JPH04324220A - Manufacture of electrode material - Google Patents

Manufacture of electrode material

Info

Publication number
JPH04324220A
JPH04324220A JP9537291A JP9537291A JPH04324220A JP H04324220 A JPH04324220 A JP H04324220A JP 9537291 A JP9537291 A JP 9537291A JP 9537291 A JP9537291 A JP 9537291A JP H04324220 A JPH04324220 A JP H04324220A
Authority
JP
Japan
Prior art keywords
copper
point metal
melting point
alloy
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9537291A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Taiji Noda
泰司 野田
Toshimasa Fukai
利眞 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9537291A priority Critical patent/JPH04324220A/en
Publication of JPH04324220A publication Critical patent/JPH04324220A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To optionally adjust the mixing ratio of a high-melting-point metal with the distributional dispersion of a low-melting-point metal reduced by placing an alloy of copper and the low-melting-point metal on an infiltration base material, composed of the copper and the high-melting-point metal, to be infiltrated under a specific condition. CONSTITUTION:An alloy C of copper and a low-melting-point metal, such as bismuth having a melting point lower than that of the copper, is placed on an infiltration base material B composed by mixing copper powder and powder of a high-melting-point metal such as chromium having a melting point higher than that of the copper. The infiltration base material B and the alloy C are heated to the melting point or more of the alloy C in a non-oxidizing atmosphere to be kept, and the alloy C is infiltrated into the gap portions of the base material B. This restrains the evaporation of the low-melting-point metal and also reduces distributional dispersion in the gap portions, and on the other hand, enables the mixing ratio of the high-melting-point metal to be optionally changed by previously containing the copper into the high-melting-point metal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、低融点金属の分布のば
らつきが少なく高融点金属の割合を任意に変更可能な電
極材料の製造方法に関し、特にビスマスを添加した銅−
クロム系の電極材料に応用して好適なものである。
[Industrial Application Field] The present invention relates to a method for manufacturing an electrode material that has little variation in the distribution of low-melting point metals and can arbitrarily change the proportion of high-melting point metals.
It is suitable for application to chromium-based electrode materials.

【0002】0002

【従来の技術】真空インタラプタの電極材料として要求
される重要な性能の一つとして、電流遮断性能の高いこ
とが挙げられる。
2. Description of the Related Art One of the important properties required of electrode materials for vacuum interrupters is high current interrupting performance.

【0003】近年、この電流遮断性能が非常に優れてい
る銅−クロム系の材料に、電流遮断後の接触抵抗値の上
昇を抑制する目的でビスマス等の低融点金属を添加した
ものを、真空インタラプタの電極材料として使用するこ
とが試みられている。
[0003] In recent years, copper-chromium materials, which have excellent current interrupting performance, have been added with low melting point metals such as bismuth in order to suppress the increase in contact resistance after current interrupting. Attempts have been made to use it as an electrode material for interrupters.

【0004】従来、このビスマスを添加した銅−クロム
系の電極材料の製造方法としては、銅とクロムとビスマ
スとの混合粉末を一括して焼結するようにしたものや、
容器内に充填されたクロムとビスマスとの混合粉末上に
銅塊を載置し、これらを非酸化性雰囲気にて銅の融点以
上に加熱し、クロム及びビスマスの空隙部分に銅塊を溶
浸させるようにしたもの、或いは容器内に充填されたク
ロムの粉末上に銅とビスマスとの合金を載置し、これら
を非酸化性雰囲気にてこれらの融点以上に加熱し、クロ
ムの空隙部分に銅及びビスマスを溶浸させるようにした
もの等が知られている。
Conventionally, methods for manufacturing bismuth-added copper-chromium electrode materials include sintering a mixed powder of copper, chromium, and bismuth all at once;
A copper ingot is placed on a mixed powder of chromium and bismuth filled in a container, and heated above the melting point of copper in a non-oxidizing atmosphere, infiltrating the copper ingot into the voids of chromium and bismuth. An alloy of copper and bismuth is placed on top of chromium powder filled in a container or a container, and the alloy is heated to above its melting point in a non-oxidizing atmosphere to fill the voids in the chromium. Those in which copper and bismuth are infiltrated are known.

【0005】なお、ビスマスを添加した銅−クロム系の
電極材料の組成として一般的には、銅が20から98重
量%の範囲、クロムが2から80重量%の範囲、ビスマ
スが2から15重量%の範囲に調整されている。
[0005] Generally, the composition of a copper-chromium based electrode material to which bismuth is added is copper in the range of 20 to 98% by weight, chromium in the range of 2 to 80% by weight, and bismuth in the range of 2 to 15% by weight. It has been adjusted to a range of %.

【0006】[0006]

【発明が解決しようとする課題】ビスマスを添加した銅
−クロム系の金属材料に対する従来の製造方法の内、銅
とクロムとビスマスとの混合粉末を一括して焼結するよ
うにした方法及びクロム及びビスマスの空隙部分に銅塊
を溶浸させるようにした方法では、ビスマスは蒸気圧が
高くて融点が低いことから、銅塊を溶浸させる加熱工程
において銅よりも融点の低いビスマスの蒸発量が非常に
多く、一つの容器内で製造される電極材料中のビスマス
の分布が著しく不均一となって製品の均質性を損なう虞
がある上、電極材料中に占めるビスマスの割合を設計通
りに保つことが困難である。
[Problems to be Solved by the Invention] Among the conventional manufacturing methods for copper-chromium metal materials added with bismuth, a method in which a mixed powder of copper, chromium, and bismuth is sintered all at once, and chromium In the method of infiltrating copper ingots into the voids of bismuth, since bismuth has a high vapor pressure and a low melting point, the amount of evaporation of bismuth, which has a lower melting point than copper, is reduced during the heating process of infiltrating the copper ingots. There is a risk that the distribution of bismuth in the electrode material manufactured in one container may become extremely uneven, impairing the homogeneity of the product. Difficult to maintain.

【0007】又、クロムの空隙部分に銅とビスマスとの
合金を溶浸させるようにした方法では、上述の如き不具
合はないものの、クロムの空隙部分に銅とビスマスとの
合金を溶浸させる必要上、クロムの体積割合を50%程
度に抑えて空隙部分を確保しなければならず、電極材料
中に占めるクロムの割合を任意に設定することが困難で
あった。
[0007]Also, although the method of infiltrating an alloy of copper and bismuth into the voids of chromium does not have the above-mentioned problems, it is necessary to infiltrate the alloy of copper and bismuth into the voids of chromium. Moreover, the volume ratio of chromium must be kept to about 50% to ensure a void area, making it difficult to arbitrarily set the ratio of chromium in the electrode material.

【0008】[0008]

【発明の目的】本発明は、低融点金属の分布のばらつき
が少なく、しかも高融点金属の混合割合を任意に調整し
得る電極材料、特にビスマスを添加した銅−クロム系の
電極材料を製造する方法を提供することを目的とする。
[Object of the invention] The present invention provides an electrode material that has less variation in the distribution of low-melting point metals and can arbitrarily adjust the mixing ratio of high-melting point metals, particularly a copper-chromium based electrode material to which bismuth is added. The purpose is to provide a method.

【0009】[0009]

【課題を解決するための手段】本発明による電極材料の
製造方法は、銅の粉末とこの銅よりも高融点の高融点金
属の粉末とを混合してなる溶浸母材の上に銅とこの銅よ
りも低融点の低融点金属との合金を載置し、これらを非
酸化性雰囲気にて前記合金の融点以上に加熱保持し、前
記合金を前記溶浸母材の空隙部分に溶浸させるようにし
たことを特徴とするものである。
[Means for Solving the Problems] The method for manufacturing an electrode material according to the present invention is to infuse copper onto an infiltrated base material made by mixing copper powder and powder of a high-melting point metal that has a higher melting point than the copper. An alloy with a low melting point metal that has a lower melting point than that of copper is placed, and these are heated and maintained above the melting point of the alloy in a non-oxidizing atmosphere, and the alloy is infiltrated into the voids of the infiltration base material. This feature is characterized in that it allows the user to

【0010】なお、前記高融点金属としてはクロム等を
挙げることができる。又、前記低融点金属としてはビス
マス等を挙げることができる。ここで、高融点金属とし
てクロムを採用すると共に低融点金属としてビスマスを
採用したものにおいて、銅が20重量%未満の場合には
、導電率が低下して発熱量が多くなり、逆に銅が98重
量%を越えると耐溶着性の低下や電流さい断値の増大を
もたらす。又、クロムが2重量%未満の場合には、電流
さい断値が増大し、逆にクロムが80重量%を越える場
合には、電流遮断性能が低下してしまう。一方、ビスマ
スが2重量%未満の場合には、電流遮断後の接触抵抗値
を抑制する効果が薄れてしまい、逆にビスマスが15重
量%を越えると、耐電圧特性等の真空インタラプタとし
ての性能に悪影響を及ぼす。
[0010] The high melting point metal may include chromium and the like. Moreover, bismuth etc. can be mentioned as said low melting point metal. Here, in a product that uses chromium as a high melting point metal and bismuth as a low melting point metal, if the copper content is less than 20% by weight, the electrical conductivity will decrease and the calorific value will increase; If it exceeds 98% by weight, the welding resistance will decrease and the current cutoff value will increase. Furthermore, if the chromium content is less than 2% by weight, the current interrupting value increases, whereas if the chromium content exceeds 80% by weight, the current interrupting performance decreases. On the other hand, if the bismuth content is less than 2% by weight, the effect of suppressing the contact resistance value after current interruption will be diminished, and if the bismuth content exceeds 15% by weight, the performance as a vacuum interrupter such as withstand voltage characteristics will be affected. have a negative impact on

【0011】従って、高融点金属としてクロムを採用す
ると共に低融点金属としてビスマスを採用したものにお
いては、銅は20から98重量%の範囲、クロムは2か
ら80重量%の範囲、ビスマスは2から15重量%の範
囲にそれぞれあることが望ましい。
Therefore, in the case where chromium is used as the high melting point metal and bismuth is used as the low melting point metal, copper is in the range of 20 to 98% by weight, chromium is in the range of 2 to 80% by weight, and bismuth is in the range of 2 to 80% by weight. It is desirable that each content is in the range of 15% by weight.

【0012】但し、電極材料中に占めるビスマスの割合
とさい断電流値との関係を表す図2に示すように、ビス
マスの割合が2重量%の場合には、さい断電流値が2A
(アンペア)以下となるが、6重量%の場合でもさい断
電流値は1A以下を確保することができることから、ビ
スマスの割合を6重量%以上としても良く、逆に12重
量%を越える場合には低融点金属が著しく析出し、得ら
れる電極材料中の低融点金属の量にばらつきを生じる虞
がある上、さい断電流値を減少させる効果が余り得られ
ない。以上のような観点から、銅とビスマスとの合金中
に占めるビスマスの割合を、6から12重量%の範囲に
収めることが特に有効となる。
However, as shown in FIG. 2, which shows the relationship between the proportion of bismuth in the electrode material and the cutting current value, when the proportion of bismuth is 2% by weight, the cutting current value is 2A.
(Ampere) or less, but even in the case of 6% by weight, the breaking current value can be secured to be 1A or less, so the proportion of bismuth may be set to 6% by weight or more, and conversely, if it exceeds 12% by weight, However, there is a risk that the low melting point metal will significantly precipitate, causing variations in the amount of the low melting point metal in the resulting electrode material, and it will not be very effective in reducing the cutting current value. From the above viewpoint, it is particularly effective to keep the proportion of bismuth in the alloy of copper and bismuth within the range of 6 to 12% by weight.

【0013】[0013]

【作用】銅と低融点金属との合金中に占める低融点金属
の一部は、銅の結晶粒中に固溶している。固溶限界を越
えた低融点金属は銅の結晶粒界に析出するが、この析出
状態の低融点金属は合金表面のみならず合金内部にも当
然存在する。
[Operation] A part of the low melting point metal in the alloy of copper and the low melting point metal is solidly dissolved in the copper crystal grains. A low melting point metal that exceeds the solid solution limit precipitates at the grain boundaries of copper, but naturally this precipitated low melting point metal exists not only on the alloy surface but also inside the alloy.

【0014】このような状態の銅と低融点金属とを銅と
高融点金属との混合粉末上に載置してこれらを加熱する
と、銅と低融点金属との合金から低融点金属が蒸発する
のは、銅の結晶粒界に沿ってこの銅と低融点金属との合
金の表面からだけとなり、銅と低融点金属との合金中の
銅が溶けるまでは、低融点金属の蒸発が抑制された状態
となる。
When copper and low melting point metal in such a state are placed on a mixed powder of copper and high melting point metal and heated, the low melting point metal evaporates from the alloy of copper and low melting point metal. This occurs only from the surface of the alloy of copper and low-melting point metal along the grain boundaries of copper, and evaporation of the low-melting point metal is suppressed until the copper in the alloy of copper and low-melting point metal melts. The state will be as follows.

【0015】この加熱操作に伴い、銅と高融点金属との
混合粉末の空隙部分からガスが放出され、銅及び高融点
金属の空隙部分に銅と低融点金属との合金が溶浸して行
く。低融点金属は電極材料自体の機械的強度を下げ、こ
の電極材料自体を変形し易くして電流遮断後の接触抵抗
値の上昇を抑制する。
With this heating operation, gas is released from the voids of the mixed powder of copper and high melting point metal, and the alloy of copper and low melting point metal infiltrates into the voids of the copper and high melting point metal. The low melting point metal lowers the mechanical strength of the electrode material itself, making the electrode material itself easily deformable and suppressing an increase in contact resistance after current interruption.

【0016】[0016]

【実施例】真空インタラプタは、その概略構造の一例を
表す第3図に示すようなものであり、相互に一直線状を
なす一対のリード棒11,12の対向端面には、それぞ
れ電極13,14が一体的に設けてある。これら電極1
3,14を囲む筒状のシールド15の外周中央部は、こ
のシールド15を囲む一対の絶縁筒16,17の間に挟
まれた状態で保持されている。一方の前記リード棒11
は、一方の絶縁筒  16の一端に接合された金属端板
18を気密に貫通した状態で、この金属端板18に一体
的に固定されている。図示しない駆動装置に連結される
他方のリード棒12は、他方の絶縁筒17の他端に気密
に接合された他方の金属端板19にベローズ20を介し
て連結され、駆動装置の作動に伴って電極13,14の
対向方向に往復動可能に可動側の電極14が固定側の電
極13に対して開閉動作するようになっている。
[Embodiment] A vacuum interrupter is as shown in FIG. 3, which shows an example of its schematic structure.A pair of lead rods 11 and 12 that are in a straight line are provided with electrodes 13 and 14 on opposite end surfaces, respectively. are provided integrally. These electrodes 1
A central portion of the outer periphery of a cylindrical shield 15 surrounding the shields 3 and 14 is held between a pair of insulating cylinders 16 and 17 surrounding the shield 15. One of the lead rods 11
is integrally fixed to the metal end plate 18 joined to one end of one of the insulating tubes 16 in a state where it hermetically penetrates the metal end plate 18 . The other lead rod 12, which is connected to a drive device (not shown), is connected via a bellows 20 to the other metal end plate 19, which is hermetically joined to the other end of the other insulating tube 17. The movable electrode 14 is configured to open and close with respect to the fixed electrode 13 so that the electrodes 13 and 14 can reciprocate in opposing directions.

【0017】前記電極13,14は、クロム(Cr)と
、銅(Cu)と、これらクロムと銅との界面に分散する
ビスマス(Bi)とからなる複合金属で構成される。
The electrodes 13 and 14 are made of a composite metal consisting of chromium (Cr), copper (Cu), and bismuth (Bi) dispersed at the interface between these chromium and copper.

【0018】本発明によるこの電極材料の製造方法の一
例を第1図に基づいて以下に記すと、まず150から2
50メッシュの範囲の粒度のものが全体の80%を占め
るクロムの粉末と−325メッシュの粒度のものが全体
の80%を占める銅の粉末とを用意し、クロムの粉末が
25重量%で銅の粉末が75重量%となるようにこれら
を均一に攪拌混合する。
An example of the method for manufacturing this electrode material according to the present invention will be described below based on FIG.
A chromium powder with a particle size of 50 mesh accounts for 80% of the total, and a copper powder with a particle size of -325 mesh accounts for 80% of the total. These are uniformly stirred and mixed so that the powder content is 75% by weight.

【0019】そして、この混合粉体を内径70mmのア
ルミナセラミックス製の容器Aに130g入れ、これを
5×10−4Torrの真空炉内で脱ガスしながら11
30℃に1時間加熱保持し、クロム粒子及び銅粒子を相
互に拡散結合させて多孔質の溶浸母材Bを得る。
Then, 130 g of this mixed powder was placed in a container A made of alumina ceramics with an inner diameter of 70 mm, and it was heated for 11 hours while degassing in a vacuum furnace at 5 x 10-4 Torr.
The mixture is heated and maintained at 30° C. for 1 hour to diffusely bond the chromium particles and copper particles to each other to obtain a porous infiltrated base material B.

【0020】一方、5×10−5Torrの真空溶解炉
にて銅を1100℃に溶融させ、所定量のビスマスを銅
の溶湯中に添加してこれらを攪拌した後、冷却してビス
マスが18重量%含まれた銅ビスマス合金を得る。
On the other hand, copper was melted at 1100°C in a vacuum melting furnace at 5 x 10-5 Torr, a predetermined amount of bismuth was added to the molten copper, and the mixture was stirred and then cooled until the amount of bismuth was 18% by weight. % copper bismuth alloy is obtained.

【0021】しかるのち、前記アルミナセラミックス製
の容器A内に形成された溶浸母材Bの上に、上述した方
法により作られた120gの銅ビスマス合金Cを載置し
、この状態で容器Aにアルミナセラミックス製の蓋Dを
被せ、これらを5×10−4Torrの真空炉内にて脱
ガスしつつ1130℃に30分加熱処理し、多孔質の溶
浸母材Bの空隙部分に銅ビスマス合金Cを溶浸させ、こ
れによって得られた電極材料を容器Aから取り出し、所
定の寸法形状に機械加工する。
Thereafter, 120 g of copper-bismuth alloy C made by the method described above is placed on the infiltration base material B formed in the alumina ceramic container A, and in this state, the container A is Covered with a lid D made of alumina ceramics, these were heated to 1130°C for 30 minutes while degassing in a 5 x 10-4 Torr vacuum furnace, and copper-bismuth was added to the voids of the porous infiltration base material B. Alloy C is infiltrated, and the resulting electrode material is taken out of container A and machined into a predetermined size and shape.

【0022】このようにして、 Cu:71.43重量% Cr:19.92重量% Bi:  8.65重量% からなる電極材料を作成した。[0022] In this way, Cu: 71.43% by weight Cr: 19.92% by weight Bi: 8.65% by weight An electrode material consisting of

【0023】この電極材料を第3図に示した真空インタ
ラプタに組み込み、さい断電流値を測定した結果、これ
が1A以下であることを確認した。
This electrode material was assembled into the vacuum interrupter shown in FIG. 3, and the cutting current value was measured, and it was confirmed that the current value was 1A or less.

【0024】なお、上述した実施例では予め銅とクロム
との混合粉末を焼結し、これによって得られる溶浸母材
に対して銅ビスマス合金を溶浸させるようにしたが、容
器内に装入された銅とクロムとの混合粉末上に銅ビスマ
ス合金を載置し、この容器内を蓋により密閉状態のまま
加熱して銅及びクロムの粉末の空隙部分に銅ビスマス合
金を溶浸させるようにしても、同様な結果を得ることが
できる。
In the above-mentioned embodiment, the mixed powder of copper and chromium was sintered in advance, and the resulting infiltration base material was infiltrated with the copper-bismuth alloy. A copper-bismuth alloy is placed on top of the mixed powder of copper and chromium, and the inside of the container is heated while being sealed with a lid to infiltrate the copper-bismuth alloy into the voids of the copper and chromium powder. However, similar results can be obtained.

【0025】[0025]

【発明の効果】本発明の電極材料の製造方法によると、
銅と高融点金属との混合体の上に銅と低融点金属との合
金を載置し、これらを加熱して銅及び高融点金属の空隙
部分に銅と低融点金属との合金及を溶浸させるようにし
たので、低融点金属の蒸発量を従来の方法よりも抑制す
ることが可能となり、電極材料中の低融点金属の分布が
均一となって製品の均質性が向上し、電極材料中に占め
る低融点金属の割合を設計通りに保つことができる。
[Effects of the Invention] According to the method for manufacturing an electrode material of the present invention,
An alloy of copper and a low melting point metal is placed on a mixture of copper and a high melting point metal, and these are heated to melt the alloy of copper and a low melting point metal into the voids between the copper and the high melting point metal. By immersing the material in the electrode material, it is possible to suppress the amount of evaporation of the low melting point metal compared to conventional methods, and the distribution of the low melting point metal in the electrode material becomes uniform, improving the homogeneity of the product. It is possible to maintain the proportion of low melting point metal in the design.

【0026】又、予め高融点金属に銅を混ぜておくこと
により、電極材料中に占める高融点金属の割合を従来の
ものより多く設定しても、これらの空隙部分に銅と低融
点金属との合金を確実に溶浸させることが可能となり、
電極材料中に占める高融点金属の割合を任意に設定する
ことができる。
Furthermore, by mixing copper with the high melting point metal in advance, even if the proportion of the high melting point metal in the electrode material is set higher than in the conventional case, the copper and low melting point metal will not be present in these voids. It becomes possible to reliably infiltrate the alloy of
The proportion of the high melting point metal in the electrode material can be set arbitrarily.

【0027】この結果、電流遮断後における接触抵抗値
や電流遮断性能等の特性が全体的に向上した電極材料を
得ることができる。特に、多数回の開閉操作後でも接触
抵抗値が低く安定しているため、開閉のための操作装置
を小形化できると共に発熱が少ないことと相俟ってキュ
ービクルを小形化できる。
As a result, it is possible to obtain an electrode material whose properties such as contact resistance after current interruption and current interruption performance are generally improved. In particular, since the contact resistance value is low and stable even after many times of opening and closing operations, it is possible to downsize the operating device for opening and closing, and together with the fact that less heat is generated, the cubicle can be downsized.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による電極材料の製造方法の一実施例を
表す断面図である。
FIG. 1 is a cross-sectional view showing an example of the method for manufacturing an electrode material according to the present invention.

【図2】電極材料中に占めるビスマスの割合とそのさい
断電流値との関係を表すグラフである。
FIG. 2 is a graph showing the relationship between the proportion of bismuth in the electrode material and its cutting current value.

【図3】真空インタラプタの一例を表す断面図である。FIG. 3 is a sectional view showing an example of a vacuum interrupter.

【符号の説明】[Explanation of symbols]

Aは容器、Bは溶浸母材、Cは銅ビスマス合金、Dは蓋
、11,12はリード棒、13,14は電極である。
A is a container, B is an infiltration base material, C is a copper-bismuth alloy, D is a lid, 11 and 12 are lead rods, and 13 and 14 are electrodes.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  銅の粉末とこの銅よりも高融点の高融
点金属の粉末とを混合してなる溶浸母材の上に銅とこの
銅よりも低融点の低融点金属との合金を載置し、これら
を非酸化性雰囲気にて前記合金の融点以上に加熱保持し
、前記合金を前記溶浸母材の空隙部分に溶浸させるよう
にしたことを特徴とする電極材料の製造方法。
Claim 1: An alloy of copper and a low melting point metal having a lower melting point than the copper is deposited on an infiltration base material made by mixing copper powder and a powder of a high melting point metal having a higher melting point than the copper. A method for manufacturing an electrode material, characterized in that the alloy is placed in a non-oxidizing atmosphere and heated to a temperature higher than the melting point of the alloy, and the alloy is infiltrated into the voids of the infiltration base material. .
【請求項2】  高融点金属がクロムであることを特徴
とする請求項1に記載した電極材料の製造方法。
2. The method for producing an electrode material according to claim 1, wherein the high melting point metal is chromium.
【請求項3】  低融点金属がビスマスであることを特
徴とする請求項1に記載した電極材料の製造方法。
3. The method for producing an electrode material according to claim 1, wherein the low melting point metal is bismuth.
JP9537291A 1991-04-25 1991-04-25 Manufacture of electrode material Pending JPH04324220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9537291A JPH04324220A (en) 1991-04-25 1991-04-25 Manufacture of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9537291A JPH04324220A (en) 1991-04-25 1991-04-25 Manufacture of electrode material

Publications (1)

Publication Number Publication Date
JPH04324220A true JPH04324220A (en) 1992-11-13

Family

ID=14135803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9537291A Pending JPH04324220A (en) 1991-04-25 1991-04-25 Manufacture of electrode material

Country Status (1)

Country Link
JP (1) JPH04324220A (en)

Similar Documents

Publication Publication Date Title
EP1528581B1 (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker
US3379846A (en) Electrodes for electric devices operable in a vacuum
JP2006140073A (en) Electrode, electrical contact, and its manufacturing method
US4008081A (en) Method of making vacuum interrupter contact materials
US4547639A (en) Vacuum circuit breaker
KR20160013153A (en) Electrical contact for vacuum valve and process for producing same
JPH11232971A (en) Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof
JPH04324220A (en) Manufacture of electrode material
KR19980087242A (en) Manufacturing Method of Base Material of Vacuum Valve
JP2853308B2 (en) Manufacturing method of electrode material
JP3106598B2 (en) Manufacturing method of electrode material
JPH01258330A (en) Manufacture of contact material for vacuum bulb
JPH04141925A (en) Manufacture of electrode material
JPH04141924A (en) Manufacture of electrode material
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JPH04129120A (en) Manufacture of electrode material
JPH0573813B2 (en)
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JPH04137326A (en) Manufacture of electrode material
JP2004273342A (en) Contact material for vacuum valve, and vacuum valve
JPH04332412A (en) Manufacture of electrode material
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JPH0443521A (en) Contact or vacuum valve
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990713