectively reduced by the centrifugal spray method.
【0037】[0037]
【発明の効果】以上説明の通り、本発明に係る真空遮断
器用接点材料によれば、高導電成分としてのCuと耐弧
成分としてのCrとから成り、不純物としての1A族お
よび2A族の軽金属元素の合計含有量が20ppm以下
と低減されているため、耐電圧性に優れた真空遮断器が
得られる。As described above, according to the contact material for a vacuum circuit breaker according to the present invention, a light metal of Group 1A or 2A consisting of Cu as a highly conductive component and Cr as an arc resistant component is used. Since the total content of the elements is reduced to 20 ppm or less, a vacuum circuit breaker excellent in withstand voltage can be obtained.
【図1】本発明に係る接点材料を適用する真空遮断器の
構造を示す断面図。FIG. 1 is a sectional view showing a structure of a vacuum circuit breaker to which a contact material according to the present invention is applied.
【図2】図1に示す接点および電極部を拡大して示す断
面図。FIG. 2 is an enlarged sectional view showing a contact and an electrode unit shown in FIG. 1;
1 遮断室 2 絶縁容器(真空容器,真空バルブ) 3a,3b 封止金属 4a,4b 蓋体 5 導電棒 6 導電棒 7 電極(固定電極) 8 電極(可動電極) 9 ベローズ 10 アークシールド 11 アークシールド 12 ろう付け部 13a,13b 接点部材 14 ろう材(Agろう材) DESCRIPTION OF SYMBOLS 1 Shutoff room 2 Insulating container (vacuum container, vacuum valve) 3a, 3b Sealing metal 4a, 4b Lid 5 Conductive rod 6 Conductive rod 7 Electrode (fixed electrode) 8 Electrode (movable electrode) 9 Bellows 10 Arc shield 11 Arc shield 12 Brazing portions 13a, 13b Contact member 14 Brazing material (Ag brazing material)
Claims (5)
てのCrとから成る真空遮断器用接点材料において、不
純物としてのLi,Na,K,Rb,Cs,Be,M
g,Ca,SrおよびBaの合計含有量が20ppm以
下であることを特徴とする真空遮断器用接点材料。1. A contact material for a vacuum circuit breaker comprising Cu as a highly conductive component and Cr as an arc resistant component, wherein Li, Na, K, Rb, Cs, Be, M as impurities are contained.
A contact material for a vacuum circuit breaker, wherein the total content of g, Ca, Sr and Ba is 20 ppm or less.
Cs,Be,Mg,Ca,SrおよびBaのそれぞれの
含有量が2ppm以下であることを特徴とする請求項1
記載の真空遮断器用接点材料。2. Li, Na, K, Rb,
2. The content of each of Cs, Be, Mg, Ca, Sr and Ba is 2 ppm or less.
The contact material for a vacuum circuit breaker according to the above.
てのCrとから成るCu−Cr材を電極棒とし、この電
極棒を高真空中で通電加熱しながら回転させる回転電極
法により溶融分散せしめ、不純物としてのLi,Na,
K,Rb,Cs,Be,Mg,Ca,SrおよびBaの
合計含有量が20ppm以下のCu−Cr合金粉末を調
製する工程と、このCu−Cr合金粉末を成形して成形
体を形成する工程と、得られた成形体を非酸化性雰囲気
中で焼結する工程とを備えることを特徴とする真空遮断
器用接点材料の製造方法。3. An electrode rod made of a Cu--Cr material comprising Cu as a highly conductive component and Cr as an arc-resistant component, and melt-dispersed by a rotating electrode method in which the electrode rod is rotated while being heated while being energized in a high vacuum. At least, Li, Na as impurities,
A step of preparing a Cu—Cr alloy powder having a total content of K, Rb, Cs, Be, Mg, Ca, Sr, and Ba of 20 ppm or less; and a step of molding the Cu—Cr alloy powder to form a compact And a step of sintering the obtained compact in a non-oxidizing atmosphere.
としてのCrの溶湯を回転する冷却媒体に噴射し、溶湯
を遠心力によって分散すると同時に冷却固化せしめる遠
心分離法により処理し、不純物としてのLi,Na,
K,Rb,Cs,Be,Mg,Ca,SrおよびBaの
合計含有量が20ppm以下のCu−Cr合金粉末を調
製する工程と、このCu−Cr合金粉末を成形して成形
体を形成する工程と、得られた成形体を非酸化性雰囲気
中で焼結する工程とを備えることを特徴とする真空遮断
器用接点材料の製造方法。4. A centrifugal separation method of injecting a molten metal of Cu as a highly conductive component and Cr as an arc resistant component into a rotating cooling medium, dispersing the molten metal by centrifugal force and simultaneously cooling and solidifying the molten metal, Li, Na,
A step of preparing a Cu—Cr alloy powder having a total content of K, Rb, Cs, Be, Mg, Ca, Sr, and Ba of 20 ppm or less; and a step of molding the Cu—Cr alloy powder to form a compact And a step of sintering the obtained compact in a non-oxidizing atmosphere.
触子の開閉動作によって電路を開閉する真空遮断器にお
いて、上記接触子が、高導電成分としてのCuと耐弧成
分としてのCrとから成り、不純物としてのLi,N
a,K,Rb,Cs,Be,Mg,Ca,SrおよびB
aの合計含有量が20ppm以下である接点材料から成
ることを特徴とする真空遮断器。5. A vacuum circuit breaker which opens and closes an electric circuit by opening and closing a pair of contacts opposed to each other in a vacuum vessel, wherein the contacts are made of Cu as a highly conductive component and Cr as an arc resistant component. And Li and N as impurities
a, K, Rb, Cs, Be, Mg, Ca, Sr and B
A vacuum circuit breaker comprising a contact material having a total content of a of 20 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9204846A JPH1150176A (en) | 1997-07-30 | 1997-07-30 | Contact material for vacuum circuit breaker, its production and vacuum circuit breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9204846A JPH1150176A (en) | 1997-07-30 | 1997-07-30 | Contact material for vacuum circuit breaker, its production and vacuum circuit breaker |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1150176A true JPH1150176A (en) | 1999-02-23 |
Family
ID=16497369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9204846A Pending JPH1150176A (en) | 1997-07-30 | 1997-07-30 | Contact material for vacuum circuit breaker, its production and vacuum circuit breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1150176A (en) |
-
1997
- 1997-07-30 JP JP9204846A patent/JPH1150176A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4032301A (en) | Composite metal as a contact material for vacuum switches | |
JP2705998B2 (en) | Manufacturing method of electrical contact material | |
EP1528581B1 (en) | Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker | |
EP0521274A1 (en) | Process for manufacturing a contact material for vacuum circuit breakers | |
JP4620071B2 (en) | Contact materials for vacuum circuit breakers | |
US4547639A (en) | Vacuum circuit breaker | |
JP2007332429A (en) | Contact material and production method therefor | |
EP0460680B1 (en) | Contact for a vacuum interrupter | |
JPH1150176A (en) | Contact material for vacuum circuit breaker, its production and vacuum circuit breaker | |
JPH11176298A (en) | Contact material for vacuum circuit breaker, manufacture of the contact material, and vacuum circuit breaker | |
JPH1150177A (en) | Contact material for vacuum circuit breaker, its production and vacuum circuit breaker | |
JP5506873B2 (en) | Contact material and manufacturing method thereof | |
EP0426490B1 (en) | Vacuum switch contact material and method of manufacturing it | |
JPH1040761A (en) | Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker | |
US5853083A (en) | Contact material for a vacuum circuit breaker and a method for manufacturing the same | |
JPH09190730A (en) | Manufacture of contact member for vacuum circuit breaker | |
JPH1031942A (en) | Contact material for vacuum circuit-breaker and its manufacture | |
US5985000A (en) | Method for manufacturing electrode material for vacuum circuit breaker | |
JPH09167534A (en) | Contact member for vacuum breaker and its manufacture | |
US5225381A (en) | Vacuum switch contact material and method of manufacturing it | |
JP2009252550A (en) | Contact material, and manufacturing method thereof | |
JPH09161583A (en) | Manufacture of contact member for vacuum circuit breaker | |
JP2004071436A (en) | Vacuum circuit breaker | |
JPH05101752A (en) | Manufacture of contact for vacuum valve | |
JP2004071435A (en) | Vacuum circuit breaker |