JPH11232971A - Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof - Google Patents

Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof

Info

Publication number
JPH11232971A
JPH11232971A JP2951198A JP2951198A JPH11232971A JP H11232971 A JPH11232971 A JP H11232971A JP 2951198 A JP2951198 A JP 2951198A JP 2951198 A JP2951198 A JP 2951198A JP H11232971 A JPH11232971 A JP H11232971A
Authority
JP
Japan
Prior art keywords
electrode
arc
highly conductive
side electrode
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2951198A
Other languages
Japanese (ja)
Other versions
JP3428416B2 (en
Inventor
Masayuki Doi
昌之 土井
Katsuhiro Komuro
勝博 小室
Noboru Baba
馬場  昇
Toru Tanimizu
徹 谷水
Yoshimi Hakamata
好美 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02951198A priority Critical patent/JP3428416B2/en
Publication of JPH11232971A publication Critical patent/JPH11232971A/en
Application granted granted Critical
Publication of JP3428416B2 publication Critical patent/JP3428416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve uniform dispersion characteristic of minute chromium particles and the like in an electrode member to reduce dispersion in a breaking function and a withstand voltage function by providing a highly conductive metal and a fireproof metal with a melting point which is higher than that of the highly conductive metal in an arc electrode member and containing a specific quantity of fireproof metal with a specific grain size in the fireproof metal. SOLUTION: A metallic powder is constructed of highly conductive metal powder, such as Cu powder and one or more kinds of fireproof metal powder such as Cr, W, Mo, Ta powder. This mixture powder is sintered by one method in hot pressing, HIP, and a discharge sintering method, or alternatively a fireproof metal molding body is infiltrated with a highly conductive metal. The fireproof metal contains particles with a grain size of 5-60 μm at a ratio of 70 wt.% or more. An arc electrode 1, an arc electrode supporting part 2, an external conductor connection part 3, and a back conductor 4 are integrally structured, and between the arc electrode 1 and the arc electrode supporting part 2 provided with equal thickness, the back conductor 4 with a diameter smaller than those of these is arranged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な真空遮断器
とそれに用いる真空バルブ、更にそれに用いられる電気
接点並びに製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel vacuum circuit breaker, a vacuum valve used for the same, an electric contact used for the same, and a manufacturing method.

【0002】[0002]

【従来の技術】真空遮断器内の電極構造は、一対の固定
電極及び可動電極からなっている。上記固定及び可動電
極の構造は、アーク電極と該アーク電極を支持するアー
ク支持部材と、該アーク支持部材に連なるコイル電極材
とコイル電極端部には電極棒の4部品から構成されてい
る。
2. Description of the Related Art An electrode structure in a vacuum circuit breaker includes a pair of fixed electrodes and a movable electrode. The structure of the fixed and movable electrodes includes an arc electrode, an arc supporting member for supporting the arc electrode, a coil electrode material connected to the arc supporting member, and an electrode rod at an end of the coil electrode.

【0003】上述したアーク電極材は、高電圧,大電流
を開閉遮断するために直接アークにさらされる、アーク
電極に要求される満足すべき特性は、遮断容量が大きい
こと、耐電圧値が高いこと、接触抵抗値が小さいこと
(電気伝導に優れていること)、耐溶着性に優れているこ
と、接点消耗量が少ないこと及び裁断電流値が小さいこ
と、等基本的な要件が挙げられる。しかし、これらの特
性を全て満足させることは困難であって一般には用途に
応じて特に重要な特性を重視し、他の特性はある程度犠
牲にした材料が使用されている。大電流,高電圧遮断用
アーク電極材料としては、特開昭63−96204 号公報には
Cr又はCr−CuスケルトンにCuを溶浸させる方法
が開示されている。また、同様の製法は特公昭50−2167
0 号公報にも開示されている。
[0003] The above-mentioned arc electrode material is directly exposed to an arc to open and close a high voltage and a large current. Satisfactory characteristics required of the arc electrode are a large breaking capacity and a high withstand voltage value. That the contact resistance value is small
(Excellent electrical conduction), excellent welding resistance, low contact wear, and small cutting current value. However, it is difficult to satisfy all of these characteristics, and in general, a material that emphasizes particularly important characteristics according to the application and sacrifices other characteristics to some extent is used. As a material for an arc electrode for interrupting a large current and a high voltage, Japanese Patent Application Laid-Open No. 63-96204 discloses a method of infiltrating Cu into a Cr or Cr-Cu skeleton. A similar manufacturing method is disclosed in Japanese Patent Publication No. 50-2167.
It is also disclosed in Japanese Patent Publication No. 0.

【0004】また、特開平6−330101 号では、銅−クロ
ム材が用いられている。銅粉末とクロム粉末とをクロム
粉末が5〜50重量%となるように配合し、不活性ガス
雰囲気中でメカニカルアロイングし、得られたメカニカ
ルアロイング粉末を冷間成形し、成形体を水素ガス中又
は真空中において500℃以上で焼結し、焼結材を10
0℃以下で冷間鍛造し、次に、鍛造材を500℃以上で
再焼結し真密度比96%の銅−クロム系複合材の製造が
記載されている。また、メカニカルアンイグによる接点
材料の製造法とし特開平3−266319 号がある。
In Japanese Patent Application Laid-Open No. Hei 6-330101, a copper-chromium material is used. The copper powder and the chromium powder are blended so that the chromium powder is 5 to 50% by weight, mechanically alloyed in an inert gas atmosphere, the obtained mechanically alloyed powder is cold-formed, and the compact is hydrogenated. Sinter at 500 ° C or higher in gas or vacuum, and
It describes cold forging below 0 ° C. and then resintering the forged material above 500 ° C. to produce a copper-chromium composite with a true density ratio of 96%. Japanese Patent Laid-Open No. 3-266319 discloses a method for producing a contact material by mechanical animation.

【0005】クロム粉末と銅粉末との混合体を粉末冶金
法によって焼結体として形成されたり、多孔質のクロム
仮焼結体に銅に溶浸させて溶浸材として成形されたもの
や溶解法によって溶製材として成形されたものが使用さ
れている。しかし、これらの手法で作製した多孔質の混
合金属成形体の金属粒子間の結合力が弱いため、成形体
のハンドリング等の取り扱いに問題がある。また、この
成形体に高導電性金属である銅を溶融含浸した複合体中
の耐孤性金属である結合力の脆弱なクロム粒子は軽いた
め、遊離浮上し、電極支持部(銅)中に溶け込み複合材
の脱クロム現象がみられる。また、アーク電極部(複合
部材)と電極支持部との界面に凹凸の食われ現象が著し
い。更に、成形体の減肉あるいは組成の不均一性が生じ
真空遮断器用電極部材としての性能を劣化させる恐れが
ある。
[0005] A mixture of chromium powder and copper powder is formed as a sintered body by powder metallurgy, or a porous chromium pre-sintered body is infiltrated with copper to form an infiltration material, What was formed as a smelting material by the method is used. However, since the bonding force between the metal particles of the porous mixed metal molded body produced by these techniques is weak, there is a problem in handling such as handling of the molded body. In addition, the chromium particles with weak bonding force, which are lone-resistant metals, in the composite in which the compact is melt-impregnated with copper, which is a highly conductive metal, are lightly floated and floated to the electrode support (copper). Dechromation phenomenon of the penetration composite material is observed. In addition, the phenomenon of unevenness being eroded at the interface between the arc electrode portion (composite member) and the electrode support portion is remarkable. Further, the molded article may be reduced in wall thickness or the composition may be non-uniform, which may deteriorate the performance as an electrode member for a vacuum circuit breaker.

【0006】[0006]

【発明が解決しようとする課題】電極材料として使用さ
れる銅合金において、一般的に、耐溶着性,耐電圧性を
向上させるためにクロムなど添加されている。しかし、
大きいクロム粉末粒子を用いて金型成形した成形体は脆
弱である。また溶浸した電極材料はアーク電極材と電極
支持材との界面に凹凸の食われ現象が生じるとともに減
肉される恐れがある。
In a copper alloy used as an electrode material, chromium or the like is generally added to improve welding resistance and voltage resistance. But,
Molded articles molded with large chromium powder particles are brittle. In addition, the infiltrated electrode material may cause unevenness to be eroded at the interface between the arc electrode material and the electrode support material, and may reduce the thickness.

【0007】本発明の目的は、上記の問題点を解決し電
極部材を構成する銅基地中の微細クロム粒子等の均一分
散性を向上させ、真空遮断器の遮断性能及び耐電圧性能
のばらつきを低減でき、真空遮断器の信預性を向上させ
る真空遮断器それに用いる真空バルブと電気接点並びに
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, improve the uniform dispersibility of fine chromium particles and the like in a copper matrix constituting an electrode member, and reduce the variation in the breaking performance and withstand voltage performance of a vacuum circuit breaker. An object of the present invention is to provide a vacuum circuit breaker, a vacuum valve, an electric contact, and a manufacturing method for the vacuum circuit breaker, which can be reduced and improve the reliability of the vacuum circuit breaker.

【0008】[0008]

【課題を解決するための手段】本発明は、銅及びクロム
粉末等をボールミルを用いたメカニカルグラインディン
グ法により微細化にし、さらに放電焼結法で成形体を作
製することにより、複合部材(アーク電極)と銅(アー
ク電極支持部材)との界面の浸食がない、また、溶浸に
際し、成形体の減肉も少なく、従来銅合金よりも優れた
電気特性が得られる。
SUMMARY OF THE INVENTION According to the present invention, a composite member (arc) is produced by making copper and chromium powder or the like fine by a mechanical grinding method using a ball mill, and further forming a compact by a discharge sintering method. There is no erosion at the interface between the electrode (electrode) and copper (arc electrode support member), and the molded article undergoes less wall thinning during infiltration, and electrical characteristics superior to conventional copper alloys can be obtained.

【0009】本発明は、ボールミル法により微細に粉砕
した銅微粒子,クロム微粒子を分散してなる金属粉末を
用いて、加圧放電焼結法(PAS)で作製した成形体を
用いて焼結又は銅を溶浸させるのが好ましい。
The present invention relates to a method of sintering a compact formed by pressure discharge sintering (PAS) using a metal powder obtained by dispersing fine copper particles and fine chromium particles by a ball mill method. Preferably, copper is infiltrated.

【0010】本発明は、Cu等の高導電性金属の粉末
と、Cr,W,Mo、及びTa等の耐火金属粉末の1種
又はそれ以上で構成される合金粉末において、高導電性
金属の粉末に比べてCr,W,Mo、及びTa等の耐火
性金属粉末の粒径を5〜60μmのものを70重量%以
上、好ましくは80重量%以上、より好ましくは90重
量%以上としたものである。
The present invention relates to an alloy powder comprising a highly conductive metal powder such as Cu and one or more refractory metal powders such as Cr, W, Mo and Ta. Refractory metal powders such as Cr, W, Mo, Ta, etc. having a particle size of 5 to 60 μm as compared to powders have a weight percentage of 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more. It is.

【0011】前記合金は、融点1800℃以上のCr,
W,Mo、及びTaの1種又は2種以上の耐火性金属の
合計が20〜80重量%とCu等の高導電性金属を20
〜80重量%とするのが望ましい。
The alloy comprises Cr having a melting point of 1800 ° C. or more,
The total of one or more refractory metals of W, Mo, and Ta is 20 to 80% by weight, and a highly conductive metal such as Cu is 20% by weight.
It is desirably about 80% by weight.

【0012】前記合金は、Pbを10重量%以下、S
b,Biの少なくとも1種以上の金属の合計が10重量
%以下、Tiを10重量%以下添加することができる。
In the above alloy, the content of Pb is 10% by weight or less,
The total of at least one metal of b and Bi can be added at 10% by weight or less, and Ti can be added at 10% by weight or less.

【0013】本発明は、前記混合粉末をホットプレス,
HIPあるいは放電焼結法のいずれかを用い焼結する
か、又は高導電性金属を耐火金属成形体に溶浸すること
によって得られる。
According to the present invention, the mixed powder is hot-pressed,
It is obtained by sintering using either HIP or spark sintering, or by infiltrating a highly conductive metal into a refractory metal molded body.

【0014】本発明は、絶縁容器内に固定側電極と可動
側電極とを備えた真空バルブと、該真空バルブ内の前記
固定側電極と可動側電極との各々に前記真空バルブ外に
接続された導体端子と、前記可動側電極に接続された絶
縁ロッドを介して前記可動側電極を駆動する開閉手段と
を備えた真空遮断器において、前記固定側電極及び可動
側電極は耐火性金属と高導電性金属との前述の合金から
なるアーク電極を有することを特徴とする真空遮断器に
ある。
According to the present invention, there is provided a vacuum valve provided with a fixed electrode and a movable electrode in an insulating container, and each of the fixed electrode and the movable electrode in the vacuum valve is connected to the outside of the vacuum valve. And a switching means for driving the movable-side electrode via an insulating rod connected to the movable-side electrode, wherein the fixed-side electrode and the movable-side electrode are made of a refractory metal. A vacuum circuit breaker having an arc electrode made of the above-mentioned alloy with a conductive metal.

【0015】電極材料は、耐火性金属とCu等を主にし
た高導電性金属との複合合金からなり、前者にはCr,
W,Mo,Ta等の約1800℃以上の高融点の耐火性
金属が用いられ、Cuに対して固溶量として3%以下の
小さいものが好ましい。
The electrode material is composed of a composite alloy of a refractory metal and a highly conductive metal mainly composed of Cu or the like.
A high melting point refractory metal such as W, Mo, Ta or the like having a melting point of about 1800 ° C. or higher is used, and a small solid solution amount of 3% or less in Cu is preferable.

【0016】耐火性金属は20〜80重量%、特に55
〜75重量%とCu25〜45重量%を含む合金である
ことが望ましい。耐火性金属としては特に、Crに対し
て1〜10重量%のNb,V,Fe,Coの1種以上を
含むのが好ましい。
The refractory metal is 20 to 80% by weight, in particular 55%
It is desirable that the alloy contains 75 to 75% by weight of Cu and 25 to 45% by weight of Cu. It is particularly preferable that the refractory metal contains 1 to 10% by weight, based on Cr, of one or more of Nb, V, Fe, and Co.

【0017】前記アーク電極はCr,W,Mo及びTa
の1種又は2種以上の混合物と、Cu,Ag及びAuの
1種からなる高導電性金属又はこれらを主にした高導電
性合金と、Pb,Bi,Te及びSbの1種又は2種以
上との合金からなり、前記電極支持部は前記高導電性金
属又は合金からなるのが好ましい。
The arc electrode is made of Cr, W, Mo and Ta.
Or a mixture of two or more of the above, a highly conductive metal consisting of one of Cu, Ag and Au or a highly conductive alloy mainly containing them, and one or two of Pb, Bi, Te and Sb It is preferable that the electrode support is made of the above alloy, and the electrode support is made of the highly conductive metal or alloy.

【0018】前記電極支持部,裏導体及び外部導体接続
部はCr,Ag,W,V,Nb,Mo,Ta,Zr,S
i,Be,Ti,Co,Feの1種又は2種以上の合計
量が2.5 重量%以下とCu,Ag又はAuとの合金か
らなるものが好ましい。
The electrode support, the back conductor and the external conductor connection are Cr, Ag, W, V, Nb, Mo, Ta, Zr, S
It is preferable that one, two or more of i, Be, Ti, Co, and Fe be made of an alloy of Cu, Ag, or Au with a total amount of 2.5% by weight or less.

【0019】本発明におけるアーク電極は多孔質耐火金
属中に含浸した高導電性金属との複合合金よりなり、前
記アーク電極と電極支持部,裏導体及び外部導体接続部
とは好ましくは前記高導電金属の溶融によって一体に形
成されているのが好ましい。本発明における電極支持部
は0.2%耐力が10kg/mm2以上で、比抵抗が2.8μΩc
m以下のものが好ましい。
The arc electrode in the present invention is made of a composite alloy of a highly conductive metal impregnated in a porous refractory metal, and the arc electrode and the electrode support, the back conductor and the external conductor connection are preferably the high conductivity metal. It is preferably formed integrally by melting the metal. The electrode support in the present invention has a 0.2% proof stress of 10 kg / mm 2 or more and a specific resistance of 2.8 μΩc.
m or less is preferred.

【0020】本発明は、前記固定側電極と可動側電極は
互いに接触するアーク電極部中央に真円の凹部が設けら
れているものである。
In the present invention, the fixed-side electrode and the movable-side electrode are provided with a perfect circular concave portion at the center of the arc electrode portion in contact with each other.

【0021】前記アーク電極,電極支持部,裏導体及び
外部導体接続部は前記高導電性金属の溶融凝固又は粉末
冶金による固相接合によって一体に形成することが好ま
しい。
It is preferable that the arc electrode, the electrode supporting portion, the back conductor, and the external conductor connecting portion are integrally formed by solidification of the highly conductive metal by solidification by fusion or powder metallurgy.

【0022】前記アーク電極及び電極支持部に複数本、
好ましくは3〜6本のスパイラル状のスリット溝、又は
直線状のスリット溝が設けられているのが好ましい。
A plurality of arc electrodes and electrode support portions;
Preferably, three to six spiral slit grooves or linear slit grooves are provided.

【0023】本発明の電極の中央部側から外周側方向に
延びた外周端側より電極側面に達する前述の複数のスリ
ット溝は、各スリット溝間に形成した複数のアーク走行
面と、上記スリット溝外周側とアーク走行面外周端との
間のスリット溝を跨いで両アーク走行面と一体に連絡
し、且つ両アーク走行面から流れる電流の通路が一方側
アーク走行面の方が他方側アーク走行面より長くした両
アーク走行面と同抵抗値を有する連絡部とを備え、上記
連絡部の断面積を調整して両アーク走行面から上記連絡
部に流れる電流を制御するように形成するのが好まし
い。
The plurality of slit grooves reaching the electrode side surface from the outer peripheral end side extending from the central portion side to the outer peripheral side of the electrode of the present invention are a plurality of arc running surfaces formed between the slit grooves and the slits. The two arc running surfaces are integrally connected to each other across the slit groove between the groove outer peripheral side and the arc running surface outer peripheral end, and the path of the current flowing from both arc running surfaces is one-side arc running surface is the other side arc. A connecting portion having the same resistance value as the two arc running surfaces longer than the running surface, wherein a cross-sectional area of the connecting portion is adjusted to control a current flowing from the both arc running surfaces to the connecting portion. Is preferred.

【0024】また、本発明は上述のスリット溝を備え、
上記連絡部の外径寸法D1 と内径寸法D2 とのD2 /D
1 の関係が0.9 を超え、1を下回る幅寸法にすること
が好ましい。
Further, the present invention includes the above-mentioned slit groove,
D 2 / D of outer diameter D 1 and inner diameter D 2 of the connecting portion
It is preferable that the relationship of 1 is greater than 0.9 and the width is less than 1.

【0025】また、本発明は上述のスリット溝を備え、
上記連絡部の厚さ寸法を0.5(mm)〜5(mm)の範囲に
設定することが好ましい。
Further, the present invention includes the above-mentioned slit groove,
It is preferable that the thickness of the connecting portion is set in a range of 0.5 (mm) to 5 (mm).

【0026】また、本発明は、上記アーク走行面の外周
端に形成したR面を0.5(mm)〜1.5R(mm)の範囲に
設定することが好ましい。
Further, in the present invention, it is preferable that the radius surface formed on the outer peripheral end of the arc running surface is set in a range of 0.5 (mm) to 1.5 R (mm).

【0027】上記連絡部の外周端に形成したR面を0.
5(mm)〜1.5R(mm)の範囲に設けるのが好ましい。
The R surface formed on the outer peripheral end of the connecting portion is set to be 0.1 mm.
It is preferable to set the thickness in the range of 5 (mm) to 1.5 R (mm).

【0028】また、本発明は、上記連絡部の厚み寸法を
0.5(mm)〜5(mm)の範囲に、上記アーク走行面の外
周端に形成したR面を0.5(mm)〜1.5R(mm)の範囲
に、それぞれに設定することが好ましい。
Further, according to the present invention, the thickness of the connecting portion is in the range of 0.5 (mm) to 5 (mm), and the radius surface formed at the outer peripheral end of the arc running surface is 0.5 (mm). It is preferable to set each in the range of ~ 1.5R (mm).

【0029】本発明は、絶縁容器内に固定側電極と可動
側電極とを備えた真空バルブと、該空気バルブ内の前記
固定側電極と可動側電極との各々に前記真空バルブ外に
接続された導体端子と、前記可動側電極に接続された絶
縁ロッドを介して前記可動側電極を駆動する開閉手段と
を備えた真空遮断器において、前記固定側電極及び可動
側電極は前述の耐火性金属粒子と高導電性金属とを有す
る合金からなるアーク電極と、該アーク電極を支持する
高導電性金属からなる電極支持部とを有し、前記アーク
電極と電極支持部とは前記高導電性金属によって一体に
形成され、前記絶縁容器は円筒であり、定格電圧(k
V)と遮断電流実効値(kA)とを乗算した値(y)が
前記絶縁容器外径x(mm)より以下の(1)式及び
(2)式によって求められる値の範囲内にあることを特
徴とする。
According to the present invention, there is provided a vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and each of the fixed side electrode and the movable side electrode in the air valve is connected outside the vacuum valve. A conductive terminal, and opening and closing means for driving the movable-side electrode via an insulating rod connected to the movable-side electrode, wherein the fixed-side electrode and the movable-side electrode are the refractory metal described above. An arc electrode made of an alloy having particles and a highly conductive metal, and an electrode support made of a highly conductive metal that supports the arc electrode, wherein the arc electrode and the electrode support are made of the highly conductive metal. The insulating container is cylindrical and has a rated voltage (k
V) and the value (y) obtained by multiplying the effective value of the cut-off current (kA) are within the range of values obtained by the following expressions (1) and (2) from the outer diameter x (mm) of the insulating container. It is characterized by.

【0030】 y=11.25x−525 …(1) y=5.35x−242 …(2) 本発明は、前記アーク電極の直径y(mm)は定格電圧
(kV)と遮断電流実効値(kA)とを乗算した値x
(kVA×103 )より以下の(3)及び(4)式によ
って求められる値の範囲内であることを特徴とする。
Y = 11.25x-525 (1) y = 5.35x-242 (2) In the present invention, the diameter y (mm) of the arc electrode is defined as a rated voltage (kV) and an effective value of a breaking current ( kA) and x
(KVA × 10 3 ) and is characterized by being within a range of values obtained by the following equations (3) and (4).

【0031】 y=0.15x+22 …(3) y=0.077x+20 …(4) 本発明は、前記絶縁容器は円筒であり、該絶縁容器の外
径y(mm)は前記アーク電極の直径x(mm)より以下の
(5)及び(6)式によって求められる値の範囲内にあ
ることを特徴とする。
Y = 0.15x + 22 (3) y = 0.077x + 20 (4) In the present invention, the insulating container is a cylinder, and the outer diameter y (mm) of the insulating container is the diameter x of the arc electrode. (Mm) within the range of values determined by the following equations (5) and (6).

【0032】 y=1.26x+10 …(5) y=1.26x+30 …(6) 前記真空バルブは3相に対しては3組あり、該3組の真
空バルブを横に並べて樹脂の絶縁筒によって一体に組込
んだものが好ましい。
Y = 1.26x + 10 (5) y = 1.26x + 30 (6) There are three sets of the vacuum valves for three phases, and these three sets of vacuum valves are arranged side by side by a resin insulating cylinder. It is preferable that they are integrated.

【0033】また、本発明は、高真空に保たれた絶縁容
器内に固定側電極と可動側電極とを備えた真空バルブに
おいて、前記両電極は前述の耐火性金属粒子と高導電性
金属と、更に好ましくは低融点金属とを含む複合部材よ
りなるアーク電極と、該アーク電極を支持する高導電性
金属からなる電極支持部と、該電極支持部より細径であ
る裏導体及び該裏導体より大径である外部導体接続部を
有し、前記アーク電極と電極支持部,裏導体及び外部導
体接続部とは前記高導電性金属によって一体に形成され
ていることを特徴とする。
The present invention also relates to a vacuum valve provided with a fixed electrode and a movable electrode in an insulating container maintained in a high vacuum, wherein the two electrodes are made of the above-mentioned refractory metal particles and a highly conductive metal. , More preferably, an arc electrode made of a composite member containing a low melting point metal, an electrode support portion made of a highly conductive metal supporting the arc electrode, a back conductor smaller in diameter than the electrode support portion, and the back conductor An arc conductor, an electrode support, a back conductor, and an external conductor connection are formed integrally with the highly conductive metal.

【0034】本発明における真空バルブの電極の構成は
前述と同様である。
The structure of the electrodes of the vacuum valve according to the present invention is the same as described above.

【0035】本発明は、前述の耐火性金属粒子と高導電
性金属と好ましくは低融点金属とを有する合金からなる
アーク電極と、該アーク電極を支持する高導電性金属か
らなる電極支持部と、該電極支持部より細径である裏導
体及び該裏導体より大径である外部導体接続部を有し、
前記アーク電極と電極支持部,裏導体及び外部導体接続
部とは前記高導電性金属の溶融又は固相拡散接合によっ
て一体に形成されていることを特徴とする電気接点にあ
る。
According to the present invention, there is provided an arc electrode made of an alloy containing the above-mentioned refractory metal particles, a highly conductive metal and preferably a low melting metal, and an electrode support made of a highly conductive metal for supporting the arc electrode. Having a back conductor smaller in diameter than the electrode supporting portion and an outer conductor connecting portion larger in diameter than the back conductor,
The electric contact is characterized in that the arc electrode and the electrode support, the back conductor, and the external conductor connection are integrally formed by melting or solid-phase diffusion bonding of the highly conductive metal.

【0036】本発明の電気接点の製造法として、前記ア
ーク電極は前述の粒径を有する耐火性金属を有する多孔
質焼結体上に前記高導電性金属を載置し、該高導電性金
属を溶融又は固相拡散接合して前記多孔質体中に溶浸又
は拡散接合させることにより形成し、前記電極支持部以
降は前記溶浸後に残留する前記高導電性金属の厚さ又は
高導電性金属部分を前記電極支持部以降として必要な厚
さに設定することによって形成することが好ましい。特
に、本発明の溶浸においては前述の多孔質体の焼結時に
低融点金属の融点付近の固相状態で十分な時間加熱する
ことによりその金属を耐火性金属粒子及び高導電性金属
粒子に拡散接合させて、溶浸での低融点金属の脱落を防
止するものである。その加熱温度としては融点より30
〜100℃低い温度で加熱するのが好ましい。
In the method for producing an electric contact according to the present invention, the arc electrode is obtained by placing the highly conductive metal on a porous sintered body having a refractory metal having the above-described particle size, Is formed by melting or solid phase diffusion bonding and infiltrating or diffusion bonding in the porous body, and the thickness or high conductivity of the highly conductive metal remaining after the infiltration after the electrode support portion. It is preferable to form the metal portion by setting it to a required thickness after the electrode support portion. In particular, in the infiltration of the present invention, during sintering of the above-described porous body, the metal is turned into refractory metal particles and highly conductive metal particles by heating in a solid state near the melting point of the low melting metal for a sufficient time. The diffusion bonding is performed to prevent the low melting point metal from falling off during infiltration. The heating temperature is 30 from the melting point.
It is preferable to heat at a temperature lower by 100100 ° C.

【0037】また、本発明の溶浸においては、前記アー
ク電極及び電極支持部を前記高導電性金属に溶浸させて
凝固させて形成後、所望の温度に保持させて前記高導電
性金属中に過飽和に固溶した金属又は金属間化合物を析
出させる熱処理工程を有することが好ましい。
In the infiltration of the present invention, the arc electrode and the electrode support are formed by infiltrating and solidifying the high-conductive metal and then maintaining the desired temperature at a desired temperature. It is preferable to have a heat treatment step of precipitating a metal or an intermetallic compound which is dissolved in supersaturation in the solution.

【0038】前記電気接点は真空バルブの固定側電極又
は可動側電極に用いることができる。
The electric contact can be used for a fixed electrode or a movable electrode of a vacuum valve.

【0039】真空遮断器の電極構造は、アーク電極,ア
ーク電極支持部材,裏導体及び外部導体接続部からな
り、アーク電極は前述の粒径を有する耐火金属と導電性
金属との複合合金からなり、前者にはCr,W,Mo,
Ta等の約1800℃以上の高融点の金属が用いられ、
高導電性金属としてのCu,Ag,Auに対して固溶量
として3%以下の小さいものが好ましい。アーク電極支
持部材以降には特に純Cuが好ましいが、強度が小さい
ことからこれら各部材の変形防止対策として鉄系材料の
純Fe,ステンレス鋼で補強し電極の変形防止に努めて
いる。
The electrode structure of the vacuum circuit breaker includes an arc electrode, an arc electrode supporting member, a back conductor, and a connection portion for an external conductor. The arc electrode is formed of a composite alloy of a refractory metal having the above-described particle size and a conductive metal. The former includes Cr, W, Mo,
A metal having a high melting point of about 1800 ° C. or more, such as Ta, is used.
It is preferable that the amount of solid solution in Cu, Ag, and Au as the highly conductive metal is as small as 3% or less. Pure Cu is particularly preferred after the arc electrode supporting member, but because of its low strength, these members are reinforced with pure iron or stainless steel as an anti-deformation measure to prevent electrode deformation.

【0040】耐火金属は20〜80重量%、特に好まし
くは35〜65重量%とCu,Ag及びAuの1種又は
これらを主にした合金20〜80重量%、好ましくは3
5〜65重量%と、Pb等を1重量%以下、好ましくは
0.1〜0.6重量%とを含む合金で、特に前者の多孔質
焼結体又は若干の10重量%以下の高導電性金属を含む
多孔質焼結体中に高導電性金属を溶融含浸させた複合材
とするのが好ましい。また、アーク電極と電極支持部以
降の2層構造とし、電極支持部以降はアーク電極を補強
支持するもので、その半分以上の厚さとするのが好まし
く、特にそれと同等以上の厚さとすることが好ましい。
多孔質焼結体は空隙率を50〜70%とすることが好ま
しい。耐火金属としては特に、耐電圧特性を高めるため
にCrに対して0.1〜10重量%、好ましくは0.5〜
2重量%のNb,V,Fe,Ti,Zrの1種又は2種
以上を含むことができる。
The refractory metal is 20 to 80% by weight, particularly preferably 35 to 65% by weight, and one of Cu, Ag and Au or an alloy mainly composed of these, 20 to 80% by weight, preferably 3 to 80% by weight.
An alloy containing 5 to 65% by weight and Pb or the like at 1% by weight or less, preferably 0.1 to 0.6% by weight. It is preferable to use a composite material in which a highly conductive metal is melt-impregnated in a porous sintered body containing a conductive metal. In addition, a two-layer structure of the arc electrode and the electrode support portion and thereafter is provided, and the electrode support portion and subsequent portions are for reinforcing and supporting the arc electrode, and preferably have a thickness of at least half of the thickness, and particularly preferably have a thickness equal to or more than that. preferable.
The porous sintered body preferably has a porosity of 50 to 70%. In particular, the refractory metal is used in an amount of 0.1 to 10% by weight, preferably 0.5 to 10% by weight with respect to Cr, in order to enhance the withstand voltage characteristics.
It may contain one or more of Nb, V, Fe, Ti, and Zr at 2% by weight.

【0041】本発明のアーク電極は特に重量でCr30
〜60%,Nb0.5〜5.0%好ましくは0.5〜3.0
%及びPb0.1〜0.5%を含むCu溶浸合金からなる
のが好ましい。
The arc electrode of the present invention is particularly suitable for
60%, Nb 0.5-5.0%, preferably 0.5-3.0
% And Pb 0.1 to 0.5%.

【0042】本発明はアーク電極材とアーク電極支持部
材以降の部材とは金相学的に連続した一体構造で構成と
するものである。この結果、前述のスリット溝をアーク
電極支持部まで形成でき、遮断時のアーク発生による発
熱による従来のろう付けによる問題が生じないのでより
小型化が可能となるとともに高い電流の遮断が可能にな
った。
According to the present invention, the arc electrode material and the members subsequent to the arc electrode support member have a monolithically continuous structure. As a result, the above-mentioned slit groove can be formed up to the arc electrode support portion, and the problem caused by the conventional brazing due to the heat generated by the arc at the time of interruption does not occur, so that it is possible to reduce the size and to interrupt the high current. Was.

【0043】また、本発明によれば、電極を構成するア
ーク電極材,アーク電極支持部材及び外部導体接続部コ
イル電極材は、金相学的に連続した一体構造で構成され
ると同時に一体構造の電極製造と同一工程内で形成され
るアーク電極支持部材以降の高導電性金属には、0.0
1〜2.5重量%のCr,Ag,W,V,Zr,Si,
Mo,Ta,Be,Nb,Tiの1種又は2種以上をA
u,Ag,Cu中に含有せしめたものを用いることがで
きる。したがって、アーク電極支持部材以降の材料の電
気導伝性をあまり低下させずに機械的強度、特に耐力を
大幅に高めることができる。その結果、電極間の接触圧
力の増大,電極開閉時の衝撃力にも充分対応でき、経時
的な変形も解決できる。
Further, according to the present invention, the arc electrode material, the arc electrode supporting member, and the outer conductor connecting portion coil electrode material constituting the electrode are formed as a monolithically continuous monolithic structure and at the same time as the monolithically structured electrode. The highly conductive metal formed after the arc electrode support member formed in the same process as the manufacturing process includes 0.0.
1 to 2.5% by weight of Cr, Ag, W, V, Zr, Si,
One or more of Mo, Ta, Be, Nb, Ti
It is possible to use those contained in u, Ag, and Cu. Therefore, the mechanical strength, particularly the proof stress, can be greatly increased without significantly lowering the electrical conductivity of the material after the arc electrode supporting member. As a result, it is possible to sufficiently cope with an increase in the contact pressure between the electrodes and the impact force at the time of opening and closing the electrodes, and it is possible to solve temporal deformation.

【0044】このように、アーク電極材とアーク電極支
持部材以降とは非接合であるとともに金相学的に連続し
た一体化構造にしたことと、上記核部材の高強度化の組
み合わせにより従来の電極構造に比べて悪影響を除去し
たより信頼性及び安全性の高い真空遮断器を提供でき
る。
As described above, the conventional electrode structure is obtained by combining the arc electrode material and the arc electrode support member and thereafter with the unified and metallographically continuous integrated structure and the high strength of the core member. As a result, a highly reliable and safe vacuum circuit breaker in which adverse effects are eliminated can be provided.

【0045】本発明における溶浸法によれば、Cr,
W,Mo,Ta粉末とPb,Bi,Te,Sb粉末とC
u,Ag,Au粉末あるいは他の任意の金属粒子とを所
定組成に混合し、その混合粉を所定の空隙含有率になる
ように成形後、焼結し多孔質焼結体を形成する。その
後、純Cu,Ag,Au又はこれらの合金からなるブロ
ックを前記焼結体上に載置し、溶融させて多孔質焼結体
の空隙に純Cu又はCu合金等の金属を溶浸させる。そ
の時、溶融溶浸材中への焼結体組成元素の液相拡散を積
極的に利用し、溶融溶浸材を前述の含有量となるように
合金化する。溶浸完了後の鋳塊を所定形状の電極に加工
する。
According to the infiltration method of the present invention, Cr,
W, Mo, Ta powder and Pb, Bi, Te, Sb powder and C
u, Ag, Au powder or other arbitrary metal particles are mixed into a predetermined composition, and the mixed powder is molded so as to have a predetermined void content and then sintered to form a porous sintered body. Thereafter, a block made of pure Cu, Ag, Au, or an alloy thereof is placed on the sintered body and melted to infiltrate the voids of the porous sintered body with a metal such as pure Cu or a Cu alloy. At this time, the molten infiltrant is alloyed to have the above-mentioned content by positively utilizing the liquid phase diffusion of the constituent elements of the sintered body into the molten infiltrant. The ingot after completion of infiltration is processed into an electrode having a predetermined shape.

【0046】高導電性金属の溶浸に際しては溶浸の温度
と保持時間によって高導電性金属への多孔質体金属の溶
解量をコントロールでき、特に電極支持部以降に対する
比抵抗と強度とを考慮して温度及び時間が設定される。
勿論高導電性金属に対して予め合金元素を加えた合金を
用いることもできるので、両者を考慮して決定される。
その結果、前述の強度が高く、比抵抗の低いものが得ら
れることから高い性能のものが得られる。
In the infiltration of a highly conductive metal, the amount of the porous metal dissolved in the highly conductive metal can be controlled by the infiltration temperature and the holding time. Then, the temperature and time are set.
Of course, an alloy in which an alloy element is added to a highly conductive metal in advance can also be used.
As a result, a material having high strength and a low specific resistance can be obtained, so that a material having high performance can be obtained.

【0047】本発明における電極は前述の如く所望の形
状で溶浸と鋳造技術との組み合わせによって求めるもの
を作ることができるが、前述した最終形状として切削加
工によって得られる。
As described above, the electrode of the present invention can be formed in a desired shape by a combination of infiltration and casting techniques in a desired shape, but can be obtained by cutting as the final shape described above.

【0048】本発明は、微細金属混合粉末を放電焼結,
ホットプレス,HIPあるいは圧粉成形のいずれかを用
い成形することを特徴とする。
According to the present invention, a fine metal mixed powder is spark-sintered,
It is characterized by being formed by using any one of hot press, HIP and compacting.

【0049】真空遮断器用電極部材の製造において、従
来の圧粉成形法で作製した高多孔質な混合金属成形体は
粒子間の結合力が非常に脆弱であり、取り扱いに苦慮す
る。またこの前記成形体に高導電性成分である銅系,銀
系金属を溶融含浸した複合部材は、成形体のクロムが銅
中に溶け込む脱クロムによる組成の不均一、あるいは溶
浸部界面の浸食による減肉等の現象が生じ好ましくな
い。
In manufacturing an electrode member for a vacuum circuit breaker, a highly porous mixed metal compact produced by a conventional powder compacting method has a very weak bonding force between particles, and is difficult to handle. Further, the composite member obtained by melting and impregnating the above-mentioned molded body with a copper-based or silver-based metal which is a highly conductive component has a non-uniform composition due to dechromization in which chromium of the molded body melts into copper, or erosion at the interface of the infiltrated portion. Phenomena such as wall thinning are not preferred.

【0050】本発明の該真空遮断器用電極部材では上記
の問題は解決される。
The above problem is solved by the electrode member for a vacuum circuit breaker of the present invention.

【0051】本発明において、ボールミル法により、高
導電成分である銅,金,銀の1種または2種,耐孤成分
としてのクロム,タングステン,モリブデン,鉄の1種
または2種,耐電圧性に有効な粒子であるニオブ,バナ
ジウム,チタン,タンタル,ジルコニウム,硅素の1種
以上からなる金属粉末。更に高導電成分である銅,金,
銀の1種または2種,耐孤成分としてのクロム,タング
ステン,モリブデン,鉄の1種または2種,耐電圧性に
有効な粒子であルニオブ,バナジウム,チタン,タンタ
ル,ジルコニウム,硅素の1種以上,耐溶着成分,低融
点材の鉛,ビスマス,アンチモン,テルルの1種または
2種以上の金属粉末からなるのが好ましい。該金属粉末
を鉄製ボールとともに収納し、該鉄製容器を長時間回転
させることによって前記鉄製ボールの遠心力による前記
金属粉末を塑性変形させるに十分な押し圧力を与え、前
記金属粉末を微細に粉砕させ、かつ均一に分散,混合さ
せるに十分な押し圧力を与え、前記金属粉末を微細に粉
砕させ、かつ均一に分散,混合させることを特徴とする
真空遮断器用電極部材用金属粉末の製造法にある。粉砕
粒子としては、微細粒子になるほど耐電圧性,耐溶着
性,遮断特性など十分な効果が得られる。しかし、生産
性及び経済性を考慮すると、耐孤成分である粒子は53
μm以下が好ましい。その含有量は高導電性成分に対し
て、耐孤成分が20〜60重量%、耐電圧性成分は1〜
10重量%、耐溶着性成分は0.1〜1重量%が好まし
い。
In the present invention, one or two of copper, gold, and silver, which are high conductive components, one or two of chromium, tungsten, molybdenum, and iron, which are lone components, are subjected to a ball milling method. Metal powder composed of at least one of niobium, vanadium, titanium, tantalum, zirconium, and silicon, which are effective particles. In addition, copper, gold,
One or two kinds of silver, one or two kinds of chromium, tungsten, molybdenum, and iron as lone components, and one of runiobium, vanadium, titanium, tantalum, zirconium, and silicon that are effective for withstand voltage. As described above, it is preferable to use one or two or more metal powders of the welding resistant component and the low melting point material of lead, bismuth, antimony, and tellurium. The metal powder is stored together with an iron ball, and by pressing the iron container for a long time, a pressing force sufficient to plastically deform the metal powder due to the centrifugal force of the iron ball is given, and the metal powder is finely pulverized. A method for producing a metal powder for an electrode member for a vacuum circuit breaker, which comprises applying a sufficient pressing pressure to uniformly and uniformly disperse and mix the powder, and finely pulverizing the metal powder and uniformly dispersing and mixing the metal powder. . As the crushed particles become finer, sufficient effects such as withstand voltage, welding resistance and cutoff characteristics can be obtained. However, in consideration of productivity and economy, particles that are fox-resistant components are 53%.
μm or less is preferred. The content is 20 to 60% by weight of the lone component with respect to the high conductive component, and 1 to 5% of the withstand voltage component.
10% by weight, and the content of the anti-welding component is preferably 0.1 to 1% by weight.

【0052】本発明において、ボールミル法により微細
に粉砕した前記金属粉末を放電焼結法で高多孔質で結合
力の強い成形体を製造することを特徴とする真空遮断器
用電極部材の製造法にある。前記成形体は従来の圧粉成
形体と異なり、該微細金属粉子間の結合力が強いのでハ
ンドリングなどの取り扱いが容易である。PAS法で作
製した高多孔質成形体の密度は、通電電流,成形圧力,
焼結時間などを変化させることにより任意に選択でき、
空隙率は40〜70%が好ましい。成形体の製造時間も
短時間である。
According to the present invention, there is provided a method for manufacturing an electrode member for a vacuum circuit breaker, wherein the metal powder finely pulverized by a ball mill is manufactured by a discharge sintering method to form a highly porous molded body having a strong bonding force. is there. Unlike the conventional powder compact, the compact has a strong bonding force between the fine metal powders, so that handling such as handling is easy. The density of the highly porous molded body produced by the PAS method is as follows:
It can be arbitrarily selected by changing the sintering time, etc.
The porosity is preferably 40 to 70%. The production time of the compact is also short.

【0053】本発明において、前記高多孔質成形体に高
導電性成分である金属を溶融含浸した複合部材には、ク
ロム粒子が遊離し浮上することなく銅(電極支持部)中
への溶け込み、あるいは溶浸部との界面の浸食等による
減肉等の現象を顕著に防止でき、高導電性金属中に微細
な高孤性金属が均一に分散した健全な真空遮断器用電極
部材を提供できる。
In the present invention, the composite member obtained by melting and impregnating the highly porous molded body with a metal as a highly conductive component dissolves into copper (electrode supporting portion) without releasing chromium particles and floating. Alternatively, a phenomenon such as wall thinning due to erosion of the interface with the infiltration part can be significantly prevented, and a sound electrode member for a vacuum circuit breaker in which fine highly isolated metals are uniformly dispersed in highly conductive metal can be provided.

【0054】本発明によれば、クロム,タングステン,
モリブデン,タンタル粉末と鉛,ビスマス,テルル,ア
ンチモン粉末と銅,銀,金合金粉末あるいは他の任意の
金属粒子とを所定組成に混合し、その混合粉を所定の空
隙率になるように多孔質成形体を作製する。その後、
銅,銀,金又はこれらの合金からなるブロックを前記成
形体に載置し、溶融させて多孔質成形体の空隙に銅又は
銅合金等の金属を溶浸させる。その時、溶融溶浸材中へ
の成形体組成元素の液相拡散を積極的に利用し、溶融溶
浸材を前述の含有量となるように合金化する。溶浸完了
後の鋳塊を所定形状の電極に加工する。
According to the present invention, chromium, tungsten,
Molybdenum, tantalum powder, lead, bismuth, tellurium, antimony powder and copper, silver, gold alloy powder or any other metal particles are mixed in a predetermined composition, and the mixed powder is porous so as to have a predetermined porosity. A molded body is produced. afterwards,
A block made of copper, silver, gold, or an alloy thereof is placed on the compact and melted to infiltrate voids of the porous compact with a metal such as copper or a copper alloy. At this time, the molten infiltrant is alloyed to have the above-mentioned content by positively utilizing the liquid phase diffusion of the constituent elements of the molded body into the molten infiltrant. The ingot after completion of infiltration is processed into an electrode having a predetermined shape.

【0055】高導電性金属の溶浸に際しては溶浸の温堂
と保持時間によって高導電性金属への多孔質成形体の溶
解量をコントロールでき、特に電極支持部,コイル電極
に対する比抵抗と強度とを考慮して温度及び時間が設定
される。勿論高導電性金属に対して予め合金元素を加え
た合金を用いることもできるので、両者を考慮して決定
される。その結果、前述の強度が高く、比抵抗の低いも
のが得られることから高い性能のものが得られる。
In the infiltration of a highly conductive metal, the amount of the porous molded body dissolved in the highly conductive metal can be controlled by the infiltration chamber and the holding time, and in particular, the specific resistance and strength to the electrode support and the coil electrode. The temperature and time are set in consideration of the above. Of course, an alloy in which an alloy element is added to a highly conductive metal in advance can also be used. As a result, a material having high strength and a low specific resistance can be obtained, so that a material having high performance can be obtained.

【0056】[0056]

【発明の実施の形態】(実施例1)粒径150μm以
下,純度99.99% のクロム粉末40.0 重量%,粒
径75〜45μm,純度99.9% のニオブ粉末2.0
重量%との混合粉末を高エネルギーSUS304ボールミルに
より微細に粉砕し分散,混合させるものである。ボール
ミルによる粉砕は、混合粉末及びSUS304鉄製のボールを
納めたSUS304鉄製のボールミル容器を100〜200℃
の温度域に保持し、同時に容器内を10-2〜10-3Torr
脱ガス処理し、次いで、純度99.9% 以上のアルゴン
ガス又は窒素ガス置換を行い、その後、室温付近での回
転数150〜200rpm で10〜120時間の機械的粉砕
混合処理を行った。この混合した粉末をふるいによって
分級し53μmアンダーのものを用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Example 1) Niobium powder 2.0 having a particle diameter of 150 μm or less, purity 99.99%, 40.0% by weight, particle diameter 75-45 μm, purity 99.9%.
In this method, a mixed powder with a weight% is finely pulverized by a high energy SUS304 ball mill, dispersed and mixed. The pulverization by a ball mill is performed at 100-200 ° C. in a SUS304 iron ball mill container containing mixed powder and SUS304 iron balls.
And at the same time, the inside of the container is 10 −2 to 10 −3 Torr.
Degassing treatment was performed, followed by purging with an argon gas or a nitrogen gas having a purity of 99.9% or more, and thereafter, a mechanical pulverization / mixing treatment was performed at room temperature around 150 to 200 rpm for 10 to 120 hours. The mixed powder was classified by a sieve, and a powder having a size of under 53 μm was used.

【0057】機械的粉砕混合処理で得られた分級した微
細粉砕混合粉末に粒径150μm以下,純度99.99
% の電解銅粉末を加えて同様にボールミルによって混
合し、黒鉛製ダイに充填し電極を兼ねた上下パンチに挟
んだ後、容器内を5×10-2Torrに排気し、粉末等に吸
着しているガス等を除去し、粉体を8000kg/cm2
成形圧力で加圧する。続いて、パルス電流印加により、
粉体表面の酸化物を除去し、活性化したあと、直流電流
2600Aを印加し、微細粉砕混合粉末を焼結する。成
形体の形状は直径40mm,厚さ9mmである。成形体の空
隙率は10時間混合処理したもの70%、30時間のも
の65%、50時間のもの60%、80時間のもの55
%、100時間のもの50%、110時間のもの45
%、120時間のもの40%であった。
The classified finely pulverized mixed powder obtained by the mechanical pulverization and mixing treatment has a particle size of 150 μm or less and a purity of 99.99.
% Of electrolytic copper powder, mixed in the same manner by a ball mill, filled in a graphite die, sandwiched between upper and lower punches also serving as electrodes, evacuated the container to 5 × 10 -2 Torr, and adsorbed to the powder and the like. The gas and the like are removed, and the powder is pressed at a molding pressure of 8000 kg / cm 2 . Subsequently, by applying a pulse current,
After the oxide on the powder surface is removed and activated, a direct current of 2600 A is applied to sinter the finely ground mixed powder. The shape of the molded body is 40 mm in diameter and 9 mm in thickness. The porosity of the molded body was 70% after 10 hours of mixing, 65% for 30 hours, 60% for 50 hours, and 55 for 80 hours.
%, 100 hours 50%, 110 hours 45
% And 120% for 120 hours.

【0058】図1に本発明の実施例1から実施例7で製
造した粒径53μm以下の微細粉末の収率を示すもので
ある。粒径53μm以下の微細粉末の収率は、MG時間
とともに増加し、100時間で78%の収率である。し
かし、100時間以上になると造粒形態となり、微細粒
子の収率が悪くなる。MG時間としては、50〜100時
間が好ましい。特に、粒径53μm以下の微細粉末の収
率の高い100時間がより好ましい。
FIG. 1 shows the yield of fine powder having a particle size of 53 μm or less produced in Examples 1 to 7 of the present invention. The yield of fine powder having a particle size of 53 μm or less increases with MG time, and is a 78% yield in 100 hours. However, when the time exceeds 100 hours, a granulated form is obtained, and the yield of fine particles is deteriorated. The MG time is preferably 50 to 100 hours. In particular, 100 hours with a high yield of fine powder having a particle size of 53 μm or less is more preferable.

【0059】本実施例におけるCr粉末は粒径5〜53
μmのものが約95重量%以上を有し、粒径5μm未満
のものはわずか5重量%以下である。また、粒径22〜
53μmのものは60〜90重量%であり、更に、分級
して22μmアンダーのものを得ることができ、粒径5
〜22μmのものを90重量%以上、それ以下の粒径の
ものを10重量%以下とするより微細なものとすること
が遮断特性を高める上でより好ましいものである。
The Cr powder in this embodiment has a particle size of 5 to 53.
μm has about 95% or more by weight, and those with a particle size of less than 5 μm are only 5% or less. In addition, particle size 22 ~
Those having a size of 53 μm are 60 to 90% by weight, and those having a particle size of 22 μm can be obtained by classification.
It is more preferable to make the particle size smaller than 90% by weight for particles having a size of 22 μm or less and 10% by weight or less for particles having a particle size of not more than 10% by weight in order to enhance the blocking characteristics.

【0060】更に、上記の粉末に粒径150μm以下,
純度99.99% の電解銅粉末を加えて同様に機械的粉
砕混合処理を行うことによっても同様の粉末及び成形体
を得ることが出来る。
Further, a particle size of 150 μm or less is added to the above powder.
Similar powders and compacts can be obtained by adding a 99.99% pure electrolytic copper powder and subjecting it to mechanical pulverization and mixing.

【0061】図2は、上述の成形体を用いて本発明の一
体構造電極の製造方法を示す断面図である。図中、黒鉛
製鋳型に微細粉砕混合金属成形体を下部に置き、その上
に、溶浸用の銅を載置したものである。微細粉砕混合金
属粉末は、直径80mmの金型を用いて、成形圧力2.0
トン/cm2で直径48mm,厚さ9mmの成形体を作製し
た。その成形体の空隙率は約70%で、10-5Torr以下
の真空中で焼結温度1050℃×120分間で焼結を行っ
た。1050℃までの加熱に当たっては鉛の融点近傍の
固相下で長時間保持した後に所定の温度に加熱した。こ
の時の空隙率は65%である。内径90mm,外径100
mm,高さ100mmの黒鉛鋳型の低面中央に上記多孔質焼
結体を置き、純銅からなる直径80mm,長さ100mmの
溶浸用銅を載置した。溶浸用銅には、直径28mm,長さ
25mmの溶浸材と押湯部を形成する銅からなる部材を設
けた。黒鉛容器と純銅からなる2種の部材の側面及び溶
浸材及び押湯部となる部材上部にはAl23粉末を充填
する。溶浸条件は1×10-5Torrの真空中で焼結温度1
150×60分間保持し、銅溶融するとともに溶浸材が
多孔質混合金属成形体のスケルトン中に均一にしみ込ま
せた後、真空中で放冷凝固させた。図3は、凝固後に黒
鉛製容器から取り出した鋳塊の断面外観である。
FIG. 2 is a cross-sectional view showing a method of manufacturing an integrated electrode according to the present invention using the above-mentioned molded body. In the figure, a finely ground mixed metal compact is placed in a lower part of a graphite mold, and copper for infiltration is placed thereon. The finely pulverized mixed metal powder is molded at a molding pressure of 2.0 using a mold having a diameter of 80 mm.
A molded product having a diameter of 48 mm and a thickness of 9 mm was produced at ton / cm 2 . The molded body had a porosity of about 70%, and was sintered at a sintering temperature of 1050 ° C. for 120 minutes in a vacuum of 10 −5 Torr or less. In heating to 1050 ° C., the material was kept under a solid phase near the melting point of lead for a long time, and then heated to a predetermined temperature. The porosity at this time is 65%. 90mm inside diameter, 100 outside diameter
The porous sintered body was placed at the center of the lower surface of a graphite mold having a height of 100 mm and a height of 100 mm, and copper for infiltration made of pure copper having a diameter of 80 mm and a length of 100 mm was placed thereon. As the copper for infiltration, a member made of an infiltration material having a diameter of 28 mm and a length of 25 mm and copper forming a feeder portion was provided. The side surfaces of the two members made of a graphite container and pure copper and the upper portion of the member serving as the infiltration material and the feeder are filled with Al 2 O 3 powder. The infiltration conditions were as follows: a sintering temperature of 1 × 10 −5 Torr in vacuum.
The mixture was held for 150 × 60 minutes to melt copper, and the infiltration material was uniformly infiltrated into the skeleton of the porous mixed metal molded body, and then allowed to cool and solidify in a vacuum. FIG. 3 is a cross-sectional appearance of an ingot taken out of a graphite container after solidification.

【0062】図4は、切削加工後のアーク電極1とアー
ク電極支持部2,外部導体接続部3及び裏導体4を示
す。切削加工後のアーク電極1とアーク電極支持部2と
の両者の界面部の断面の顕微鏡組織写真により観察した
結果、本発明の組織は、銅のマトリックス中に微細なク
ロム粒子が均一に分布し、平滑な界面状態を示し、また
放電焼結せずに単に圧粉成形したものの組織は、大きな
クロム粒子が分布し、凹凸のうねりが大きい界面形態と
なっていた。
FIG. 4 shows the arc electrode 1, the arc electrode support 2, the external conductor connection 3, and the back conductor 4 after cutting. As a result of observing a microstructure photograph of a cross section of the interface between the arc electrode 1 and the arc electrode support 2 after cutting, the structure of the present invention shows that fine chromium particles are uniformly distributed in a copper matrix. In addition, the structure of the product which had a smooth interface state and was simply compacted without spark sintering had an interface configuration in which large chromium particles were distributed and the unevenness was large.

【0063】このように本発明方法によればアーク電極
1とアーク電極支持部2,外部導体接続部3及び裏導体
4とが一体構造で構成される。アーク電極1とアーク電
極支持部2とは同等の厚さであり、両者の間にはこれら
より径の小さい細径を有する裏導体4が設けられる。ま
た、アーク電極材とアーク電極支持部材との界面は金相
学的に完全に連続一体化がなされており、ろう付け等に
よる接合が不必要であることがわかる。また、アーク電
極1の断面のPbを分析した結果、Pbが均一に分散さ
れていた。
As described above, according to the method of the present invention, the arc electrode 1, the arc electrode supporting portion 2, the external conductor connecting portion 3, and the back conductor 4 are integrally formed. The arc electrode 1 and the arc electrode support 2 have the same thickness, and a back conductor 4 having a smaller diameter smaller than these is provided between the two. In addition, the interface between the arc electrode material and the arc electrode support member is completely integrated in a metallographic manner, and it can be seen that joining by brazing or the like is unnecessary. Further, as a result of analyzing the Pb of the cross section of the arc electrode 1, Pb was uniformly dispersed.

【0064】鋳型を3段にすることによって一度に3個
のものを製造することができる。3個に限らず、所望の
個数を一度に製造することができる。
By using three molds, three molds can be manufactured at a time. Not only three but also a desired number can be manufactured at a time.

【0065】図4に示すように切削により得た電極はア
ーク電極支持部2と、アーク電極1との境界層は合金を
形成しており、ろう材例えば銀ろうより融点が高く、溶
融しにくく、耐アークに強く電流遮断容量の向上に上述
と共に寄与することができる。
As shown in FIG. 4, the electrode obtained by cutting has a boundary layer between the arc electrode support portion 2 and the arc electrode 1 formed of an alloy. It is strong against arcing and can contribute to the improvement of the current breaking capacity together with the above.

【0066】図5は、溶融含浸した後のアーク電極9の
減肉量を示す。本発明部材の減肉量は1.5m に対し
て、従来部材は3.0mm と大きく減肉している。このこ
とから、本発明部材は溶浸によっても複合部材(アーク
電極)の浸食がない良好な部材である。
FIG. 5 shows the thickness reduction of the arc electrode 9 after the melt impregnation. The thickness of the member according to the present invention is 1.5 m 2, whereas that of the conventional member is greatly reduced to 3.0 mm. For this reason, the member of the present invention is a good member in which the composite member (arc electrode) does not erode even by infiltration.

【0067】(実施例2)図6は、本発明に係わるアー
ク電極を用いた真空バルブの断面図である。絶縁材で形
成された絶縁筒体8の上・下開口部に上・下一体をなす
シールリング27を設けて真空室を形成する真空容器を
構成し、上記シールリングの中程に固定電極21の一部
を形成する固定側の電極棒24を垂設し、この固定側の
電極棒24の直下に位置する上記シールリングの中程に
可動電極23の一部を形成する可動側の電極棒を昇降自
在に設け、上記固定電極21のアーク電極2に対して上
記可動電極23のアーク電極に接離するようにし、上記
可動側の電極棒24の周りに位置する上記シールリング
の内側に金属製のベローズ26を伸縮するようにして被
冠して設け、さらに、上記両アーク電極の周りに円筒状
をなす金属板のシール部材25を絶縁筒体28の真空容
器によって設置し、このシール部材25は上記絶縁筒体
28の真空容器の絶縁性を損なわないようにして構成し
たものである。
(Embodiment 2) FIG. 6 is a sectional view of a vacuum bulb using an arc electrode according to the present invention. An upper and lower integrated seal ring 27 is provided in the upper and lower openings of the insulating cylinder 8 made of an insulating material to form a vacuum chamber that forms a vacuum chamber. The electrode rod on the movable side, which forms a part of the movable electrode 23 in the middle of the seal ring located immediately below the electrode rod 24 on the fixed side, is formed. Is provided so as to be movable up and down so as to be in contact with and separate from the arc electrode of the movable electrode 23 with respect to the arc electrode 2 of the fixed electrode 21, and a metal is provided inside the seal ring located around the movable electrode rod 24. A bellows 26 made of stainless steel is provided so as to be extended and contracted, and a sealing member 25 made of a metal plate having a cylindrical shape is installed around the two arc electrodes by a vacuum vessel of an insulating cylinder 28. 25 is the insulating cylinder 28 So as not to impair the insulating properties of the empty container is obtained by configuration.

【0068】[0068]

【表1】 [Table 1]

【0069】表1に示す試料A〜Kは本発明の実施例、
試料L〜Oは比較例である。
Samples A to K shown in Table 1 are examples of the present invention.
Samples L to O are comparative examples.

【0070】遮断試験は、一対の供試電極を遮断試験部
に組み込み、遮断試験部を真空排気しながら300℃で
2時間のベーキングを行う。その後、ギャップ2.5mm
の電極間に最大60kV交流電圧を印加しながら放電し
易い低耐電圧部分を除去するコンデーショニングを2回
行う。300Aの小電流遮断後のインパルス耐圧試験
は、AC100V,300Aでアーク点弧10回を行っ
た後、電極ギャップ2.5mmにおける最小の放電電圧を測
定する。この点弧10回と耐電圧測定を10回繰り返し
て小電流遮断後の耐電圧特性とした。裁断電流測定で
は、遮断時の電流波形をデジタルメモリーに記憶させた
後シンクロスコープに再現させて裁断電流値を読み取
り、これを50回繰り返して最大値と平均値を求めた。
遮断試験では、LC共振回路設備を用い、回路定数の関
係から遮断電流の周波数58Hz、過渡回復電圧の周波
数は約11Hzとし、遮断電流が500〜1000Aス
テップで増加するように試験電圧1〜5.6kV の範囲
で順次増加させて遮断不能となるまで試験を続行した。
試験途中で遮断不能が起きた場合は、遮断電流を一旦下
げて遮断試験を行い電極表面をクリーングした後、遮断
電流を上昇しこれ以上の遮断が困難と思われる遮断電流
の限界値をもって遮断性能とした。大電流遮断後のイン
パルス耐電圧測定では、試験後に電極ギャップ2.5mm
における最小インパルス耐電圧を測定し、大電流遮断後
の耐電圧特性とした。大電流小電流遮断あとの耐電圧試
験を行った。測定では、電極面にAC100V,300
Aでアーク点孤し、電極ギャップ2.5mm における最小
インパルス耐電圧を測定する。この小電流10回遮断と
耐電圧測定を10回繰り返し大電流小電流遮断後の耐電
圧特性とした。
In the breaking test, a pair of test electrodes are assembled in a breaking test section, and baking is performed at 300 ° C. for 2 hours while evacuating the breaking test section. After that, gap 2.5mm
While applying an AC voltage of 60 kV at the maximum between the electrodes, conditioning is performed twice to remove a low withstand voltage portion that is easily discharged. In the impulse withstand voltage test after the interruption of the small current of 300 A, the minimum discharge voltage at the electrode gap of 2.5 mm is measured after performing 10 arc firings at 100 V AC and 300 A. This firing 10 times and the withstand voltage measurement were repeated 10 times to obtain the withstand voltage characteristics after the interruption of the small current. In the cutting current measurement, the current waveform at the time of interruption was stored in a digital memory and then reproduced on a synchroscope to read the cutting current value. This was repeated 50 times to obtain the maximum value and the average value.
In the cutoff test, the LC resonance circuit equipment was used, the cutoff current frequency was set to 58 Hz and the transient recovery voltage frequency was set to about 11 Hz in view of the circuit constants, and the test voltages 1 to 5. The test was continued in the range of 6 kV until the cut-off was impossible.
If the interruption cannot be performed during the test, the interruption current is lowered, the interruption test is performed, and the electrode surface is cleaned. And In the impulse withstand voltage measurement after interrupting the large current, the electrode gap is 2.5 mm after the test.
The minimum impulse withstand voltage was measured, and the withstand voltage characteristics after the interruption of the large current were determined. A withstand voltage test after breaking a large current and a small current was performed. In the measurement, AC100V, 300
The arc is turned on at A, and the minimum impulse withstand voltage at the electrode gap of 2.5 mm is measured. This small current interruption 10 times and withstand voltage measurement were repeated 10 times, and the withstand voltage characteristics after interruption of the large current and small current were determined.

【0071】[0071]

【表2】 [Table 2]

【0072】表2に遮断及び耐電圧試験結果を示す。特
性は、試料Aの特性基準値(1.0とする)として示
す。試料H,I,J,Kは試料Aの1.5 倍の遮断およ
び耐電圧性が得られる。この結果から、銅粉末,クロム
粉末,ニオブ粉末の粒径はいずれも53〜32μm,3
2〜22μm及び22μm以下が好ましい。しかし、粒
径22μm以下になると成形性,生産性,コストの点で
問題があるので、53〜22μmが特に好ましい。
Table 2 shows the results of the blocking and withstand voltage tests. The characteristics are shown as characteristic reference values of sample A (assumed to be 1.0). Samples H, I, J, and K have 1.5 times the cutoff and withstand voltage of Sample A. From these results, the particle diameters of the copper powder, chromium powder and niobium powder were all 53 to 32 μm, 3
It is preferably 2 to 22 μm and 22 μm or less. However, if the particle size is 22 μm or less, there are problems in terms of moldability, productivity, and cost. Therefore, 53 to 22 μm is particularly preferable.

【0073】(実施例3)図7はCr粉末又はこれに
V,Nb又はW粉末との混合粉末を実施例1と同様に粉
砕処理し、これを22μmアンダーに分級したものを用
いて前述と同様に溶浸によって最終的に図4の形状にし
たもので、更に本実施例におけるスパイラル型電極の平
面図及び図8はその断面図である。電極はこれらの図に
示すように更に切削加工によって電極中央部の真円の凹
部5Aと互いの接触面を兼ねるようにその外側にアーク
走行面5B,5C,5Dを一体に設け、各アーク走行面
5B,5C,5D間には凹部5Aからアーク走行面5
B,5C,5Dの外周端5Eの手前までに3本のスリッ
ト溝13A〜13Cを螺旋状にアーク電極1とアーク電
極支持部に切られている。このスパイラル構造の溝は3
本であるが4本でも5本でもよく、曲線又は直線でもよ
い。真円の凹部5Aは裏導体4の直径とほぼ同じ径とす
るのが好ましい。
(Embodiment 3) FIG. 7 shows the same result as described above using a powder obtained by pulverizing Cr powder or a mixed powder thereof with V, Nb or W powder in the same manner as in Embodiment 1, and classifying the powder under 22 μm. Similarly, the shape shown in FIG. 4 was finally obtained by infiltration. Further, a plan view of a spiral type electrode in this embodiment and FIG. 8 are sectional views thereof. As shown in these figures, the electrodes are further provided with arc running surfaces 5B, 5C, and 5D integrally with each other by cutting so as to serve as a contact surface with a perfect circular concave portion 5A at the center of the electrode. Between the surfaces 5B, 5C, and 5D, the arc running surface 5 extends from the concave portion 5A.
Three slit grooves 13A to 13C are spirally cut into the arc electrode 1 and the arc electrode supporting portion before the outer peripheral end 5E of B, 5C, 5D. The groove of this spiral structure is 3
Although it is a book, it may be four or five, and may be a curve or a straight line. It is preferable that the diameter of the perfect circular recess 5A is substantially the same as the diameter of the back conductor 4.

【0074】複数のスリット溝13A〜13Cは凹部に
なっているアーク走行面5Aからスリット溝の外周側先
端部13Eより電極側面に達している。各スリット溝間
に複数のアーク走行面5A〜5Cを形成している。連絡
部14は外周側先端部13Eと電極外周端のアーク走行
面5Eとの間のスリット溝13A〜13Cを跨いでい
る。つまり橋の役割をしてい。連絡部14は両アーク走
行面5B〜5Dと一体に形成すると共に、両アーク走行
面5A〜5Cと同じ抵抗値を有している。
The plurality of slit grooves 13A to 13C extend from the concave arc running surface 5A to the electrode side surface from the outer peripheral end 13E of the slit groove. A plurality of arc running surfaces 5A to 5C are formed between each slit groove. The connecting portion 14 straddles the slit grooves 13A to 13C between the outer peripheral end portion 13E and the arc running surface 5E at the outer peripheral end of the electrode. In other words, it acts as a bridge. The connecting portion 14 is formed integrally with the two arc running surfaces 5B to 5D and has the same resistance as the two arc running surfaces 5A to 5C.

【0075】このため、アークAが各アーク走行面と連
絡部14とを流れる時の発生熱が少なく、電極の電流容
量を向上することができる。連絡部14は両アーク走行
面5B〜5Dと一体に形成することは、連絡部14と両
アーク走行面5B〜5Dとの表面を等しい高さにできる
ので、軸方向を図8に比べて縮小できるばかりか、また
電界集中がなく、電界を緩和することができるので、更
に遮断電流容量を向上することができる。
For this reason, the heat generated when the arc A flows between each arc running surface and the connecting portion 14 is small, and the current capacity of the electrode can be improved. When the connecting portion 14 is formed integrally with the two arc running surfaces 5B to 5D, the surfaces of the connecting portion 14 and the two arc running surfaces 5B to 5D can be made equal in height, so that the axial direction is reduced as compared with FIG. Not only can the electric field be concentrated, but also the electric field can be reduced, so that the breaking current capacity can be further improved.

【0076】一方側アーク走行面例えば5Bを流れる電
流i1 の電流通路の方が他方側アーク走行面5Dを流れ
る分流電流i2 の電流通路より長く形成されている時
に、一方側アーク走行面5Bから他方側アーク走行面5
Dに電流i1 が流れるように上記連絡部14を調整して
電流を制御する。例えば連絡部14の外径と内径との間
の幅Lを設定する。具体的には、連絡部14の外径寸法
1 と内径寸法D2 とのD2 /D1 の関係が0.9 を超
え、1を下回る幅L寸法に設定する。又連絡部14は一
方側アーク走行面例えば5Bを流れる電流i1 の電流通
路の方が他方側アーク走行面5Dを流れる分流電流i2
の電流通路より長くなるように設けられていることにな
る。
When the current path of the current i 1 flowing through the one-side arc running surface 5B, for example, is longer than the current path of the divided current i 2 flowing through the other arc running surface 5D, the one-side arc running surface 5B From the other side arc running surface 5
The current is controlled by adjusting the connection portion 14 so that the current i 1 flows through D. For example, a width L between the outer diameter and the inner diameter of the connecting portion 14 is set. Specifically, the relationship of D 2 / D 1 of the outer diameter D 1 and the inner diameter D 2 of the contact portion 14 is more than 0.9, to set the width L dimension below 1. In addition, the connecting portion 14 is configured such that the current path of the current i 1 flowing through the one- sided arc running surface 5D, for example, is the shunt current i 2 flowing through the other-side arc running surface 5D
Is provided so as to be longer than the current path.

【0077】この固定電極と可動電極とを後述の図8及
び図9のように対応配置すれば、電極内を流れる電流i
1 の経路を制御して、ほぼ円周方向に往復の電路を構成
することができる。この電路に電流i1 が流れる時に発
生する磁界Hにより、電極間に発生したアークAは電極
の円周方向に駆動され、アーク走行面上を移動する。例
えばアーク走行面5B上を移動し、アーク走行面5Dと
の境界に来た時、アークAは連絡部14を通過して、ア
ーク走行面5Dに移行するはずであるが、アーク走行面
5Dの電流i1 はスリット溝13Aを介して分流する所
謂分流電流i2 が流れる。分流電流i2 はアーク走行面
5Bの電流i1 がアーク走行面5Dに流れるのを阻止す
る働きをし、アーク21が連絡部14付近で停滞し、電
極の局部加熱,局部溶融になり、遮断不能を生じること
があることに本発明者達は気付いた。
By arranging the fixed electrode and the movable electrode in correspondence with each other as shown in FIGS.
By controlling the first path, a reciprocating electric path can be formed substantially in the circumferential direction. The magnetic field H generated when the current i 1 flows in this path, the arc A generated between the electrodes is driven in the circumferential direction of the electrode, moves on the arc running face. For example, when moving on the arc traveling surface 5B and reaching the boundary with the arc traveling surface 5D, the arc A should pass through the connecting portion 14 and move to the arc traveling surface 5D. The current i 1 flows as a so-called shunt current i 2 shunted through the slit groove 13A. Shunt current i 2 is a function of current i 1 of the arc running face 5B is prevented from flowing into the arc running face 5D, the arc 21 stagnates in the vicinity of contact portion 14, localized heating of the electrodes, becomes local melting, blocked The present inventors have noticed that disability may occur.

【0078】そこで、本発明者達は、連絡部14の断面
積例えば幅,厚み等を調整して、電流i1 ,分流電流i
2 が連絡部14に流れるのを制御することで、上述の課
題を解決した。即ち、連絡部14の外径寸法D1 と内径
寸法D2 とのD2 /D1 の関係が0.9 を超え、1を下
回る幅L寸法に設定した。この結果、アークAは電極の
円周方向に駆動され、アーク走行面上を磁気駆動して、
著しく遮断電流容量を増加することができるようになっ
た。例えば連絡部10の幅Lを調整しない従来技術の電
極の遮断電流容量を1とすれば、本発明の電極の遮断電
流容量を2にすることができるようになった。この分、
本発明の電極は従来技術の電極に比べて小型化及び軽量
化を図ることができるようになった。
Therefore, the present inventors have adjusted the cross-sectional area, for example, the width and the thickness of the connecting portion 14 so that the current i 1 and the shunt current i
The above-mentioned problem was solved by controlling the flow of 2 through the communication unit 14. That is, the relationship of D 2 / D 1 between the outer diameter D 1 and the inner diameter D 2 of the connecting portion 14 is set to a width L exceeding 0.9 and less than 1. As a result, the arc A is driven in the circumferential direction of the electrode, magnetically drives the arc running surface,
The breaking current capacity can be significantly increased. For example, if the breaking current capacity of the conventional electrode in which the width L of the connecting portion 10 is not adjusted is set to 1, the breaking current capacity of the electrode of the present invention can be set to 2. This minute,
The electrode of the present invention can be made smaller and lighter than the conventional electrode.

【0079】この理由は、連絡部14の幅L寸法が0.
9 以下になると、幅寸法が広くなり、分流電流i2
電流i1 より多く流れ、電流i1 が連絡部14付近で停
滞して、遮断不能を生じる。連絡部14の幅寸法が1以
上になると、上述とは逆に連絡部14の幅寸法が狭くな
り、連絡部14を電流i1 が流れ過ぎて、磁界Hが強く
なり、アークAが電磁力Fにより電極より外部に飛び出
してシールド10に衝突し、遮断器として使用できな
い。従って、外径寸法D1 と内径寸法D2 とのD2/D
1 の関係が0.9 を超え、1を下回る幅L寸法に設定す
ると、電流i1 と分流電流i2 が連絡部14に流れるの
を適宜に制御することができる。この場合、分流電流i
2 を制御する方が、電流i1 に比べて連絡部14の幅を
狭くできるので、電極の重量を軽くできる利点がある。
この結果、上述の効果を達成することができる。このこ
とは、幅Lを調整するだけで遮断電流容量の増減,遮断
電流容量の増減に応じた電極寸法及び重量を任意設計で
きる。連絡部14の調整は幅Lと下記厚みとを調整すれ
ばより好ましい。連絡部14の幅Lを調整する場合に
は、作業者が連絡部14の幅Lを見ながら微調整ができ
るので、調整作業がやりやすく、作業能率が良い。
The reason for this is that the width L of the connecting portion 14 is set to be equal to 0.
Becomes 9 or less, the width is widened, flow number shunt current i 2 is than the current i 1, stagnant current i 1 is in the vicinity of contact portion 14, resulting in non blocking. If the width of the connecting portion 14 becomes 1 or more, the width of the connecting portion 14 becomes narrower, contrary to the above, the current i 1 flows too much through the connecting portion 14, the magnetic field H becomes strong, and the arc A becomes electromagnetic force. F causes the electrode to jump out of the electrode and collide with the shield 10, and cannot be used as a circuit breaker. Therefore, D 2 / D of the outer diameter dimension D 1 and the inner diameter dimension D 2 is obtained.
When the relationship 1 is set to a width L dimension exceeding 0.9 and less than 1, the current i 1 and the shunt current i 2 flowing to the connecting portion 14 can be appropriately controlled. In this case, the shunt current i
Controlling 2 has the advantage that the weight of the electrode can be reduced because the width of the connecting portion 14 can be made narrower than the current i 1 .
As a result, the above effects can be achieved. This means that only by adjusting the width L, it is possible to arbitrarily design the electrode size and weight according to the increase / decrease of the breaking current capacity and the increase / decrease of the breaking current capacity. It is more preferable to adjust the connecting portion 14 by adjusting the width L and the following thickness. When adjusting the width L of the communication portion 14, the operator can make fine adjustments while watching the width L of the communication portion 14, so that the adjustment work is easy and the work efficiency is good.

【0080】本実施例の成形体組成はNo.1:50Cr
−47.5Cu−2Nb−0.5Pb,No.2:50Cr
−47Cu−2Nb−1Pb及びNo.3:50Cr−4
6.5Cu−2Nb−1.5Pb である。
The composition of the molded article of this embodiment is No. 1:50 Cr
-47.5Cu-2Nb-0.5Pb, No.2: 50Cr
-47Cu-2Nb-1Pb and No.3: 50Cr-4
6.5Cu-2Nb-1.5Pb.

【0081】溶浸後のアーク電極材のPb分布はPb添
加量1%及び1.5 %材ではアーク電極材のPb分布は
勾配を持ち安定したアーク電極材を供給することができ
ない。一方、Pb添加量0.5% 材はアーク電極材にほ
ぼ均一に分布していた。
When the Pb distribution of the arc electrode material after infiltration is 1% and 1.5% Pb, the Pb distribution of the arc electrode material has a gradient, and a stable arc electrode material cannot be supplied. On the other hand, the 0.5% Pb-added material was almost uniformly distributed in the arc electrode material.

【0082】このように本発明方法によればPb添加量
0.5% 材はアーク電極材にほぼ均一に分布することが
でき、安定したアーク電極材を供給することができる。
As described above, according to the method of the present invention, the material containing 0.5% of Pb can be distributed almost uniformly in the arc electrode material, and a stable arc electrode material can be supplied.

【0083】また、Bi,Te及びSbについても同様
の方法で検討した結果、Pbの分布結果と同様であっ
た。
Further, Bi, Te and Sb were examined in the same manner, and the results were the same as the distribution results of Pb.

【0084】一方、健全かつ、目的の鋳塊寸法を得るた
めには、鋳塊の冷却速度のコントロールが重要である。
鋳塊側面からの冷却速度より鋳塊上部の冷却速度を大き
くする必要がある。本発明を達成する第2条件として、
鋳塊上部の冷却速度を大きくする保温剤としてアルミナ
(Al23)等の比熱が大きく、Cu溶湯と反応しない
セラミックス粒子が適当である。この時のセラミックス
粒径が大き過ぎたり,小さ過ぎたりすると溶湯はセラミ
ックス粒子間を通して流れ出てしまい鋳型の役目をなさ
ない。最適粒径は20メッシュから325メッシュであ
る。また、保温のためのセラミックス粒子の必要量は、
目的の鋳塊直径寸法の2/3以上の厚さが必要である。
On the other hand, in order to obtain a sound and desired ingot size, it is important to control the cooling rate of the ingot.
It is necessary to make the cooling rate at the upper part of the ingot higher than that at the side of the ingot. As a second condition for achieving the present invention,
Ceramic particles which have a large specific heat, such as alumina (Al 2 O 3 ), and do not react with the molten Cu are suitable as a heat retaining agent for increasing the cooling rate of the upper part of the ingot. If the ceramic particle size at this time is too large or too small, the molten metal flows out between the ceramic particles and does not serve as a mold. The optimal particle size is between 20 mesh and 325 mesh. Also, the required amount of ceramic particles to keep warm is
The thickness is required to be 2/3 or more of the diameter size of the target ingot.

【0085】表3は、各種組成の溶浸したままのものに
おいて溶浸温度を種々に変えた場合の鋳塊中のCr量を
分析した結果と、多孔質焼結体及びアーク電極支持部材
のそれぞれの組成を変化させた場合の鋳塊中のそれぞれ
の組成元素を分析した結果を示したものである。なお、
溶湯用Cu供給及び押湯8は同じ組成である。
Table 3 shows the results of analyzing the amount of Cr in the ingot when the infiltration temperature was variously changed for the infiltrated steel of various compositions and the results of the porous sintered body and the arc electrode supporting member. It is the result of analyzing each composition element in the ingot when each composition was changed. In addition,
The molten Cu supply and the feeder 8 have the same composition.

【0086】No.1〜No.3は、多孔質焼結体の組成C
r−5Cu材に純Cuを溶浸する時の溶浸温度を変え、
120分保持した場合の鋳塊中のCr量である。溶浸温
度1250℃の場合の鋳塊組成は1.65% Crを含有
するCu合金になることがわかる。
No. 1 to No. 3 correspond to the composition C of the porous sintered body.
changing the infiltration temperature when infiltrating pure Cu into r-5Cu material,
This is the amount of Cr in the ingot when held for 120 minutes. It can be seen that the ingot composition at an infiltration temperature of 1250 ° C. is a Cu alloy containing 1.65% Cr.

【0087】No.4,5,9,10,11,13は、多
孔質焼結体の組成をCr−5Cu一定とし、溶浸材の組
成をそれぞれCu−Ag,Cu−Zr,Cu−Si,C
u−Be合金を用いた場合の鋳塊中の元素分析結果であ
る。各鋳塊ともCrを約0.6%程度を含む3元Cu合金
になることが分かる。
In Nos. 4, 5, 9, 10, 11, and 13, the composition of the porous sintered body was constant at Cr-5Cu, and the composition of the infiltrant was Cu-Ag, Cu-Zr, and Cu-Si, respectively. , C
It is an elemental analysis result in an ingot when a u-Be alloy is used. It can be seen that each ingot becomes a ternary Cu alloy containing about 0.6% Cr.

【0088】No.6,7,8,12は、溶浸材を純Cu
一定とし多孔質焼結体の組成をそれぞれCr−5Cuに
V,Nb,V,Nb,Wを添加した場合の鋳塊中の元素
分析結果である。各鋳塊ともV,Nb,Wの含有量は
0.02% 以下であり、鋳塊組成は1.0% 程度のCr
を含むCu合金であることが分かる。
Nos. 6, 7, 8, and 12 use pure Cu as the infiltration material.
It is an elemental analysis result in the ingot when V, Nb, V, Nb, and W are added to Cr-5Cu with the composition of the porous sintered body kept constant. Each ingot has a V, Nb, W content of 0.02% or less and an ingot composition of about 1.0% Cr.
It can be seen that this is a Cu alloy containing

【0089】[0089]

【表3】 [Table 3]

【0090】No.1〜13で得た鋳塊の電気抵抗及び強
度を、電気抵抗測定は4点式抵抗測定法で、強度測定は
アームスラ引張試験機を用いて実施した。
The electrical resistance and strength of the ingots obtained in Nos. 1 to 13 were measured using a four-point resistance measurement method, and the strength was measured using an arm-slur tensile tester.

【0091】従来方法でろう付け接合した界面の強度は
22〜12kg/mm2 とばらつきが大きく、強度12kg/
mm2 の試験片にはろう付け不良部が確認された。また、
界面部を含む電気抵抗値は4.82μΩ・cm と純銅材
(比較例2)に比べ約3〜4倍の高い抵抗値である。そ
れに対しNo.11の界面強度は24〜25kg/mm2 と安
定した強度を示し、試験片の欠陥は観察されなかった。
また、本発明の実施例では界面を含む電気抵抗値は測定
できないものである。No.1の相手材にはCrが約0.
62% 含むCu合金であるにもかかわらず、界面がな
いので、比抵抗は1.95μΩ・cm と低い値である。こ
れは従来技術のろう付け接合部界面の抵抗値が非常に大
きいことが分かる。
The strength of the interface brazed by the conventional method varies greatly from 22 to 12 kg / mm 2, and the strength is 12 kg / mm 2.
Defective brazing was confirmed on the test piece of mm 2 . Also,
The electric resistance including the interface is 4.82 μΩ · cm, which is about 3 to 4 times higher than the pure copper material (Comparative Example 2). On the other hand, the interface strength of No. 11 showed a stable strength of 24 to 25 kg / mm 2, and no defect of the test piece was observed.
Further, in the embodiment of the present invention, the electric resistance including the interface cannot be measured. No. 1's counterpart material is about 0.1% Cr.
Despite being a Cu alloy containing 62%, since there is no interface, the specific resistance is a low value of 1.95 μΩ · cm. This indicates that the resistance value at the interface of the brazing joint in the prior art is very large.

【0092】一方、純Cuの強度は最大値22〜23kg
/mm2 に対し0.2% 耐力は4〜5kg/mm2 と非常に軟
弱であり、アーク電極支持部材あるいはその他の部材に
使用した場合には衝撃的な荷重に耐えきれず経時的に変
形してしまうが、CrあるいはAg,V,Nb,Zr,
Si,W,Beをそれぞれ含有したCu合金からなるN
o.2〜13の電気抵抗値は、焼鈍純Cuに比較すれば約
1.5〜2.0倍の抵抗値を示したが、従来技術のろう付
け接合界面抵抗値と比較すると約半分以下であり充分に
実機真空遮断器用電極材に使用可能である。またこれら
の強度は、いずれも最大強度22〜25kg/mm2 と純C
uとあまり変っていないが0.2% 耐力値において10
〜14kg/mm2 と2倍に強度向上が図られている。
On the other hand, the strength of pure Cu has a maximum value of 22 to 23 kg.
/ Mm 2 to 0.2% proof stress is very weak and 4~5Kg / mm 2, over time modification can not withstand the impact load in the case of the use in the arc electrode support member or other member But Cr or Ag, V, Nb, Zr,
N made of Cu alloy containing Si, W and Be respectively
The electrical resistance values of o.2 to 13 showed about 1.5 to 2.0 times the resistance value as compared with the annealed pure Cu, but about half or less as compared with the conventional brazing joint interface resistance value. Therefore, it can be sufficiently used as an electrode material for an actual vacuum circuit breaker. In addition, each of these strengths has a maximum strength of 22 to 25 kg / mm 2 and a pure C
not much different from u, but 10% at 0.2% proof stress
Up to 14 kg / mm 2, which is twice as strong.

【0093】溶浸温度が1150℃では0.55〜0.7
5%,1200℃では0.9〜1.0%,1250℃では
1.6〜1.7%とCrの固溶量が増加する。
When the infiltration temperature is 1150 ° C., it is 0.55 to 0.7.
5%, 0.9-1.0% at 1200 ° C., and 1.6-1.7% at 1250 ° C., so that the amount of solid solution of Cr increases.

【0094】このように、本発明によるCrあるいはA
g,V,Nb,Zr,Si,W及び、Beをそれぞれ含
有するCu合金製アーク電極支持部材,裏導体及び外部
導体接続部は、電極開閉時の衝撃的荷重の繰り返しによ
る変形が生じないため変形に伴う溶着障害を防止して信
頼性及び安全性の向上が図られる。
As described above, according to the present invention, Cr or A
Since the Cu alloy arc electrode supporting member containing g, V, Nb, Zr, Si, W, and Be, the back conductor, and the external conductor connection portion are not deformed due to repeated impact loads when the electrode is opened and closed. The welding failure due to the deformation is prevented, and the reliability and safety are improved.

【0095】Cu中への合金元素の含有量と0.2%耐
力との関係を検討すると、Cr0.6%の含有により9k
g/mm2の耐力が得られ、1.6%で11.5kg/mm2と直
線的に増加する。そして、Crの他に他の合金元素を含
有することによってその量の増大によって強化される。
各元素の含有量としてAg0.1%,Zr0.1%,Si
0.1%,Be0.05%,Nb,V,Wは各々0.01
% 以上とすることにより10kg/mm2 以上の耐力が得
られる。
Examination of the relationship between the content of alloying elements in Cu and the 0.2% proof stress shows that the inclusion of 0.6% Cr results in 9 k
A yield strength of g / mm 2 is obtained, increasing linearly to 11.5 kg / mm 2 at 1.6%. And, by containing other alloying elements in addition to Cr, it is strengthened by increasing the amount thereof.
As the content of each element, 0.1% of Ag, 0.1% of Zr,
0.1%, Be 0.05%, Nb, V, and W are each 0.01.
%, A proof stress of 10 kg / mm 2 or more can be obtained.

【0096】0.2% 耐力と比抵抗との関係を検討する
と、Cu中への全固溶量の増大によって強度の向上とと
もに比抵抗も増すので、比抵抗の増加を少なくして強度
の向上を図るにはCr単独よりも他の元素を加えること
によって得られることが分かる。特に、Si以外は比抵
抗が小さくて高強度が得られる。特に、0.2% 耐力を
10kg/mm2以上、比抵抗1.9〜2.8μΩ・cmが好ま
しい。
When examining the relationship between the 0.2% proof stress and the specific resistance, the increase in the total solid solution in Cu increases the strength as well as the specific resistance. Therefore, the increase in specific resistance is reduced to improve the strength. It can be seen that this can be achieved by adding another element than Cr alone. In particular, other than Si, the specific resistance is small and high strength can be obtained. In particular, a 0.2% proof stress of 10 kg / mm 2 or more and a specific resistance of 1.9 to 2.8 μΩ · cm are preferable.

【0097】Cr,Si,Be,Zr,Ag,Nb,V
及びW量と比抵抗との関係を検討すると、比抵抗は合金
元素をCr+3.4Si+3.5Be+1.2Zr+0.6
Ag+15(Nb+V+W)の比率で加えることによっ
てその含有量を0.57 倍して1.61 加えた値に添っ
て増加するが、電極支持部及びその他の比抵抗はできる
だけ小さくすることによって通電中の電極温度を低く抑
えることができること及び遮断時のアーク発生に伴うア
ーク熱を電極棒を通して冷却する必要があり、その熱伝
導を高くする必要があることから熱伝導率を高く維持す
ることができる。本実施例においては所望の比抵抗を図
によっておおよその値のものを求めることができる。C
rをアーク電極として用いる場合にはCrの溶浸量を考
慮し、各元素の含有量をSi0.5%,Be0.5%,Z
r1.5%,Ag2.5%,Nb,V,Wは各々0.1%
を上限として含有させることが好ましい。比抵抗として
3.0μΩcm 以下とするのが好ましい。
Cr, Si, Be, Zr, Ag, Nb, V
Examining the relationship between the specific resistance and the W amount, the specific resistance is determined by changing the alloy element to Cr + 3.4Si + 3.5Be + 1.2Zr + 0.6.
By adding Ag + 15 (Nb + V + W) at a ratio of 0.57, the content is multiplied by 0.57 and increased according to the added value of 1.61, but the electrode support portion and other specific resistances are minimized during energization. Since the electrode temperature can be kept low and the arc heat accompanying the arc generation at the time of interruption needs to be cooled through the electrode rod, the heat conductivity needs to be high, so that the heat conductivity can be kept high. In the present embodiment, the desired specific resistance can be roughly determined from the figure. C
When r is used as an arc electrode, the content of each element is set to 0.5% for Si, 0.5% for Be,
r1.5%, Ag 2.5%, Nb, V and W are each 0.1%.
Is preferably contained as an upper limit. The specific resistance is preferably 3.0 μΩcm or less.

【0098】(実施例4)粒径125〜149μmのC
u粉末と、98重量%以上が粒径5〜22μmであるC
r粉末、粒径125〜149μmのPb粉末を用い、5
0重量%Cu−50重量%Cr,49.5 重量%Cu−
50重量%Cr−0.5 重量%Pb,48重量%Cu−
50重量%Cr−2重量%Pb,45重量%Cu−50
重量%Cr−5重量%Pbの4種類の組成の粉末を、そ
れぞれ混合後ボールミル中に装荷し1×10-4Torrに脱
気後Ar置換し、Ar雰囲気中で200時間撹拌混合し
た。
Example 4 C having a particle size of 125 to 149 μm
u powder and C in which 98% by weight or more has a particle size of 5 to 22 μm.
r powder, Pb powder having a particle size of 125 to 149 μm,
0 wt% Cu-50 wt% Cr, 49.5 wt% Cu-
50 wt% Cr-0.5 wt% Pb, 48 wt% Cu-
50% by weight Cr-2% by weight Pb, 45% by weight Cu-50
Powders of four different compositions of 5% by weight of Cr-5% by weight of Pb were mixed, loaded into a ball mill, deaerated to 1 × 10 −4 Torr, replaced with Ar, and stirred and mixed in an Ar atmosphere for 200 hours.

【0099】得られた混合粉末を実施例1と同様に1×
10-2Torrに脱気後、80kg/cm2の圧力を加え380
0Aで5分間通電し、焼結を行った。
The obtained mixed powder was mixed with 1 × in the same manner as in Example 1.
After degassing to 10 -2 Torr, a pressure of 80 kg / cm 2 was applied and 380
Electric current was applied at 0 A for 5 minutes to perform sintering.

【0100】(実施例5)粒径125〜149μmのC
u粉末40重量%と、98重量%以上が粒径5〜22μ
mであるCr粉末60重量%を混合後、ボールミル中に
装荷し1×10-4Torrに脱気後Ar置換し、Ar雰囲気
中で200時間撹拌混合した。得られた混合粉末をを金
型につめ、油圧プレスを用いて、約3ton/cm2の加圧力
で成形し、60mmφ,厚さ10mmの成形体とした。この
時の成形体の気孔率は、かさ密度の測定から23〜28
%である。一方、粒径44μm〜150μmのCu粉末
のみを約2.5ton/cm2 の加圧力でプレス成形し、60
mmφ,厚さ50mmの成形体とした。この時の成形体の気
孔率は22〜27%である。このようにして成形した合
金粉末成形体とCu粉成形体を密着させて軟鋼カプセル
に入れ、真空封止後熱間静水圧焼結(HIP)処理を行
った。なお、軟鋼カプセル,真空封止施工及びHIP処
理等の条件は以下の通りである。肉圧3mmの軟鋼製カプ
セルを用いて、約500〜600℃に加熱し、真空排気
脱ガスを施しながら真空度5×10-5Torr以下になるま
で脱気後、真空封止した。昇温速度は約10℃/min ,
焼結圧力2000kg/cm2 ,焼結温度1000℃で2時
間保持し焼結を行った。HIP処理後の電極材料の真密
度は、99%であった。
Example 5 C having a particle size of 125 to 149 μm
u powder 40% by weight and 98% by weight or more have a particle size of 5 to 22μ.
After mixing 60% by weight of Cr powder as m, the mixture was charged into a ball mill, degassed to 1 × 10 −4 Torr, replaced with Ar, and stirred and mixed in an Ar atmosphere for 200 hours. The obtained mixed powder was packed in a mold and molded with a hydraulic press at a pressure of about 3 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a thickness of 10 mm. At this time, the porosity of the molded body was 23 to 28 from the measurement of the bulk density.
%. On the other hand, only Cu powder having a particle size of 44 μm to 150 μm is press-formed at a pressure of about 2.5 ton / cm 2 ,
A molded article having a diameter of 50 mm and a thickness of 50 mm was obtained. At this time, the porosity of the molded body is 22 to 27%. The alloy powder compact and the Cu powder compact formed in this manner were placed in close contact with each other in a mild steel capsule, vacuum sealed, and then subjected to hot isostatic sintering (HIP). The conditions of the mild steel capsule, vacuum sealing, HIP processing and the like are as follows. Using a mild steel capsule having a meat pressure of 3 mm, the capsule was heated to about 500 to 600 ° C., degassed to a degree of vacuum of 5 × 10 −5 Torr or less while performing evacuation and degassing, and then vacuum sealed. The heating rate is about 10 ° C / min,
The sintering was performed at a sintering pressure of 2000 kg / cm 2 and a sintering temperature of 1000 ° C. for 2 hours. The true density of the electrode material after the HIP treatment was 99%.

【0101】(実施例6)表4は各種定格における真空
バルブの諸元を示すものである。本実施例における電極
は実施例1〜5に示す組成及び構造と同様である。
(Embodiment 6) Table 4 shows the specifications of the vacuum valve at various ratings. The electrode in this embodiment has the same composition and structure as those in Embodiments 1 to 5.

【0102】図9は表4に示すNo.1の真空バルブ、図
10はNo.4の真空バルブの断面図である。
FIG. 9 is a cross-sectional view of the No. 1 vacuum valve shown in Table 4, and FIG. 10 is a cross-sectional view of the No. 4 vacuum valve.

【0103】[0103]

【表4】 [Table 4]

【0104】絶縁材で形成された絶縁筒体35の上・下
開口部に上・下一体をなすシールリング38a,38b
を設けて真空室を形成する真空容器を構成し、上記シー
ルリング38aの中程に固定電極30aを垂設し、この
固定電極30aの直下に位置する上記シールリング38
bの中程に可動電極30bの一部を形成する可動側の電
極棒34を昇降自在に設け、上記固定電極30aのアー
ク電極31aに対して上記可動電極30bのアーク電極
31bを接離するようにし、上記可動側の電極棒34の
周りに位置する上記シールリング38bの内側に金属製
のベローズ37を伸縮するようにして被冠して設け、さ
らに、上記両アーク電極の周りに円筒状をなす金属板の
シール部材36を絶縁筒体35の真空容器によって設置
し、このシール部材36は上記絶縁筒体35の真空容器
の絶縁性を損なわないようにして構成したものである。
The upper and lower seal rings 38a and 38b are integrally formed at the upper and lower openings of the insulating cylinder 35 made of insulating material.
Are provided to form a vacuum chamber, a fixed electrode 30a is vertically provided in the middle of the seal ring 38a, and the seal ring 38 located immediately below the fixed electrode 30a is formed.
A movable electrode rod 34 forming a part of the movable electrode 30b is provided in the middle of the movable electrode 30b so as to be movable up and down, and the arc electrode 31b of the movable electrode 30b is brought into contact with and separated from the arc electrode 31a of the fixed electrode 30a. A metal bellows 37 is provided inside the seal ring 38b located around the movable-side electrode rod 34 so as to extend and contract, and is further provided with a cylindrical shape around both of the arc electrodes. A sealing member 36 made of a metal plate is provided by a vacuum container of the insulating cylinder 35, and the sealing member 36 is configured so as not to impair the insulation of the vacuum container of the insulating cylinder 35.

【0105】さらに、上記アーク電極31a,31bは
前述の溶浸によって得られたアーク電極支持部32a,
32bに一体固着され、更に外部導体接続部33a,3
3b及び裏導体39a,39bによって構成されてい
る。絶縁筒体35からなる真空容器にはガラス,セラミ
ックス焼結体が用いられる。絶縁筒体35からなる真空
容器はシールリング38a,38bにコバール等のガラ
ス,セラミックスの熱膨張係数に近い合金板を介してろ
う付けされ、10-6mmHg以下の高真空に保たれる。
Further, the arc electrodes 31a and 31b are connected to the arc electrode support portions 32a and 32a obtained by the above-described infiltration.
32b, and external conductor connecting portions 33a, 3
3b and the back conductors 39a and 39b. A glass or ceramic sintered body is used for the vacuum container formed of the insulating cylinder 35. The vacuum container formed of the insulating cylinder 35 is brazed to the seal rings 38a and 38b through an alloy plate having a thermal expansion coefficient of glass or ceramics such as Kovar, and is maintained at a high vacuum of 10 -6 mmHg or less.

【0106】いずれの電極においても外部導体接続部に
はネジ45a,45bが設けられ、外部端子に接続さ
れ、電流の通路となる。排気管(図示なし)はシールリ
ング38aに設けられ、排気のとき真空ポンプに接続さ
れる。ゲッタは真空容器内部に微量のガスが発生した場
合に吸収して真空を保つ働きとして設けられる。シール
部材36はアークによって発生した主電極表面の金属蒸
気を付着させ、冷却させる働きを有し、また付着した金
属はゲッタ作用を有する真空度保持の働きを有する。
In any of the electrodes, screws 45a and 45b are provided at the external conductor connection portions, and are connected to external terminals to serve as current paths. An exhaust pipe (not shown) is provided on the seal ring 38a, and is connected to a vacuum pump for exhaust. The getter is provided to absorb a small amount of gas generated inside the vacuum vessel and maintain the vacuum. The sealing member 36 has a function of adhering and cooling metal vapor on the surface of the main electrode generated by the arc, and the adhered metal has a function of maintaining a degree of vacuum having a getter function.

【0107】図中の寸法は43が絶縁筒の外径、44が
その長さ、41が電極裏導体直径、40が電極本体の直
径、42が電極の厚さである。46はガイド、47はボ
タンである。ボタン47は所望の深さを有する真円から
なる凹部で、図5に示す凹部5Aと同じものである。
In the figures, 43 is the outer diameter of the insulating cylinder, 44 is its length, 41 is the diameter of the conductor behind the electrode, 40 is the diameter of the electrode body, and 42 is the thickness of the electrode. 46 is a guide, and 47 is a button. The button 47 is a recess formed of a perfect circle having a desired depth, and is the same as the recess 5A shown in FIG.

【0108】表4に示すように、本発明に係る真空バル
ブは定格の遮断容量の違いによって絶縁筒の外径,長
さ,裏導体の直径,電極本体の直径,厚さ,凹部径,凹
部深さ,スパイラル溝本数及びスパイラルが異なるもの
である。
As shown in Table 4, the vacuum valve according to the present invention has an outer diameter, a length, a diameter of a back conductor, a diameter, a thickness, a recess diameter, and a recess of an insulating tube depending on a difference in rated breaking capacity. The depth, the number of spiral grooves and the spiral are different.

【0109】図11は遮断電圧電流実効値(y)と絶縁
筒外径(x)との関係を示す線図である。遮断電圧電流
実効値は遮断電圧(kV)と遮断電流実効値(kA)と
を乗算したものである。図11に示すように遮断電圧電
流実効値(y)は11.25x−525と5.35x−2
41.5とで求められる値の間に入るように遮断電圧電
流実効値に対して絶縁筒外径とするのが好ましい。
FIG. 11 is a graph showing the relationship between the effective value (y) of the cut-off voltage and current and the outer diameter (x) of the insulating cylinder. The effective value of the interruption voltage / current is obtained by multiplying the interruption voltage (kV) by the effective value of the interruption current (kA). As shown in FIG. 11, the effective values (y) of the cut-off voltage and current are 11.25x-525 and 5.35x-2.
It is preferable to set the outer diameter of the insulating cylinder with respect to the effective value of the cut-off voltage and current so as to fall between the values obtained with 41.5.

【0110】図12はアーク電極直径(mm)と遮断電圧
電流実効値(×103kVA)との関係を示す線図であ
る。遮断電圧電流実効値(x)に対してアーク電極直径
(y)は、0.15x+22と0.077x+20とで求
められる値の間に設定することが好ましい。
FIG. 12 is a graph showing the relationship between the diameter (mm) of the arc electrode and the effective value of the cut-off voltage / current (× 10 3 kVA). It is preferable that the arc electrode diameter (y) be set to a value obtained from 0.15x + 22 and 0.077x + 20 with respect to the cutoff voltage / current effective value (x).

【0111】図13は絶縁筒外径(y)とアーク電極直
径(x)との関係を示す線図である。絶縁筒外径(y)
は1.26x+10と1.26x+30とで求められる値
の間に設定することが好ましい。本実施例においてはy
=1.26x+19.6によって求められる値にほぼ設定
されている。
FIG. 13 is a diagram showing the relationship between the outer diameter (y) of the insulating cylinder and the diameter (x) of the arc electrode. Outer diameter of insulation tube (y)
Is preferably set to a value between 1.26x + 10 and 1.26x + 30. In this embodiment, y
= 1.26x + 19.6.

【0112】図14はアーク電極直径(y)と凹部直径
(x)又は電極裏導体直径(x)との関係を示す線図で
ある。アーク電極直径(y)は2.4x+6.4と2.32
x−3.0 とで求められる値の間に設定するのが好まし
い。
FIG. 14 is a diagram showing the relationship between the diameter (y) of the arc electrode and the diameter (x) of the concave portion or the diameter (x) of the conductor behind the electrode. Arc electrode diameter (y) is 2.4x + 6.4 and 2.32
x-3.0.

【0113】表5は各種電極材料として図4に示す溶浸
一体型構造のものを製造し性能試験(電極直径20mmの
要素試験)を行ったものである。本性能試験における電
極構造は図4に対して電極中心部にボタンを形成して行
ったものである。耐電圧特性はCr量が低いと低下する
が、遮断性能としての遮断電流実効値は高いものが得ら
れる。そして、Nbを入れることによって、また更にP
bを含有させることによって両者とも高いものが得られ
ることが明らかである。従って、本発明の如く、更にス
パイラル溝を設けることによりより一層高い性能が得ら
れることは明らかである。スパイラル溝は等間隔で規則
正しく設けられる。
Table 5 shows the results of a performance test (element test with an electrode diameter of 20 mm) made of the infiltration integrated structure shown in FIG. 4 as various electrode materials. The electrode structure in this performance test was obtained by forming a button at the center of the electrode in FIG. Although the withstand voltage characteristic decreases when the Cr content is low, a high cut-off current effective value as the cut-off performance can be obtained. And by adding Nb, P
It is clear that the inclusion of b makes it possible to obtain high both. Therefore, it is clear that higher performance can be obtained by providing the spiral groove as in the present invention. The spiral grooves are provided regularly at regular intervals.

【0114】[0114]

【表5】 [Table 5]

【0115】図15は本発明に係る真空バルブ59とそ
の操作機とを示す真空遮断器の構成図である。
FIG. 15 is a configuration diagram of a vacuum circuit breaker showing a vacuum valve 59 according to the present invention and its operating device.

【0116】操作機構部を前面配置とし、背面に真空バ
ルブを支持する3相一括型の3組の耐トラッキング性を
有するエポキシレジン筒60を配置した小型,軽量な構
造である。
This is a small and lightweight structure in which the operating mechanism is disposed on the front side, and three sets of three-phase epoxy resin cylinders 60 having tracking resistance, which support a vacuum valve, are disposed on the rear side.

【0117】各相端はエポキシレジン筒,真空バルブ支
持板で水平に支持された水平引き出し形である。真空バ
ルブは、絶縁操作ロッド61を介して、操作機構によっ
て開閉される。
Each phase end is of a horizontal draw-out type supported horizontally by an epoxy resin cylinder and a vacuum valve support plate. The vacuum valve is opened and closed by an operating mechanism via an insulating operating rod 61.

【0118】操作機構部は、構造が簡単で、小型,軽量
な電磁操作式の機械的引外し自由機構である。開閉スト
ロークが少なく、可動部の質量が小さいために衝撃は僅
少である。本体前面には、手動連結式の二次端子のほ
か、開閉表示器,動作回数計,手動引外しボタン,手動
投入装置,引出装置およびインターロックレバーなどが
配置されている。
The operating mechanism is a simple, compact, lightweight electromagnetically operated mechanical tripping free mechanism. Shock is small because the opening and closing stroke is small and the mass of the movable part is small. On the front face of the main body, in addition to a manually connected secondary terminal, an open / close indicator, an operation counter, a manual trip button, a manual input device, a pull-out device, an interlock lever, and the like are arranged.

【0119】(a)閉路状態 遮断器の閉路状態を示し、電流は上部端子62,主電極
30,集電子63,下部端子64を流れる。主電極間の
接触力は、絶縁操作ロッド61に装着された接触ばね6
5によって保たれている。
(A) Closed state This indicates the closed state of the circuit breaker, and current flows through the upper terminal 62, the main electrode 30, the current collector 63, and the lower terminal 64. The contact force between the main electrodes is determined by the contact spring 6 mounted on the insulating operation rod 61.
5 is kept.

【0120】主電極の接触力,早切ばねの力および短絡
電流による電磁力は、支えレバー66およびプロップ6
7で保持されている。投入コイルを励磁すると開路状態
からプランジャ68がノッキングロッド69を介してロ
ーラ70を押し上げ、主レバー71を回して接触子を閉
じたあと、支えレバー66で保持している。
The electromagnetic force due to the contact force of the main electrode, the force of the pre-cut spring, and the short-circuit current is applied to the support lever 66 and the prop 6
7 is held. When the closing coil is excited, the plunger 68 pushes up the roller 70 via the knocking rod 69 from the open state, turns the main lever 71 to close the contact, and holds it with the support lever 66.

【0121】(b)引外し自由状態 開離動作により可動主電極が下方に動かされ、固定・可
動両主電極が開離した瞬間からアークが発生する。アー
クは、真空中の高い絶縁耐力と激しい拡散作用によって
短時間に消弧される。
(B) Tripping free state The movable main electrode is moved downward by the separating operation, and an arc is generated from the moment when the fixed and movable main electrodes are separated. The arc is extinguished in a short time due to the high dielectric strength in a vacuum and the vigorous diffusion action.

【0122】引外しコイル72が励磁されると、引外し
レバー73がプロップ67の係合を外し、主レバー71
は早切ばねの力で回って主電極が開かれる。この動作
は、閉路動作の有無には全く関係なく行われる機械的引
外し自由方式である。
When the tripping coil 72 is excited, the tripping lever 73 disengages the prop 67 and the main lever 71
Is turned by the force of the quick-release spring to open the main electrode. This operation is a mechanical trip-free operation that is performed irrespective of the presence or absence of a closing operation.

【0123】(c)開路状態 主電極が開かれたあと、リセットばね74によってリン
クが復帰し、同時にプロップ67が係合する。この状態
で投入コイル75を励磁すると(a)の閉路状態にな
る。76は排気筒である。
(C) Open circuit state After the main electrode is opened, the link is restored by the reset spring 74, and at the same time, the prop 67 is engaged. When the closing coil 75 is excited in this state, the closed state shown in FIG. 76 is an exhaust pipe.

【0124】真空遮断器は高真空中でアーク遮断し、真
空の持っている高い絶縁耐力と、アークの高速拡散作用
により優れた遮断性能を有しているが、反面無負荷のモ
ートル,変圧器を開閉する場合電流が零点に達する以前
に遮断してしまい、いわゆるさい断電流を生じ、この電
流とサージインピーダンスの積に比例する開閉サージ電
圧を発生する場合がある。このため3kV変圧器や3k
V,6kV回転機などを真空遮断器で直接開閉するとき
は、サージアブソーバを回路に接続してサージ電圧を抑
制し、機器を保護する必要がある。サージアブソーバと
しては、コンデンサを標準としますが、負荷の衝撃波耐
電圧値によって、ZnO非直線抵抗体を使用することも
できる。
The vacuum circuit breaker cuts off the arc in a high vacuum and has excellent breaking performance due to the high dielectric strength of the vacuum and the high-speed diffusion of the arc. When the switch is opened and closed, the current is cut off before reaching the zero point, so that a so-called cut-off current is generated, and a switching surge voltage proportional to the product of this current and the surge impedance may be generated. For this reason, 3kV transformers and 3k
When a V, 6 kV rotating machine or the like is directly opened and closed by a vacuum circuit breaker, it is necessary to connect a surge absorber to a circuit to suppress a surge voltage and protect the equipment. As the surge absorber, a capacitor is used as a standard, but a ZnO nonlinear resistor can be used depending on the withstand voltage of the shock wave of the load.

【0125】以上の本実施例により、圧力150kg,遮
断速度0.93m/秒で、7.2kV,31.5kAの遮
断が可能となる。
According to the above embodiment, it is possible to cut off at 7.2 kV and 31.5 kA at a pressure of 150 kg and a cutoff speed of 0.93 m / sec.

【0126】図16は本実施例の真空遮断器2段積スイ
ッチギアの内部構造を示すものである。91は上段遮断
器コンパートメント、92はメタルクラッドフレームコ
ンパートメント、93は下段遮断器コンパートメント、
94は母線コンパートメント、95は変流器、96は接
続導体、97はケーブルコンパートメント、98は制御
引込ケーブル部、99はサージアブソーバである。真空
遮断器は電源が3相であるので一電源に対して紙面に対
して奥行きに3個有する。
FIG. 16 shows the internal structure of the vacuum switchgear two-stage switchgear of this embodiment. 91 is an upper breaker compartment, 92 is a metal clad frame compartment, 93 is a lower breaker compartment,
94 is a busbar compartment, 95 is a current transformer, 96 is a connection conductor, 97 is a cable compartment, 98 is a control lead-in cable section, and 99 is a surge absorber. Since the power supply of the vacuum circuit breaker has three phases, three vacuum circuit breakers are provided for one power supply at a depth with respect to the paper surface.

【0127】(実施例7)図17は実施例6と同じ真空
バルブを用いて直流回路を遮断する主回路構成を示す図
である。80は直流電源、81は直流負荷、82は真空
バルブ、83はショートリング、84は電磁反発コイ
ル、85は転流コンデンサ、86は転流リアクトル、8
7はトリガギャップ、88は静止型過電流引外し装置、
89はZnO非直線抵抗体である。
(Embodiment 7) FIG. 17 is a diagram showing a main circuit configuration for interrupting a DC circuit by using the same vacuum valve as in Embodiment 6. 80 is a DC power supply, 81 is a DC load, 82 is a vacuum valve, 83 is a short ring, 84 is an electromagnetic repulsion coil, 85 is a commutation capacitor, 86 is a commutation reactor, 8
7 is a trigger gap, 88 is a static overcurrent trip device,
Reference numeral 89 denotes a ZnO nonlinear resistor.

【0128】本実施例においては、次の特徴が得られ
る。
In this embodiment, the following features are obtained.

【0129】(1)遮断時に気中アークを発生しないの
で、騒音を発生せず、防災効果が大きい。
(1) Since no air arc is generated at the time of interruption, no noise is generated and the disaster prevention effect is large.

【0130】(2)開極時間が短いため(約1ms)規格
値を上まわる突進率の事故電流の遮断が可能で、限流値
を小さく抑えることができる。
(2) Since the opening time is short (about 1 ms), it is possible to cut off the fault current having a rush rate exceeding the standard value, and it is possible to keep the current limiting value small.

【0131】(3)真空バルブの使用により高周波のコン
デンサ放電電流の遮断が可能で、アーク時間が極めて短
く(約0.5ms)接点消耗が少なくできる。
(3) The use of a vacuum valve makes it possible to cut off high-frequency capacitor discharge current, extremely short arc time (about 0.5 ms), and reduce contact wear.

【0132】(4)静止型過電流引外し装置の採用により
電流目盛を精度良く設定でき、経年変化がない。
(4) The current scale can be set with high accuracy by employing a static overcurrent trip device, and there is no aging.

【0133】(5)ラッチ式の電動ばね操作器の採用によ
り、操作電流が大幅に低減するとともに保持電流が不要
となる。
(5) The use of a latch-type electric spring actuator significantly reduces the operating current and eliminates the need for a holding current.

【0134】(6)占有面積が約1/4となり、変電所ス
ペースの縮小が可能となる。
(6) The occupied area is reduced to about 1/4, and the substation space can be reduced.

【0135】[0135]

【発明の効果】本発明によれば、アーク電極と該アーク
電極を支持する支持部材と該支持部材に連なるコイル電
極とを有する固定側電極及び可動側電極を兼ね備えた真
空遮断器において、結晶粒径が53μm以下になるよう
に機械的に粉砕混合したことを特徴とする微細金属混合
粉末を放電焼結,ホットプレス,HIPのいずれかを用
い焼結を行うことで、高導電性金属,耐孤性金属,耐電
圧性金属及び耐溶着性金属ともに結晶粒が微細になり、
初期性能の良い高性能電極部材が得られ、さらに、前記
アーク電極と上記アーク電極支持部材,コイル電極材、
好ましくは導電棒とは非接合からなる焼結又は摩擦圧力
接合処理による金相学的に一体の構造を有し、前記支持
部材及びコイル電極のろう付けが不要となるので、アー
ク電極支持部材及びコイル電極材の強度向上により電極
変形に伴う溶着障害を防止できることからより信頼性,
安全性の高い真空遮断器が得られる。
According to the present invention, in a vacuum circuit breaker having both a fixed-side electrode and a movable-side electrode having an arc electrode, a support member for supporting the arc electrode, and a coil electrode connected to the support member, crystal grains are provided. The fine metal mixed powder, which is mechanically pulverized and mixed so as to have a diameter of 53 μm or less, is sintered by using any one of discharge sintering, hot pressing, and HIP to obtain a highly conductive metal, Crystal grains become fine for all of solitary metals, voltage-resistant metals and welding-resistant metals,
A high-performance electrode member having good initial performance is obtained, and the arc electrode, the arc electrode support member, the coil electrode material,
Preferably, the conductive rod has a metallographically integral structure by non-bonding sintering or friction pressure bonding processing, and since the brazing of the support member and the coil electrode becomes unnecessary, the arc electrode support member and the coil electrode By improving the strength of the material, it is possible to prevent welding failure due to electrode deformation, so
A highly safe vacuum circuit breaker can be obtained.

【0136】本発明によれば、アーク電極と該アーク電
極を支持する支持部材以降とを有する固定側電極及び可
動側電極を備えた真空遮断器において、前記アーク電極
と上記アーク電極支持部材以降の高導電性金属とは非接
合からなる溶融又は固相拡散接合によって一体の構造を
有する。また、好ましくは前記支持部材以降として溶融
によって一体にするものでは、0.01〜2.5重量%の
Cr,Ag,V,Nb,Zr,Si,W及びBe等を含
有したCu合金から構成されるのが好ましく、ろう付け
接合に伴う各部材の機械加工工程及び組立工程の低減と
ろう付け接合不良による電極材の破壊や脱落を防止する
とともに強度向上にも役だち、電極変形に伴う溶着障害
を防止できる。更に、アーク電極内にPb等の低融点金
属を多く含有でき溶着を防止できることからより小型
で、信頼性及び安全性の高い真空遮断器とそれに用いる
真空バルブ及び電気接点が得られる。
According to the present invention, in a vacuum circuit breaker provided with a fixed-side electrode and a movable-side electrode having an arc electrode and a support member for supporting the arc electrode, a vacuum circuit breaker provided with the arc electrode and the arc electrode support member and thereafter. It has an integral structure with a highly conductive metal by non-bonding melting or solid phase diffusion bonding. Preferably, the support member and the subsequent members are integrated by melting, and are made of a Cu alloy containing 0.01 to 2.5% by weight of Cr, Ag, V, Nb, Zr, Si, W, Be and the like. It is preferable to reduce the machining process and assembling process of each member due to brazing, prevent the destruction and falling off of the electrode material due to poor brazing, and improve the strength, as well as the welding failure due to electrode deformation. Can be prevented. Further, since a low melting point metal such as Pb is contained in the arc electrode and welding can be prevented, a smaller, highly reliable and safe vacuum circuit breaker, and a vacuum valve and an electric contact used therefor can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の機械的による粉砕金属微細粉末(粒径
53μm以下)の収率を示すグラフ。
FIG. 1 is a graph showing the yield of mechanically pulverized fine metal powder (particle size: 53 μm or less) of an example.

【図2】本発明の真空遮断器用電極部材の製造方法を示
す断面図。
FIG. 2 is a cross-sectional view illustrating a method for manufacturing an electrode member for a vacuum circuit breaker according to the present invention.

【図3】本発明の溶融後の電極の断面図。FIG. 3 is a sectional view of an electrode after melting according to the present invention.

【図4】本発明の切削加工後の電極の断面図。FIG. 4 is a cross-sectional view of an electrode after cutting according to the present invention.

【図5】電極部材作製後のアーク電極部の減肉量の比較
図。
FIG. 5 is a comparison diagram of the thickness reduction of the arc electrode portion after the electrode member is manufactured.

【図6】真空バルブの断面図。FIG. 6 is a sectional view of a vacuum valve.

【図7】本発明のスパイラル溝を有する電極の平面図。FIG. 7 is a plan view of an electrode having a spiral groove according to the present invention.

【図8】本発明のスパイラル溝を有する電極の断面図。FIG. 8 is a sectional view of an electrode having a spiral groove according to the present invention.

【図9】真空バルブの断面図。FIG. 9 is a sectional view of a vacuum valve.

【図10】真空バルブの断面図。FIG. 10 is a sectional view of a vacuum valve.

【図11】遮断電圧電流実効値と絶縁筒外径との関係を
示す線図。
FIG. 11 is a diagram showing a relationship between an effective value of a cutoff voltage and current and an outer diameter of an insulating cylinder.

【図12】アーク電極直径と遮断電圧電流実効値との関
係を示す線図。
FIG. 12 is a diagram showing a relationship between an arc electrode diameter and an effective value of a breaking voltage and current.

【図13】絶縁筒外径とアーク電極直径との関係を示す
線図。
FIG. 13 is a diagram showing the relationship between the outer diameter of the insulating cylinder and the diameter of the arc electrode.

【図14】アーク電極直径と凹部直径又は電極裏導体直
径との関係を示す線図。
FIG. 14 is a diagram showing the relationship between the diameter of an arc electrode and the diameter of a concave portion or the diameter of an electrode back conductor.

【図15】真空遮断器の全体構成図。FIG. 15 is an overall configuration diagram of a vacuum circuit breaker.

【図16】真空遮断器2段積スイッチギアの構成図。FIG. 16 is a configuration diagram of a vacuum circuit breaker two-stage switchgear.

【図17】直流真空遮断器を用いた回路図。FIG. 17 is a circuit diagram using a DC vacuum circuit breaker.

【符号の説明】[Explanation of symbols]

1,31a,31b…アーク電極、2…アーク電極支持
部、3,33a,33b…外部導体接続部、4,39a,
39b…裏導体、5A,5B,5C,5D,5E…アー
ク走行面、13A,13B,13C…スリット溝、14
…連絡部、L…幅、21,30a…固定電極、23,3
0b…可動電極、24,34…電極棒、28,35…絶
縁筒体、36…シール部材、26,37…ベローズ、2
7,38a,38b…シールリング、60…エポキシレ
ジン筒、61…絶縁操作ロッド、62…上部端子、63
…集電子、64…下部端子、65…接触ばね、66…支
えレバー、68…プランジャ、71…主レバー、72…
引外しコイル、75…投入コイル、76…排気筒、80
…直流電源、81…直流負荷、82…真空バルブ、83
…ショートリング、84…電磁反発コイル、85…転流
コンデンサ、86…転流リアクトル、87…トリガギャ
ップ、88…静止型過電流引外し装置、89…ZnO非
直線抵抗体。
1, 31a, 31b: arc electrode, 2: arc electrode support, 3, 33a, 33b: external conductor connection, 4, 39a,
39b: back conductor, 5A, 5B, 5C, 5D, 5E: arc running surface, 13A, 13B, 13C: slit groove, 14
... Connecting part, L ... Width, 21, 30a ... Fixed electrode, 23,3
0b: movable electrode, 24, 34: electrode rod, 28, 35: insulating cylinder, 36: sealing member, 26, 37: bellows, 2
7, 38a, 38b: seal ring, 60: epoxy resin cylinder, 61: insulating operation rod, 62: upper terminal, 63
... current collector, 64 ... lower terminal, 65 ... contact spring, 66 ... support lever, 68 ... plunger, 71 ... main lever, 72 ...
Trip coil, 75: closing coil, 76: exhaust cylinder, 80
... DC power supply, 81 ... DC load, 82 ... Vacuum valve, 83
... Short ring, 84 ... Electromagnetic repulsion coil, 85 ... Commutation capacitor, 86 ... Commutation reactor, 87 ... Trigger gap, 88 ... Stationary overcurrent trip device, 89 ... ZnO nonlinear resistor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷水 徹 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 袴田 好美 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toru Tanimizu 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Hitachi, Ltd. Kokubu Plant (72) Inventor Yoshimi Hakamada 1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture No. 1 Inside the Kokubu Plant of Hitachi, Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】絶縁容器内に固定側電極と可動側電極とを
備えた真空バルブと、該真空バルブ内の前記固定側電極
と可動側電極との各々に前記真空バルブ外に接続された
導体端子と、前記可動側電極に接続された絶縁ロッドを
介して前記可動側電極を駆動する開閉手段とを備え、前
記固定側電極と可動側電極がアーク電極部材と該アーク
電極を支持するアーク電極支持部材とを備えた真空遮断
器において、前記アーク電極部材は高導電性金属と、該
高導電性金属より高融点の耐火性金属とを有し、前記耐
火性金属は粒径5〜6μmのものが70重量%以上であ
ることを特徴とする真空遮断器。
1. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and a conductor connected to each of the fixed side electrode and the movable side electrode inside the vacuum valve outside the vacuum valve. A terminal, and opening and closing means for driving the movable side electrode via an insulating rod connected to the movable side electrode, wherein the fixed side electrode and the movable side electrode support an arc electrode member and the arc electrode. In a vacuum circuit breaker provided with a support member, the arc electrode member has a highly conductive metal and a refractory metal having a higher melting point than the highly conductive metal, and the refractory metal has a particle size of 5 to 6 μm. A vacuum circuit breaker characterized in that the content is 70% by weight or more.
【請求項2】絶縁容器内に固定側電極と可動側電極とを
備えた真空バルブと、該真空バルブ内の前記固定側電極
と可動側電極との各々に前記真空バルブ外に接続された
導体端子と、前記可動側電極に接続された絶縁ロッドを
介して前記可動側電極を駆動する開閉手段とを備え、前
記固定側電極と可動側電極がアーク電極部材と該アーク
電極を支持するアーク電極支持部材と該支持部材に連な
るコイル電極部材又は前記アーク電極部材と通電電極棒
を備えた真空遮断器において、 前記アーク電極部材は高導電性金属中に該高導電性金属
よりも高融点である耐火性金属粒子が分散した焼結合金
又は前記高導電性金属を前記耐火性金属に溶浸させた溶
浸合金からなり、前記耐火性金属は粒径5〜60μmの
ものが70体積%以上であり、前記アーク電極部材と前
記アーク電極支持部材、前記アーク電極部材とアーク電
極支持部材とコイル電極部材、又は前記アーク電極部材
と通電電極棒とが前記焼結又は溶浸によって一体に形成
されていることを特徴とする真空遮断器。
2. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and a conductor connected to each of the fixed side electrode and the movable side electrode inside the vacuum valve outside the vacuum valve. A terminal, and opening and closing means for driving the movable side electrode via an insulating rod connected to the movable side electrode, wherein the fixed side electrode and the movable side electrode support an arc electrode member and the arc electrode. In a vacuum circuit breaker provided with a supporting member and a coil electrode member connected to the supporting member or the arc electrode member and an energizing electrode rod, the arc electrode member has a higher melting point in the highly conductive metal than the highly conductive metal. It is made of a sintered alloy in which refractory metal particles are dispersed or an infiltration alloy in which the highly conductive metal is infiltrated into the refractory metal, wherein the refractory metal has a particle size of 5 to 60 μm in an amount of 70% by volume or more. Yes, the arc The electrode member and the arc electrode support member, the arc electrode member and the arc electrode support member and the coil electrode member, or the arc electrode member and the current-carrying electrode rod are integrally formed by sintering or infiltration. And a vacuum circuit breaker.
【請求項3】絶縁容器内に固定側電極と可動側電極とを
備えた真空バルブと、該真空バルブ内の前記固定側電極
と可動側電極との各々に前記真空バルブ外に接続された
導体端子と、前記可動側電極に接続された絶縁ロッドを
介して前記可動側電極を駆動する開閉手段とを備え、前
記固定側電極と可動側電極がアーク電極部材と該アーク
電極を支持するアーク電極支持部材を備えた真空遮断器
の製造方法において、前記アーク電極部材は高導電性金
属と該高導電性金属より高融点の耐火性金属とを有し、
該耐火性金属の粒径5〜60μmの粉末を70重量%以
上に分級した混合粉末を製造し、次いで前記混合粉末を
用いて焼結又は前記高導電性金属を前記耐火性金属に溶
浸させることによって製造することを特徴とする真空遮
断器の製造方法。
3. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and a conductor connected to each of the fixed side electrode and the movable side electrode inside the vacuum valve outside the vacuum valve. A terminal, and opening and closing means for driving the movable side electrode via an insulating rod connected to the movable side electrode, wherein the fixed side electrode and the movable side electrode support an arc electrode member and the arc electrode. In the method of manufacturing a vacuum circuit breaker provided with a support member, the arc electrode member has a highly conductive metal and a refractory metal having a higher melting point than the highly conductive metal,
A mixed powder is prepared by classifying a powder having a particle size of 5 to 60 μm of the refractory metal to 70% by weight or more, and then using the mixed powder, sintering or infiltrating the refractory metal with the highly conductive metal. A method for manufacturing a vacuum circuit breaker.
【請求項4】絶縁容器内に固定側電極と可動側電極とを
備えた真空バルブと、該真空バルブ内の前記固定側電極
と可動側電極との各々に前記真空バルブ外に接続された
導体端子と、前記可動側電極に接続された絶縁ロッドを
介して前記可動側電極を駆動する開閉手段とを備えた真
空遮断器の製造法において、前記固定側電極及び可動側
電極はアーク電極部材と、該アーク電極部材を支持する
高導電性金属からなるアーク電極支持部材又は前記アー
ク電極部材と通電電極棒とを有し、前記アーク電極部材
は前記高導電性金属と耐火性金属とを有し、該耐火性金
属の粒径5〜60μmの粉末を70重量%以上に分級し
た混合粉末を用いて焼結又は前記高導電性金属を前記耐
火性金属に溶浸させることによって製造するとともに、
前記アーク電極部材とアーク電極支持部又は通電電極棒
とを前記焼結又は摩擦圧接によって一体に形成すること
を特徴とする真空遮断器の製造方法。
4. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and a conductor connected to each of the fixed side electrode and the movable side electrode inside the vacuum valve outside the vacuum valve. In a method for manufacturing a vacuum circuit breaker comprising a terminal and opening / closing means for driving the movable electrode through an insulating rod connected to the movable electrode, the fixed electrode and the movable electrode are an arc electrode member. Having an arc electrode support member or an arc electrode member and a conducting electrode rod made of a highly conductive metal supporting the arc electrode member, wherein the arc electrode member has the highly conductive metal and a refractory metal. Manufactured by sintering or infiltrating the refractory metal with the highly conductive metal using a mixed powder obtained by classifying a powder having a particle size of 5 to 60 μm of the refractory metal to 70% by weight or more;
The method for manufacturing a vacuum circuit breaker, wherein the arc electrode member and the arc electrode support portion or the current-carrying electrode bar are integrally formed by the sintering or friction welding.
【請求項5】高真空に保たれた絶縁容器内に固定側電極
と可動側電極とを備えた真空バルブにおいて、前記両電
極は耐火性金属と高導電性金属との複合部材よりなるア
ーク電極部材と、該アーク電極部材を支持する高導電性
金属からなるアーク電極支持部材又は通電電極棒とを有
し、前記アーク電極部材は高導電性金属と該高導電性金
属より高融点である耐火性金属との焼結合金又は前記高
導電性金属を前記耐火性金属に溶浸させた溶浸合金より
なり、前記耐火性金属の粒径が5〜60μmのものが7
0重量%以上であり、前記アーク電極とアーク電極支持
部材又は通電電極部材とは前記焼結又は溶融によって一
体に形成されていることを特徴とする真空バルブ。
5. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container maintained in a high vacuum, wherein both electrodes are arc electrodes made of a composite member of a refractory metal and a highly conductive metal. A member, and an arc electrode support member or a current-carrying electrode rod made of a highly conductive metal that supports the arc electrode member, wherein the arc electrode member has a high conductivity metal and a refractory metal having a higher melting point than the highly conductive metal. 7 comprising a sintered alloy with a refractory metal or an infiltration alloy in which the highly conductive metal is infiltrated into the refractory metal, wherein the refractory metal has a particle size of 5 to 60 μm.
0% by weight or more, and the arc electrode and the arc electrode supporting member or the current-carrying electrode member are integrally formed by sintering or melting.
【請求項6】粒径5〜60μmのものが70重量%以上
である耐火性金属と高導電性金属との焼結合金又は前記
高導電性金属を前記耐火性金属に溶浸させた溶浸合金か
らなるアーク電極部材と、該アーク電極部材を支持する
高導電性金属からなるアーク電極支持部材又は通電電極
棒とが焼結又は溶浸によって一体に形成されていること
を特徴とする電気接点。
6. A sintered alloy of a refractory metal having a particle size of 5 to 60 μm and 70% by weight or more and a highly conductive metal or an infiltration in which the highly conductive metal is infiltrated into the refractory metal. An electric contact, wherein an arc electrode member made of an alloy and an arc electrode support member or a current-carrying electrode rod made of a highly conductive metal supporting the arc electrode member are integrally formed by sintering or infiltration. .
【請求項7】絶縁容器内に固定側電極と可動側電極とを
備えた真空バルブと、該真空バルブ内の前記固定側電極
と可動側電極との各々に前記真空バルブ外に接続された
導体端子と、前記可動側電極に接続された絶縁ロッドを
介して前記可動側電極を駆動する開閉手段とを備えた真
空遮断器において、前記固定側電極及び可動側電極は粒
径5〜60μmのものが70体積%以上である耐火性金
属粒子と高導電性金属とを有する合金からなるアーク電
極と、該アーク電極を支持する高導電性金属からなる電
極支持部と、該電極支持部より細径である裏導体及び該
裏導体より大径である外部導体接続部を有し、前記アー
ク電極と電極支持部,裏導体及び外部導体接続部とは前
記高導電性金属によって一体に形成されていることを特
徴とする真空遮断器。
7. A vacuum valve provided with a fixed electrode and a movable electrode in an insulating container, and a conductor connected to each of the fixed electrode and the movable electrode in the vacuum valve outside the vacuum valve. A vacuum circuit breaker comprising a terminal and opening / closing means for driving the movable-side electrode via an insulating rod connected to the movable-side electrode, wherein the fixed-side electrode and the movable-side electrode have a particle size of 5 to 60 μm. Electrode made of an alloy containing refractory metal particles having a volume ratio of 70% by volume or more and a highly conductive metal, an electrode support made of a highly conductive metal supporting the arc electrode, and a smaller diameter than the electrode support The arc electrode and the electrode support, the back conductor, and the external conductor connection are integrally formed of the highly conductive metal. Vacuum cut-off characterized by .
【請求項8】絶縁容器内に固定側電極と可動側電極とを
備えた真空バルブと、該真空バルブ内の前記固定側電極
と可動側電極との各々に前記真空バルブ外に接続された
導体端子と、前記可動側電極に接続された絶縁ロッドを
介して前記可動側電極を駆動する開閉手段とを備えた真
空遮断器において、前記固定側電極及び可動側電極は粒
径5〜60μmのものが70体積%以上である耐火性金
属粒子と高導電性金属とを有する合金からなるアーク電
極と、該アーク電極を支持する高導電性金属からなる電
極支持部とを有し、前記アーク電極と電極支持部とは前
記高導電性金属によって一体に形成され、前記絶縁容器
は円筒であり、定格電圧(kV)と遮断電流実効値(k
A)とを乗算した値(y)が前記絶縁容器外径x(mm)
より以下の(1)式及び(2)式によって求められる値
の範囲内にあることを特徴とする真空遮断器。 y=11.25x−525 …(1) y=5.35x−242 …(2)
8. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and a conductor connected outside of the vacuum valve to each of the fixed side electrode and the movable side electrode in the vacuum valve. A vacuum circuit breaker comprising a terminal and opening / closing means for driving the movable-side electrode via an insulating rod connected to the movable-side electrode, wherein the fixed-side electrode and the movable-side electrode have a particle size of 5 to 60 μm. Has an arc electrode made of an alloy containing refractory metal particles having a volume ratio of 70% by volume or more and a highly conductive metal, and an electrode support portion made of a highly conductive metal for supporting the arc electrode. The electrode support is formed integrally with the highly conductive metal, the insulating container is a cylinder, and has a rated voltage (kV) and an effective breaking current (k).
A) multiplied by (A) is the outer diameter x (mm) of the insulating container.
A vacuum circuit breaker characterized by being within a range of values determined by the following equations (1) and (2). y = 11.25x-525 (1) y = 5.35x-242 (2)
【請求項9】絶縁容器内に固定側電極と可動側電極とを
備えた真空バルブと、該真空バルブ内の前記固定側電極
と可動側電極との各々に前記真空バルブ外に接続された
導体端子と、前記可動側電極に接続された絶縁ロッドを
介して前記可動側電極を駆動する開閉手段とを備えた真
空遮断器において、前記固定側電極及び可動側電極は粒
径5〜60μmのものが70体積%以上である耐火性金
属粒子と高導電性金属とを有する合金からなるアーク電
極と、該アーク電極を支持する高導電性金属からなる電
極支持部とを有し、前記アーク電極と電極支持部とは前
記高導電性金属によって一体に形成され、前記アーク電
極の直径y(mm)は定格電圧(kV)と遮断電流実効値
(kA)とを乗算した値x(kVA×103)より以下の
(3)及び(4)式によって求められる値の範囲内であ
ることを特徴とする真空遮断器。 y=0.15x+22 …(3) y=0.077x+20 …(4)
9. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and a conductor connected to each of the fixed side electrode and the movable side electrode inside the vacuum valve outside the vacuum valve. A vacuum circuit breaker comprising a terminal and opening / closing means for driving the movable-side electrode via an insulating rod connected to the movable-side electrode, wherein the fixed-side electrode and the movable-side electrode have a particle size of 5 to 60 μm. Has an arc electrode made of an alloy containing refractory metal particles having a volume ratio of 70% by volume or more and a highly conductive metal, and an electrode support portion made of a highly conductive metal for supporting the arc electrode. The electrode support is formed integrally with the highly conductive metal, and the diameter y (mm) of the arc electrode is a value x (kVA × 10 3 ) obtained by multiplying the rated voltage (kV) by the effective value of the breaking current (kA). ), The following equations (3) and (4) Vacuum circuit breaker characterized by being within the range of values determined by: y = 0.15x + 22 (3) y = 0.0077x + 20 (4)
【請求項10】絶縁容器内に固定側電極と可動側電極と
を備えた真空バルブと、該空気バルブ内の前記固定側電
極と可動側電極との各々に前記真空バルブ外に接続され
た導体端子と、前記可動側電極に接続された絶縁ロッド
を介して前記可動側電極を駆動する開閉手段とを備えた
真空遮断器において、前記固定側電極及び可動側電極は
粒径5〜60μmのものが70体積%以上である耐火性
金属粒子と高導電性金属とを有する合金からなるアーク
電極と、該アーク電極を支持する高導電性金属からなる
電極支持部とを有し、前記アーク電極と電極支持部とは
前記高導電性金属によって一体に形成され、前記絶縁容
器は円筒であり、該絶縁容器の外径y(mm)は前記アーク
電極の直径x(mm)より以下の(5)及び(6)式によ
って求められる値の範囲内にあることを特徴とする真空
遮断器。 y=1.26x+10 …(5) y=1.26x+30 …(6)
10. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and a conductor connected to each of the fixed side electrode and the movable side electrode in the air valve outside the vacuum valve. A vacuum circuit breaker comprising a terminal and opening / closing means for driving the movable-side electrode via an insulating rod connected to the movable-side electrode, wherein the fixed-side electrode and the movable-side electrode have a particle size of 5 to 60 μm. Has an arc electrode made of an alloy containing refractory metal particles having a volume ratio of 70% by volume or more and a highly conductive metal, and an electrode support portion made of a highly conductive metal for supporting the arc electrode. The electrode support is formed integrally with the highly conductive metal, the insulating container is a cylinder, and the outer diameter y (mm) of the insulating container is smaller than the diameter x (mm) of the arc electrode by (5) And of the value obtained by equation (6) Vacuum circuit breaker, characterized in that in 囲内. y = 1.26x + 10 (5) y = 1.26x + 30 (6)
【請求項11】高真空に保たれた絶縁容器内に固定側電
極と可動側電極とを備えた真空バルブにおいて、前記両
電極は粒径5〜60μmのものが70体積%以上である
耐火性金属粒子と高導電性金属とを有する複合部材より
なるアーク電極と、該アーク電極を支持する高導電性金
属からなる電極支持部と、該電極支持部より細径である
裏導体及び該裏導体より大径である外部導体接続部を有
し、前記アーク電極と電極支持部,裏導体及び外部導体
接続部とは前記高導電性金属によって一体に形成されて
いることを特徴とする真空バルブ。
11. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container maintained in a high vacuum, wherein said two electrodes have a particle size of 5 to 60 μm and have a fire resistance of 70% by volume or more. An arc electrode made of a composite member having metal particles and a highly conductive metal, an electrode support made of a highly conductive metal supporting the arc electrode, a back conductor smaller in diameter than the electrode support, and the back conductor A vacuum valve having an outer conductor connection portion having a larger diameter, wherein the arc electrode and the electrode support portion, the back conductor, and the outer conductor connection portion are integrally formed of the highly conductive metal.
【請求項12】高真空に保たれた絶縁容器内に固定側電
極と可動側電極とを備えた真空バルブにおいて、前記両
電極は粒径5〜60μmのものが70体積%以上である
耐火性金属粒子と高導電性金属とを有する複合部材より
なるアーク電極と、該アーク電極を支持する高導電性金
属からなる電極支持部とを有し、前記アーク電極と電極
支持部とは前記高導電性金属によって一体に形成され、
前記絶縁容器は円筒であり、定格電圧(kV)と遮断電
流実効値(kA)とを乗算した値(y)が前記絶縁容器
外径x(mm)より以下の(1)式及び(2)式によって
求められる値の範囲内にあることを特徴とする真空バル
ブ。 y=11.25x−525 …(1) y=5.35x−242 …(2)
12. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container maintained in a high vacuum, wherein said two electrodes have a particle size of 5 to 60 μm and have a fire resistance of 70% by volume or more. An arc electrode made of a composite member having metal particles and a highly conductive metal, and an electrode support portion made of a highly conductive metal supporting the arc electrode, wherein the arc electrode and the electrode support portion have the high conductivity. Formed integrally with a metal
The insulating container is a cylinder, and a value (y) obtained by multiplying a rated voltage (kV) by an effective value of a breaking current (kA) is smaller than the insulating container outer diameter x (mm) by the following equations (1) and (2). A vacuum valve characterized by being within a range of values determined by an equation. y = 11.25x-525 (1) y = 5.35x-242 (2)
【請求項13】高真空に保たれた絶縁容器内に固定側電
極と可動側電極とを備えた真空バルブにおいて、前記両
電極は粒径5〜60μmのものが70体積%以上である
耐火性金属粒子と高導電性金属と低融点金属とを有する
複合部材よりなるアーク電極と、該アーク電極を支持す
る高導電性金属からなる電極支持部とを有し、前記アー
ク電極と電極支持部とは前記高導電性金属によって一体
に形成され、前記アーク電極の直径y(mm)は定格電圧
(kV)と遮断電流実効値(kA)とを乗算した値x
(kVA×103)より以下の(3)及び(4)式によっ
て求められる値の範囲内であることを特徴とする真空バ
ルブ。 y=0.15x+22 …(3) y=0.077x+20 …(4)
13. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container maintained in a high vacuum, wherein said two electrodes have a particle size of 5 to 60 μm and have a fire resistance of 70% by volume or more. An arc electrode made of a composite member having metal particles, a highly conductive metal and a low melting point metal, and an electrode support portion made of a highly conductive metal supporting the arc electrode, wherein the arc electrode and the electrode support portion Is integrally formed of the highly conductive metal, and the diameter y (mm) of the arc electrode is a value x obtained by multiplying the rated voltage (kV) by the effective value of the breaking current (kA).
(kVA × 10 3 ) A vacuum valve having a value within a range determined by the following equations (3) and (4). y = 0.15x + 22 (3) y = 0.0077x + 20 (4)
【請求項14】高真空に保たれた絶縁容器内に固定側電
極と可動側電極とを備えた真空バルブにおいて、前記両
電極は粒径5〜60μmのものが70体積%以上である
耐火性金属粒子と高導電性金属とを有する複合部材より
なるアーク電極と、該アーク電極を支持する高導電性金
属からなる電極支持部とを有し、前記アーク電極と電極
支持部とは前記高導電性金属の溶融によって一体に形成
され、前記絶縁容器は円筒であり、該絶縁容器の外径y
(mm)は前記アーク電極の直径x(mm)より以下の
(5)及び(6)式によって求められる値の範囲内にあ
ることを特徴とする真空バルブ。 y=1.26x+10 …(5) y=1.26x+30 …(6)
14. A vacuum valve provided with a fixed side electrode and a movable side electrode in an insulating container maintained in a high vacuum, wherein said two electrodes have a particle size of 5 to 60 μm and have a fire resistance of 70% by volume or more. An arc electrode made of a composite member having metal particles and a highly conductive metal, and an electrode support portion made of a highly conductive metal supporting the arc electrode, wherein the arc electrode and the electrode support portion have the high conductivity. The insulating container is a cylinder, and has an outer diameter y of the insulating container.
(Mm) is within a range of a value obtained from the diameter x (mm) of the arc electrode by the following equations (5) and (6). y = 1.26x + 10 (5) y = 1.26x + 30 (6)
【請求項15】粒径5〜60μmのものが70体積%以
上である耐火性金属粒子と高導電性金属と低融点金属と
を有する合金からなるアーク電極と、該アーク電極を支
持する高導電性金属からなる電極支持部と、該電極支持
部より細径である裏導体及び該裏導体より大径である外
部導体接続部を有し、前記アーク電極と電極支持部,裏
導体及び外部導体接続部とは前記高導電性金属によって
一体に形成されていることを特徴とする電気接点。
15. An arc electrode made of an alloy containing refractory metal particles having a particle size of 5 to 60 μm of 70% by volume or more, a highly conductive metal and a low melting point metal, and a high conductive material supporting said arc electrode. An electrode support made of a conductive metal, a back conductor having a smaller diameter than the electrode support, and an external conductor connection having a larger diameter than the back conductor. The arc electrode, the electrode support, the back conductor, and the external conductor An electrical contact, wherein the connection part is formed integrally with the highly conductive metal.
JP02951198A 1998-02-12 1998-02-12 Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method Expired - Fee Related JP3428416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02951198A JP3428416B2 (en) 1998-02-12 1998-02-12 Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02951198A JP3428416B2 (en) 1998-02-12 1998-02-12 Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method

Publications (2)

Publication Number Publication Date
JPH11232971A true JPH11232971A (en) 1999-08-27
JP3428416B2 JP3428416B2 (en) 2003-07-22

Family

ID=12278135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02951198A Expired - Fee Related JP3428416B2 (en) 1998-02-12 1998-02-12 Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method

Country Status (1)

Country Link
JP (1) JP3428416B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249848A3 (en) * 2001-04-13 2004-12-22 Hitachi, Ltd. Electric contact and manufacturing method thereof
JP2007323850A (en) * 2006-05-30 2007-12-13 Toshiba Corp Manufacturing method for contact and conductive shaft of vacuum valve
WO2014202389A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switch contacts
WO2014202390A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switching contacts
JP2015138682A (en) * 2014-01-23 2015-07-30 株式会社明電舎 Electrode material and method for manufacturing electrode material
JP2015138681A (en) * 2014-01-23 2015-07-30 株式会社明電舎 Electrode material and method for manufacturing electrode material
WO2015133262A1 (en) * 2014-03-04 2015-09-11 株式会社明電舎 Electrode material
JP6075423B1 (en) * 2015-09-03 2017-02-08 株式会社明電舎 Vacuum circuit breaker
EP3106534A4 (en) * 2014-03-04 2018-01-24 Meidensha Corporation Alloy
US9959986B2 (en) 2014-03-04 2018-05-01 Meidensha Corporation Method for producing electrode material
EP3315621A4 (en) * 2015-06-24 2018-12-19 Meidensha Corporation Method for manufacturing electrode material, and electrode material
CN114171334A (en) * 2021-10-28 2022-03-11 国网内蒙古东部电力有限公司电力科学研究院 Preparation method of composite contact

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249848A3 (en) * 2001-04-13 2004-12-22 Hitachi, Ltd. Electric contact and manufacturing method thereof
JP2007323850A (en) * 2006-05-30 2007-12-13 Toshiba Corp Manufacturing method for contact and conductive shaft of vacuum valve
US10573472B2 (en) 2013-06-20 2020-02-25 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switching contacts
WO2014202390A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switching contacts
WO2014202389A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switch contacts
US10256054B2 (en) 2013-06-20 2019-04-09 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switch contacts
JP2015138682A (en) * 2014-01-23 2015-07-30 株式会社明電舎 Electrode material and method for manufacturing electrode material
JP2015138681A (en) * 2014-01-23 2015-07-30 株式会社明電舎 Electrode material and method for manufacturing electrode material
WO2015111423A1 (en) * 2014-01-23 2015-07-30 株式会社明電舎 Electrode material and method for producing electrode material
WO2015133262A1 (en) * 2014-03-04 2015-09-11 株式会社明電舎 Electrode material
JP5904308B2 (en) * 2014-03-04 2016-04-13 株式会社明電舎 Method for producing electrode material
US9724759B2 (en) 2014-03-04 2017-08-08 Meidensha Corporation Electrode material
EP3109883A4 (en) * 2014-03-04 2018-01-24 Meidensha Corporation Electrode material
EP3106534A4 (en) * 2014-03-04 2018-01-24 Meidensha Corporation Alloy
US9959986B2 (en) 2014-03-04 2018-05-01 Meidensha Corporation Method for producing electrode material
EP3315621A4 (en) * 2015-06-24 2018-12-19 Meidensha Corporation Method for manufacturing electrode material, and electrode material
WO2017038538A1 (en) * 2015-09-03 2017-03-09 株式会社明電舎 Vacuum circuit breaker
US10262819B2 (en) 2015-09-03 2019-04-16 Meidensha Corporation Vacuum circuit breaker
JP6075423B1 (en) * 2015-09-03 2017-02-08 株式会社明電舎 Vacuum circuit breaker
CN114171334A (en) * 2021-10-28 2022-03-11 国网内蒙古东部电力有限公司电力科学研究院 Preparation method of composite contact

Also Published As

Publication number Publication date
JP3428416B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP2874522B2 (en) Vacuum circuit breaker, vacuum valve used therefor, electrode for vacuum valve, and method of manufacturing the same
US5852266A (en) Vacuum circuit breaker as well as vacuum valve and electric contact used in same
CN110036454B (en) Improved electrical contact alloy for vacuum contactor
JP3428416B2 (en) Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method
US6248969B1 (en) Vacuum circuit breaker, and vacuum bulb and vacuum bulb electrode used therefor
US6437275B1 (en) Vacuum circuit-breaker, vacuum bulb for use therein, and electrodes thereof
US5697150A (en) Method forming an electric contact in a vacuum circuit breaker
JPH1012103A (en) Vacuum circuit-breaker, and vacuum valve and electric contact using the breaker
JPS59163726A (en) Vacuum breaker
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JP2001135206A (en) Electrode, vacuum valve electrode, vacuum valve and vacuum switch
JP3627712B2 (en) Vacuum circuit breaker and vacuum valve and electrical contact used therefor
JP3381605B2 (en) Vacuum circuit breaker and vacuum valve and electrical contacts used for it
JPH10340654A (en) Vacuum circuit breaker and vacuum valve used therefor and electric contract and manufacture
JPH11167847A (en) Vacuum circuit breaker and vacuum bule for vacuum circuit breaker and electrode of vacuum bulb
JPH09231881A (en) Vacuum breaker, vacuum valve and electric contact for use in the breaker, and manufacture of them
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JPH07335092A (en) Vacuum circuit breaker, and vacuum valve and electrical contact for vacuum circuit breaker, and manufacture thereof
JPH09198950A (en) Vacuum circuit breaker, vacuum valve and electrical contact point used for the breaker, and their manufacture
EP0917171A2 (en) Vacuum circuit-breaker, vacuum bulb for use therein, and electrodes thereof
JPH09274835A (en) Vacuum circuit breaker, and vacuum valve and electric contact to be used for vacuum circuit breaker
JP2000149732A (en) Vacuum breaker and vacuum bulb used in it and its electrode
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JPH09237555A (en) Vacuum circuit breaker, vacuum valve and electric contact point used for it, and manufacture
JPH11102629A (en) Vacuum circuit breaker and vacuum valve used therefor and electric contact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees