JP2015138682A - Electrode material and method for manufacturing electrode material - Google Patents

Electrode material and method for manufacturing electrode material Download PDF

Info

Publication number
JP2015138682A
JP2015138682A JP2014009953A JP2014009953A JP2015138682A JP 2015138682 A JP2015138682 A JP 2015138682A JP 2014009953 A JP2014009953 A JP 2014009953A JP 2014009953 A JP2014009953 A JP 2014009953A JP 2015138682 A JP2015138682 A JP 2015138682A
Authority
JP
Japan
Prior art keywords
powder
electrode material
less
electrode
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014009953A
Other languages
Japanese (ja)
Other versions
JP6311325B2 (en
Inventor
啓太 石川
Keita Ishikawa
啓太 石川
薫 北寄崎
Kaoru Kitakizaki
薫 北寄崎
将大 林
Masahiro Hayashi
将大 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2014009953A priority Critical patent/JP6311325B2/en
Publication of JP2015138682A publication Critical patent/JP2015138682A/en
Application granted granted Critical
Publication of JP6311325B2 publication Critical patent/JP6311325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrode material by which an electrode material superior in voltage resistance and deposition resistance can be manufactured at lower cost.SOLUTION: A method for manufacturing an electrode material comprises the steps of: molding mix powder consisting of a mixture of Cu powder, Cr powder, powder of refractory metal (e.g. Mo), and Te powder by compression; and sintering the resultant mold in a non-oxidizing atmosphere at a temperature of a Cu melting point or lower. As the Cr powder mixed in the mix powder, Cr powder of particles having diameters of 40 μm or smaller, of which the volume relative particle amount is less than 10% is used. In the mix powder, the Cr powder is mixed by 10 to 50 wt.%, the refractory metal powder is mixed by 1 to less than 7 wt.%, and the Te powder is mixed by 0.01 to 0.2 wt.%.

Description

本発明は、真空遮断器等の電極に用いられる電極材料及び電極材料の製造方法に関する。   The present invention relates to an electrode material used for an electrode such as a vacuum circuit breaker and a method for producing the electrode material.

銅−モリブデン−クロム(以下、Cu−Mo−Crと記述する)複合金属は、従来から知られている銅−ビスマス(Cu−Bi)複合金属や銅−タングステン(Cu−W)複合金属等と比較して、耐溶着性が良好であることに加え、電流遮断能力や絶縁耐力等の電気的特性が優れた真空遮断器の電極材料として知られている(例えば、特許文献1−3)。   The copper-molybdenum-chromium (hereinafter referred to as Cu-Mo-Cr) composite metal is a conventionally known copper-bismuth (Cu-Bi) composite metal, copper-tungsten (Cu-W) composite metal, etc. In comparison, it has been known as an electrode material for a vacuum circuit breaker having excellent electric resistance such as current interruption capability and dielectric strength in addition to good welding resistance (for example, Patent Documents 1-3).

また、真空遮断器の電極材料に低融点のテルル(Te)を添加することで、電極材料の耐溶着性能を向上させている(例えば、特許文献4)。   Further, the welding resistance of the electrode material is improved by adding tellurium (Te) having a low melting point to the electrode material of the vacuum circuit breaker (for example, Patent Document 4).

このCu−Mo−Cr複合金属を用いて高品質、高性能な電極材料を製造する方法として、焼結法(例えば、特許文献2)や溶浸法(例えば、特許文献3)が提案されている。   As a method for producing a high-quality, high-performance electrode material using this Cu—Mo—Cr composite metal, a sintering method (for example, Patent Document 2) and an infiltration method (for example, Patent Document 3) have been proposed. Yes.

焼結法では、複数の高融点金属(例えば、MoとCr)の混合粉末をCuの融点以上に加熱する仮焼結工程と、仮焼結工程で得られる反応生成物(例えば、MoCr合金組成の仮焼結体)を粉砕してCu粉末と混合する混合工程と、混合工程で得られる混合粉末を加圧成形した成形体を非酸化性雰囲気にてCuの融点以下に加熱する焼結工程と、により電極材料を製造している。   In the sintering method, a mixed powder of a plurality of high melting point metals (for example, Mo and Cr) is heated to a melting point of Cu or higher, and a reaction product (for example, a MoCr alloy composition) obtained in the preliminary sintering process. And a sintering step of heating a molded body obtained by pressure-molding the mixed powder obtained in the mixing step to a temperature below the melting point of Cu in a non-oxidizing atmosphere. Thus, an electrode material is manufactured.

また、溶浸法では、Mo粉末とCr粉末とを均一に混合する混合工程と、混合工程で得られる混合物を加圧成形する成形工程と、成形工程で得られる成形体を1100〜1200℃の温度で焼結する仮焼結工程と、仮焼結工程で得られる仮焼結体上にCu薄板を配置し、1100〜1200℃の温度に保持して仮焼結体中にCuを液相焼結させて溶浸させるCu溶浸工程と、により電極材料を製造している。溶浸法は、高電圧大容量、多頻度遮断特性が要求される真空遮断器の電極材料の製造に用いられている。   Further, in the infiltration method, the mixing step of uniformly mixing the Mo powder and the Cr powder, the forming step of press-molding the mixture obtained in the mixing step, and the molded body obtained in the forming step are 1100 to 1200 ° C. A preliminary sintering step of sintering at a temperature, and a Cu thin plate is disposed on the preliminary sintered body obtained in the preliminary sintering step, and the Cu is liquid-phased in the temporary sintered body by maintaining the temperature at 1100 to 1200 ° C. An electrode material is manufactured by a Cu infiltration process in which sintering and infiltration are performed. The infiltration method is used for the production of an electrode material for a vacuum circuit breaker that requires high voltage, large capacity and high frequency interruption characteristics.

特開昭59−27418号公報JP 59-27418 特開平4−334832号公報Japanese Patent Laid-Open No. 4-334832 特開2012−7203号公報JP 2012-7203 A 特開2009−76218号公報JP 2009-76218 A 特開2002−373537号公報JP 2002-373537 A 特開2002−180150号公報JP 2002-180150 A

しかしながら、焼結法では、仮焼結工程を行う時間が必要であることや、仮焼結体を粉砕する際には、粉砕雰囲気を管理した環境にて粉砕及び分級を行うので、電極材料の製造コストが高くなるおそれがある。   However, in the sintering method, it takes time to perform the preliminary sintering step, and when the temporary sintered body is pulverized, it is pulverized and classified in an environment in which the pulverizing atmosphere is controlled. Manufacturing cost may be high.

また、溶浸法は、仮焼結工程やCu溶浸工程等を行うため、電極材料の製造コストが高くなるおそれがある。   Moreover, since the infiltration method performs a temporary sintering process, a Cu infiltration process, or the like, there is a possibility that the manufacturing cost of the electrode material is increased.

Cuを主成分とし高融点金属を1種類含有する電極材料により電極接点を製造する場合、Cu粉末及び高融点金属粉末(例えば、Cr粉末)を混合し、プレス焼結にて電極接点が製造される。これに対して、特許文献3に記載されているように、Cuを主成分とし高融点金属を2種類以上含有する電極材料により電極接点を製造する場合には、ただ単に高融点金属粉末を混合し、プレス焼結する方法では、電極材料内部に気孔が多く存在し、電極接点として使用できない。   When manufacturing an electrode contact with an electrode material containing Cu as a main component and containing one type of refractory metal, Cu electrode and refractory metal powder (for example, Cr powder) are mixed and the electrode contact is manufactured by press sintering. The On the other hand, as described in Patent Document 3, when an electrode contact is made of an electrode material containing Cu as a main component and containing two or more kinds of refractory metals, the refractory metal powder is simply mixed. However, the press sintering method has many pores inside the electrode material and cannot be used as an electrode contact.

電極材料内部に気孔が多く存在する理由として、焼結によって高融点金属(例えば、Mo等)へCrの拡散がおこり、Cr粒子が小さくなり、その部分が空隙となることや、焼結に伴う収縮により成形体の空隙部がCuで埋まらないことが考えられる。内部に空隙が存在する電極材料により形成された電極接点は、ろう材が電極接点に浸入する等の理由により、電極接点と電極棒とのろう付けが不良となるおそれが生じる。   The reason why there are many pores inside the electrode material is that Cr is diffused into the high melting point metal (for example, Mo) by sintering, Cr particles become small, and the part becomes voids, or it accompanies the sintering. It is conceivable that the voids of the molded body are not filled with Cu due to the shrinkage. An electrode contact formed of an electrode material having a void in the interior may cause the brazing between the electrode contact and the electrode rod to be defective due to the brazing material entering the electrode contact.

このように、電極材料の耐電圧性等の電気的特性を向上するために耐電圧性に優れた高融点金属を添加する技術が考案されているが、製造コストが増加する等の理由により、真空遮断器等の製品に適用することができない場合が少なくない。そこで、比較的低コストで製造することが可能で、耐電圧性等の電気的特性に優れた電極材料が求められている。   As described above, a technique for adding a refractory metal excellent in withstand voltage to improve electrical characteristics such as withstand voltage of the electrode material has been devised, but for reasons such as an increase in manufacturing cost, In many cases, it cannot be applied to products such as vacuum circuit breakers. Therefore, there is a demand for an electrode material that can be manufactured at a relatively low cost and has excellent electrical characteristics such as voltage resistance.

また、真空遮断器等の受変電機器には、さらなる小型低価格化が求められている。そこで、真空遮断器等に設けられる電極材料を低強度化し、ジュール熱により電極材料が溶着した際の引き剥がし力を低減させることで、電極の開閉動作を行う操作機構部を小型化することが検討されている。   Further, receiving and transforming equipment such as a vacuum circuit breaker is required to be further reduced in size and price. Therefore, it is possible to reduce the strength of the electrode material provided in the vacuum circuit breaker and the like, and to reduce the peeling force when the electrode material is welded by Joule heat, thereby reducing the size of the operation mechanism unit for opening and closing the electrode. It is being considered.

上記事情に鑑み、本発明は、電極材料の耐電圧性及び耐溶着性の向上に貢献する技術を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a technique that contributes to improvement of voltage resistance and welding resistance of an electrode material.

上記目的を達成する本発明の電極材料の一態様は、10〜50重量%の、粒子径が40μm以下の粒子の体積相対粒子量が10%未満であるCr粉末と、1重量%以上〜7重量%未満の耐火性金属粉末と、0.01〜0.2重量%のTeと、を含有し、残部がCu粉末と不可避的不純物である混合物を、加圧成形して焼結したことを特徴としている。   One aspect of the electrode material of the present invention that achieves the above object is 10 to 50% by weight of Cr powder having a particle size of 40 μm or less and a volume relative particle amount of less than 10%, and 1 to 7% by weight. A mixture containing less than wt% refractory metal powder and 0.01 to 0.2 wt% Te, with the balance being Cu powder and unavoidable impurities, compression molded and sintered. It is a feature.

また、上記目的を達成する本発明の電極材料の他の態様は、上記電極材料において、前記耐火性金属は、Mo、W、Nb、Ta、V、Zr、Be、Hf、Ir、Pt、Ti、Si、Rh及びRuのいずれかから選択される少なくとも1種であることを特徴としている。   Another aspect of the electrode material of the present invention that achieves the above object is that the refractory metal is Mo, W, Nb, Ta, V, Zr, Be, Hf, Ir, Pt, Ti in the electrode material. , Si, Rh, and Ru, at least one selected from the group consisting of Si, Rh, and Ru.

また、上記目的を達成する本発明の電極材料の他の態様は、上記電極材料において、前記耐火性金属粉末の粒子径は、30μm以下であることを特徴としている。   Another aspect of the electrode material of the present invention that achieves the above object is characterized in that, in the electrode material, the particle diameter of the refractory metal powder is 30 μm or less.

また、上記目的を達成する本発明の電極材料の他の態様は、上記電極材料において、前記Cr粉末の平均粒子径は、150μm以下であることを特徴としている。   Another aspect of the electrode material of the present invention that achieves the above object is characterized in that, in the electrode material, an average particle diameter of the Cr powder is 150 μm or less.

また、上記目的を達成する本発明の電極材料の製造方法の一態様は、10〜50重量%の、粒子径が40μm以下の粒子の体積相対粒子量が10%未満であるCr粉末と、1重量%以上〜7重量%未満の耐火性金属粉末と、0.01〜0.2重量%のTeと、残部であるCu粉末と、を混合する混合工程と、前記混合工程で得られた混合物を加圧成形する成形工程と、前記成形工程で得られた成形体を焼結する焼結工程と、を有することを特徴としている。   Moreover, one aspect of the method for producing the electrode material of the present invention that achieves the above object is as follows. A mixing step of mixing refractory metal powder of not less than 7% by weight and less than 7% by weight, 0.01 to 0.2% by weight of Te, and the remaining Cu powder, and a mixture obtained in the mixing step It has the forming process which press-molds, and the sintering process which sinters the molded object obtained at the said forming process.

また、上記目的を達成する本発明の真空インタラプタの一態様は、真空容器内に、固定電極と、当該固定電極に離接可能に対向配置される可動電極とを設けた真空インタラプタであって、前記固定電極と前記可動電極の少なくとも一方の電極を、10〜50重量%の、粒子径が40μm以下の粒子の体積相対粒子量が10%未満であるCr粉末と、1重量%以上〜7重量%未満の耐火性金属粉末と、0.01〜0.2重量%のTeと、を含有し、残部がCu粉末と不可避的不純物である混合物を、加圧成形後、焼結して形成することを特徴としている。   Further, one aspect of the vacuum interrupter of the present invention that achieves the above object is a vacuum interrupter provided with a fixed electrode and a movable electrode that is disposed so as to be detachably attached to the fixed electrode in a vacuum vessel, At least one of the fixed electrode and the movable electrode is composed of 10 to 50% by weight of Cr powder having a particle diameter of 40 μm or less and a volume relative particle amount of less than 10%, and 1 to 7% by weight. % Of refractory metal powder and 0.01 to 0.2% by weight of Te, with the balance being Cu powder and inevitable impurities, a mixture formed by pressing and sintering. It is characterized by that.

以上の発明によれば、電極材料の耐電圧性及び耐溶着性の向上に貢献することができる。   According to the above invention, it can contribute to the improvement of the voltage resistance and welding resistance of an electrode material.

本発明の実施形態に係る真空インタラプタの概略断面図である。It is a schematic sectional drawing of the vacuum interrupter which concerns on embodiment of this invention. Cr粉末Aの粒度分布の測定結果である。It is a measurement result of the particle size distribution of Cr powder A. Cr粉末Bの粒度分布の測定結果である。It is a measurement result of the particle size distribution of Cr powder B. 実施例1の電極材料の断面の顕微鏡写真である。2 is a photomicrograph of a cross section of the electrode material of Example 1. Teを添加することによる引張強さの変化を示す特性図である。It is a characteristic view which shows the change of the tensile strength by adding Te.

本発明の実施形態に係る電極材料及び電極材料の製造方法並びに真空インタラプタについて、図を参照して詳細に説明する。   An electrode material, an electrode material manufacturing method, and a vacuum interrupter according to an embodiment of the present invention will be described in detail with reference to the drawings.

発明者らは、Crの粒度、焼結時のCrの拡散を考慮し、最適な焼結温度及びCu、Cr、耐火性金属(例えば、Mo)の配合量から耐電圧向上の検討をし、さらに、低融点金属のTeを添加することで、耐溶着性の向上を検討することで本発明の完成に至ったものである。   The inventors considered the grain size of Cr, the diffusion of Cr during sintering, and examined the improvement in withstand voltage from the optimum sintering temperature and the blending amount of Cu, Cr, refractory metal (for example, Mo), Furthermore, the present invention has been completed by examining the improvement of the welding resistance by adding low melting point metal Te.

本発明の実施形態に係る電極材料及び電極材料の製造方法は、Cu粉末、Cr粉末、Te粉末及び耐火性金属粉末を混合した混合粉体を加圧成形し、得られた成形体を非酸化性雰囲気にてCuの融点以下の温度で焼成することで、比較的低コストで耐電圧性及び耐溶着性に優れた電極材料を製造するものである。   An electrode material and an electrode material manufacturing method according to an embodiment of the present invention are obtained by pressure-molding a mixed powder obtained by mixing Cu powder, Cr powder, Te powder and refractory metal powder, and non-oxidizing the obtained molded body. By firing at a temperature below the melting point of Cu in a neutral atmosphere, an electrode material excellent in voltage resistance and welding resistance is manufactured at a relatively low cost.

具体的には、混合粉体に混合するCr粉末として、粒子径が40μm以下の粒子の体積相対粒子量が10%未満のCr粉末を用いることで、実質的に焼結後の充填率が89%以上であって、Cu相にCrと耐火性金属の固溶体が分散している組織を有する電極材料を製造することができる。さらに、Cu−Cr−耐火性金属の粒界や空隙に極微量のTeを存在させることで、電極材料の材料強度を低下させ、電極間の溶着時の引き剥がし力を低減し、電極材料の耐溶着性を大幅に向上させるものである。   Specifically, as the Cr powder to be mixed with the mixed powder, a Cr powder having a particle size of 40 μm or less and a volume relative particle amount of less than 10% is used. %, And an electrode material having a structure in which a solid solution of Cr and a refractory metal is dispersed in a Cu phase can be produced. Furthermore, the presence of a very small amount of Te in the grain boundaries and voids of the Cu—Cr—refractory metal reduces the material strength of the electrode material, reduces the peeling force during welding between the electrodes, This greatly improves the welding resistance.

Cu粉末は、例えば、市販の電解銅粉末を用いる。Cu粉末の形状は、必ずしも樹枝状である必要はなく、例えば、アトマイズ粉のような球状、不規則形状であってもよい。   As the Cu powder, for example, a commercially available electrolytic copper powder is used. The shape of the Cu powder is not necessarily a dendritic shape, and may be a spherical shape or an irregular shape such as an atomized powder.

Cr粉末は、例えば、平均粒子径150μm以下(ただし、粒子径が40μm以下の粒子の体積相対粒子量が10%未満)のものを使用する。Cr粉末は、10wt%以上50wt%以下の範囲、より好ましくは、20wt%以上30wt%以下の範囲で混合粉体に混合することで、耐電圧性に優れた電極材料を製造することができる。Cr粉末の混合量が20wt%以上30wt%以下の範囲である電極材料は、例えば、12〜36kV定格の真空インタラプタ(VI)に最適な電極材料となる。   As the Cr powder, for example, one having an average particle size of 150 μm or less (however, the volume relative particle amount of particles having a particle size of 40 μm or less is less than 10%) is used. By mixing the Cr powder with the mixed powder in the range of 10 wt% or more and 50 wt% or less, more preferably in the range of 20 wt% or more and 30 wt% or less, an electrode material having excellent voltage resistance can be manufactured. An electrode material in which the mixed amount of Cr powder is in the range of 20 wt% or more and 30 wt% or less is, for example, an electrode material optimal for a vacuum interrupter (VI) rated at 12 to 36 kV.

Mo粉末は、粒径が30μm以下のMo粉末、より好ましくは、最大粒径が4μm未満のMo粉末を使用する。Mo粉末は、1wt%以上7wt%未満の範囲、より好ましくは1wt%以上5wt%以下の範囲で混合粉体に混合することで、耐電圧性に優れた電極材料を製造することができる。なお、実施例では、耐火性金属として、Moを例示して説明するが、Moと同様に、耐火性を有し、Cr粒子を微細にする特性(すなわち、電極材料に空隙を形成する要因となり得る特性)を有する金属をMo粉末の替わりに用いても、同様の効果を得ることができる。このような耐火性金属としては、例えば、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、バナジウム(V)、ジルコニウム(Zr)、ベリリウム(Be)、ハフニウム(Hf)、イリジウム(Ir)、白金(Pt)、チタン(Ti)、ケイ素(Si)、ロジウム(Rh)及びルテニウム(Ru)等を挙げることができる。   As the Mo powder, a Mo powder having a particle size of 30 μm or less, more preferably, a Mo powder having a maximum particle size of less than 4 μm is used. By mixing the Mo powder with the mixed powder in the range of 1 wt% or more and less than 7 wt%, more preferably in the range of 1 wt% or more and 5 wt% or less, an electrode material excellent in voltage resistance can be manufactured. In the examples, Mo will be described as an example of a refractory metal. However, similar to Mo, it has fire resistance and has a characteristic of making Cr particles fine (that is, a factor for forming voids in the electrode material). The same effect can be obtained even when a metal having a property to be obtained is used instead of the Mo powder. Examples of such a refractory metal include tungsten (W), niobium (Nb), tantalum (Ta), vanadium (V), zirconium (Zr), beryllium (Be), hafnium (Hf), and iridium (Ir). Platinum (Pt), titanium (Ti), silicon (Si), rhodium (Rh), ruthenium (Ru), and the like.

Te粉末は、低融点金属であるので、焼結時にプレス体の表面より微量に揮散するため、Te粉末の粒子径の大きさは、Cr粒径よりも小さい粒子径のものを用いることが好ましく、より微細な粉末を用いると混合性が良好であると考えられる。Te粉末は、0.01wt%以上、より好ましくは0.01wt%以上0.2wt%以下の範囲で混合粉体に混合することで、耐溶着性に優れた電極材料を製造することができる。Te粉末の添加量は、焼結炉の真空度に応じて最適量(0.2wt%以上)を設定することができる。しかしながら、Teは高価な金属であるので、経済性や混合性を考慮して、0.01wt%以上0.2wt%以下の範囲で混合粉体に混合することが望ましい。   Since Te powder is a low melting point metal, it is volatilized in a trace amount from the surface of the pressed body during sintering. Therefore, it is preferable to use a Te powder having a particle size smaller than the Cr particle size. When a finer powder is used, the mixing property is considered good. By mixing Te powder with the mixed powder in the range of 0.01 wt% or more, more preferably 0.01 wt% or more and 0.2 wt% or less, an electrode material excellent in welding resistance can be manufactured. The addition amount of Te powder can be set to an optimum amount (0.2 wt% or more) according to the vacuum degree of the sintering furnace. However, since Te is an expensive metal, it is desirable to mix it with the mixed powder in the range of 0.01 wt% or more and 0.2 wt% or less in consideration of economy and mixability.

混合粉体は、焼結法で一般的に用いられる成形圧力(例えば、1〜4t/cm2)で成形し成形体とする。この成形体を、非酸化性雰囲気中(例えば、水素雰囲気中や真空雰囲気中)で、Cuの融点(1083℃)以下の温度で焼結し、焼結体を得る。なお、Mo粉末の粒径は、フィッシャー法によって測定された値を示し、Cr粉末の平均粒子径は、レーザー回折式粒度分布測定装置によって測定された値を示す。また、粉末の粒子の上限が定められている場合は、篩により分級した粉末であることを示す。 The mixed powder is molded at a molding pressure generally used in a sintering method (for example, 1 to 4 t / cm 2 ) to obtain a molded body. This molded body is sintered in a non-oxidizing atmosphere (for example, in a hydrogen atmosphere or a vacuum atmosphere) at a temperature not higher than the melting point of Cu (1083 ° C.) to obtain a sintered body. In addition, the particle diameter of Mo powder shows the value measured by the Fisher method, and the average particle diameter of Cr powder shows the value measured by the laser diffraction type particle size distribution measuring apparatus. Moreover, when the upper limit of the particle | grains of a powder is defined, it shows that it is the powder classified by the sieve.

本発明の実施形態に係る電極材料を用いて真空インタラプタを構成することができる。図1に示すように、本発明の実施形態に係る真空インタラプタ1は、真空容器2と、固定電極3と、可動電極4とを有する。   A vacuum interrupter can be configured using the electrode material according to the embodiment of the present invention. As shown in FIG. 1, a vacuum interrupter 1 according to an embodiment of the present invention includes a vacuum vessel 2, a fixed electrode 3, and a movable electrode 4.

真空容器2は、絶縁筒5の両開口端部が、固定側端板6及び可動側端板7でそれぞれ封止されることで構成される。   The vacuum vessel 2 is configured by sealing both open end portions of the insulating cylinder 5 with a fixed side end plate 6 and a movable side end plate 7, respectively.

固定電極3は、固定側端板6を貫通した状態で固定される。固定電極3の一端は、真空容器2内で、可動電極4の一端と対向するように固定されており、固定電極3の可動電極4と対向する端部には、電極材料8が設けられる。   The fixed electrode 3 is fixed in a state of passing through the fixed side end plate 6. One end of the fixed electrode 3 is fixed in the vacuum vessel 2 so as to face one end of the movable electrode 4, and an electrode material 8 is provided on the end of the fixed electrode 3 facing the movable electrode 4.

可動電極4は、可動側端板7に設けられる。可動電極4は、固定電極3と同軸上に設けられる。可動電極4は、図示省略の開閉手段(操作機構部)により軸方向に移動させられ、固定電極3と可動電極4の開閉が行われる。可動電極4の固定電極3と対向する端部には、電極材料8が設けられる。なお、可動電極4と可動側端板7との間には、ベローズ9が設けられ、真空容器2内を真空に保ったまま可動電極4を上下させ、固定電極3と可動電極4の開閉が行われる。   The movable electrode 4 is provided on the movable side end plate 7. The movable electrode 4 is provided coaxially with the fixed electrode 3. The movable electrode 4 is moved in the axial direction by an opening / closing means (operation mechanism unit) (not shown), and the fixed electrode 3 and the movable electrode 4 are opened and closed. An electrode material 8 is provided at the end of the movable electrode 4 facing the fixed electrode 3. A bellows 9 is provided between the movable electrode 4 and the movable side end plate 7, and the movable electrode 4 is moved up and down while keeping the inside of the vacuum vessel 2 in a vacuum, so that the fixed electrode 3 and the movable electrode 4 can be opened and closed. Done.

[Cr粉末の粒度分布の検討]
比較例1−6及び参考例1−5の電極材料を作製して、Cr粉末の粒度分布の違いによる電極材料の耐電圧性及びろう付け性についての検討を行った。後に詳細に説明する比較例、参考例及び実施例の電極材料の製造方法において、Cu粉末と、Mo粉末(平均粒子径3μm)は、共通のものを用いた。
[Examination of particle size distribution of Cr powder]
The electrode materials of Comparative Example 1-6 and Reference Example 1-5 were produced, and the voltage resistance and brazing properties of the electrode material due to the difference in the particle size distribution of Cr powder were examined. In the electrode material manufacturing methods of Comparative Examples, Reference Examples, and Examples which will be described in detail later, common Cu powder and Mo powder (average particle diameter of 3 μm) were used.

[比較例1]
比較例1の電極材料は、電極材料として従来から製造されているCu−Cr系の電極材料であり、各メーカでCr粒径及び組成、成形圧、焼結温度、焼結時間は所望とする特性より変えられている。
[Comparative Example 1]
The electrode material of Comparative Example 1 is a Cu—Cr-based electrode material that has been conventionally produced as an electrode material, and the Cr particle size and composition, molding pressure, sintering temperature, and sintering time are desired by each manufacturer. It is changed from the characteristic.

Cu粉末と、平均粒子径80μmのCr粉末(以後、Cr粉末Aと称する)とを重量比で、Cu:Cr=80:20の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1070℃で2時間焼成し、比較例1の焼結体(電極材料)を得た。 Cu powder and Cr powder having an average particle diameter of 80 μm (hereinafter referred to as Cr powder A) are mixed in a weight ratio so as to have a composition of Cu: Cr = 80: 20, and this mixed powder has an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained molded body was fired at 1070 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Comparative Example 1.

図2は、比較例1で用いたCr粉末Aの粒度分布を、レーザー回折式粒度分布測定装置により測定した結果を示す図である。Cr粉末Aにおいて、粒子径が40μm以下の粒子の体積相対粒子量(累積値)は、21%であった。   FIG. 2 is a diagram showing the results of measuring the particle size distribution of Cr powder A used in Comparative Example 1 with a laser diffraction particle size distribution measuring apparatus. In the Cr powder A, the volume relative particle amount (cumulative value) of particles having a particle diameter of 40 μm or less was 21%.

[参考例1]
Cu粉末と、平均粒子径80μmのCr粉末(以後、Cr粉末Bと称する)と、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=79:20:1の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1070℃で2時間焼成し、参考例1の焼結体(電極材料)を得た。
[Reference Example 1]
The weight ratio (wt%) of Cu powder, Cr powder with an average particle diameter of 80 μm (hereinafter referred to as Cr powder B), and Mo powder is Cu: Cr: Mo = 79: 20: 1. Then, 80 g of this mixed powder was filled in a mold having an inner diameter of 50 mm and molded with a press pressure of 4 t / cm 2 . The obtained molded body was fired at 1070 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Reference Example 1.

図3は、参考例1で用いたCr粉末Bの粒度分布を、レーザー回折式粒度分布測定装置により測定した結果を示す図である。Cr粉末Bは、Cr粉末Aを分級して、粒子径40μm以下の体積相対粒子量を5%未満としたものである。   FIG. 3 is a diagram showing the results of measuring the particle size distribution of Cr powder B used in Reference Example 1 with a laser diffraction particle size distribution measuring apparatus. The Cr powder B is obtained by classifying the Cr powder A so that the volume relative particle amount with a particle diameter of 40 μm or less is less than 5%.

[参考例2]
Cu粉末と、Cr粉末Bと、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=78:19:3の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1070℃で2時間焼成し、参考例2の焼結体(電極材料)を得た。
[Reference Example 2]
Cu powder, Cr powder B, and Mo powder are mixed in a weight ratio (wt%) so that the composition is Cu: Cr: Mo = 78: 19: 3, and this mixed powder has an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained compact was fired at 1070 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Reference Example 2.

[比較例2]
Cu粉末と、Cr粉末Aと、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=79:20:1の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1045℃で2時間焼成し、比較例2の焼結体(電極材料)を得た。
[Comparative Example 2]
Cu powder, Cr powder A, and Mo powder were mixed at a weight ratio (wt%) so that the composition of Cu: Cr: Mo = 79: 20: 1 was obtained, and the mixed powder had an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained molded body was fired at 1045 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Comparative Example 2.

[比較例3]
Cu粉末と、Cr粉末Aと、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=78:19:3の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1045℃で2時間焼成し、比較例3の焼結体(電極材料)を得た。
[Comparative Example 3]
Cu powder, Cr powder A, and Mo powder are mixed in a weight ratio (wt%) so that the composition is Cu: Cr: Mo = 78: 19: 3, and this mixed powder has an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained molded body was fired at 1045 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Comparative Example 3.

[比較例4]
Cu粉末と、Cr粉末Aと、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=76:19:5の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1045℃で2時間焼成し、比較例4の焼結体(電極材料)を得た。
[Comparative Example 4]
Cu powder, Cr powder A, and Mo powder are mixed in a weight ratio (wt%) so that the composition of Cu: Cr: Mo = 76: 19: 5 is obtained, and this mixed powder has an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained molded body was fired at 1045 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Comparative Example 4.

[比較例5]
Cu粉末と、Cr粉末Aと、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=73:18:9の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1045℃で2時間焼成し、比較例5の焼結体(電極材料)を得た。
[Comparative Example 5]
Cu powder, Cr powder A, and Mo powder are mixed in a weight ratio (wt%) so that the composition of Cu: Cr: Mo = 73: 18: 9 is obtained, and this mixed powder has an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained compact was fired at 1045 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Comparative Example 5.

[参考例3]
Cu粉末と、Cr粉末Bと、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=76:19:5の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1045℃で2時間焼成し、参考例3の焼結体(電極材料)を得た。
[Reference Example 3]
Cu powder, Cr powder B, and Mo powder are mixed in a weight ratio (wt%) so as to have a composition of Cu: Cr: Mo = 76: 19: 5, and this mixed powder has an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained compact was fired at 1045 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Reference Example 3.

[参考例4]
Cu粉末と、Cr粉末Bと、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=74:19:7の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1045℃で2時間焼成し、参考例4の焼結体(電極材料)を得た。
[Reference Example 4]
Cu powder, Cr powder B, and Mo powder are mixed in a weight ratio (wt%) so as to have a composition of Cu: Cr: Mo = 74: 19: 7, and this mixed powder has an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained molded body was fired at 1045 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Reference Example 4.

[参考例5]
Cu粉末と、Cr粉末Bと、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=76:19:5の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1030℃で2時間焼成し、参考例5の焼結体(電極材料)を得た。
[Reference Example 5]
Cu powder, Cr powder B, and Mo powder are mixed in a weight ratio (wt%) so as to have a composition of Cu: Cr: Mo = 76: 19: 5, and this mixed powder has an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained compact was fired at 1030 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Reference Example 5.

[比較例6]
Cu粉末と、100メッシュ(目開き150μm)のCr粉末と、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=80:5:15の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して、2t/cm2のプレス圧で加圧成型した。成形体の充填率は64%であった。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1050℃で2時間焼成し、比較例6の焼結体(電極材料)を得た。比較例6の焼結体の充填率は73%であり、焼結による収縮があまり発生せず、電極材料内部に気孔が多く存在しているものと考えられる。
[Comparative Example 6]
Cu powder, 100 mesh (aperture 150 μm) Cr powder, and Mo powder are mixed in a weight ratio (wt%) so that the composition is Cu: Cr: Mo = 80: 5: 15. 80 g of the mixed powder was filled in a mold having an inner diameter of 50 mm, and press-molded with a press pressure of 2 t / cm 2 . The filling factor of the molded body was 64%. The obtained molded body was fired at 1050 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Comparative Example 6. The filling factor of the sintered body of Comparative Example 6 is 73%, so that shrinkage due to sintering does not occur much, and it is considered that there are many pores inside the electrode material.

[電極材料の特性評価]
参考例1〜5及び比較例1〜6の焼結体に対して、充填率(%)、ろう付け性、耐電圧性能を測定した。充填率は、焼結体の密度を実測し、(実測密度/理論密度)×100(%)で算出した。ろう付け性は、焼結体とCu電極棒との間にろう材を入れ、真空ろう付け後、簡易的なハンマー衝撃法若しくは焼結体とCu電極棒の引張試験を行うことで密着力を評価した。耐電圧性能は、焼結体を電極として真空インタラプタを構成し、雷インパルスフラッシュオーバー試験(昇降法)にて、50%フラッシュオーバー電圧を求めた。なお、耐電圧性能は、比較例1の焼結体を1.0とした場合の相対値で示している。各焼結体の測定結果を表1に示す。
[Characteristic evaluation of electrode materials]
With respect to the sintered bodies of Reference Examples 1 to 5 and Comparative Examples 1 to 6, the filling rate (%), brazeability, and withstand voltage performance were measured. The filling factor was calculated by measuring the density of the sintered body and (measured density / theoretical density) × 100 (%). Brazing performance is achieved by placing a brazing material between the sintered body and the Cu electrode rod, and after vacuum brazing, performing a simple hammer impact method or performing a tensile test between the sintered body and the Cu electrode rod to increase the adhesion. evaluated. With respect to the withstand voltage performance, a vacuum interrupter was formed using a sintered body as an electrode, and a 50% flashover voltage was obtained by a lightning impulse flashover test (elevating method). In addition, withstand voltage performance is shown by the relative value when the sintered compact of the comparative example 1 is set to 1.0. Table 1 shows the measurement results of each sintered body.

表1に示すように、Cr粉末Bを用いた参考例1〜5の焼結体は、ろう付け性が良好であり、耐電圧性が比較例1の焼結体と比較して向上した。   As shown in Table 1, the sintered bodies of Reference Examples 1 to 5 using Cr powder B had good brazing properties and improved withstand voltage compared to the sintered body of Comparative Example 1.

また、焼結体の充填率は、Moの含有率が増加すると低下し、焼結体の耐電圧性は、Moの含有率が増加すると上昇していることがわかる。すなわち、電極材料の耐電圧性を向上させるためには、Moの含有率を向上させる必要があるが、Moの含有率を向上させることで、電極材料の充填率が低下すると電極材料のろう付け性が低下し、電極材料として使用することが困難となる。   Moreover, it turns out that the filling rate of a sintered compact falls, when the content rate of Mo increases, and the voltage endurance of a sintered compact rises, when the content rate of Mo increases. That is, in order to improve the voltage resistance of the electrode material, it is necessary to improve the Mo content. However, by increasing the Mo content, if the filling rate of the electrode material decreases, the electrode material is brazed. It becomes difficult to use as an electrode material.

参考例3の焼結体と比較例4の焼結体とを比較すると、Mo含有率が同じであっても、40μm以下の微細Cr粒子の体積相対粒子量を5%未満にすることで、焼結体の充填率が向上していることがわかる。これは、粒子径が40μm以下のCrは、Moに拡散しやすいと考えられ、この範囲のCrの粒子量を10%未満(より好ましくは、5%未満)とすることで、焼結時のCrの拡散量が抑制されて焼結体の空隙が低減し、焼結体の充填率が向上したものと考えられる。そして、充填率の向上により、焼結体内部へのろう材の浸入が抑制され、ろう付け性が向上したものと考えられる。   When comparing the sintered body of Reference Example 3 and the sintered body of Comparative Example 4, even if the Mo content is the same, by making the volume relative particle amount of fine Cr particles of 40 μm or less less than 5%, It can be seen that the filling factor of the sintered body is improved. This is because Cr having a particle size of 40 μm or less is considered to be easily diffused into Mo, and by making the amount of Cr particles in this range less than 10% (more preferably less than 5%), It is considered that the amount of Cr diffusion is suppressed, the voids in the sintered body are reduced, and the filling rate of the sintered body is improved. And it is thought that the improvement of the filling rate suppresses the infiltration of the brazing material into the sintered body and improves the brazing property.

すなわち、Mo粉末と混合するCr粉末の粒度分布を調整することで、焼結体の充填率を向上させることができる。その結果、焼結体へのMoの含有率を増加させることができるので、焼結体の耐電圧特性を向上させることができる。   That is, the filling rate of the sintered body can be improved by adjusting the particle size distribution of the Cr powder mixed with the Mo powder. As a result, since the Mo content in the sintered body can be increased, the withstand voltage characteristics of the sintered body can be improved.

なお、参考例3,5を比較すると、焼結体の充填率は、焼結温度により変化している。焼結温度が1045℃のとき充填率が最も高く、1045℃より低い場合は充填率が低下し、また、高い温度であっても充填率が90%を超える電極材料のMo含有率が少量となるため、耐電圧性能の大きな向上は見込めない。よって、焼結時の温度は、980〜1080℃、より好ましくは、1070〜1030℃、さらに好ましくは、1045℃とすることで、充填率が高く、ろう付け性に優れた焼結体を得ることができる。   In addition, when the reference examples 3 and 5 are compared, the filling factor of the sintered body changes depending on the sintering temperature. When the sintering temperature is 1045 ° C., the filling rate is the highest, and when the sintering temperature is lower than 1045 ° C., the filling rate is lowered, and even at a high temperature, the electrode material with a filling rate exceeding 90% has a small Mo content. Therefore, a significant improvement in withstand voltage performance cannot be expected. Therefore, the sintering temperature is 980 to 1080 ° C., more preferably 1070 to 1030 ° C., and still more preferably 1045 ° C., thereby obtaining a sintered body having a high filling rate and excellent brazing properties. be able to.

上記の参考例の知見に基づいて、発明者らは、本発明の完成に至ったものである。以下、具体的な実施例を挙げて、本発明の電極材料及び電極材料の製造方法について詳細に説明するが、本発明は、これらの実施例に限定されるものではない。   Based on the knowledge of the above reference example, the inventors have completed the present invention. Hereinafter, although the specific example is given and the electrode material of this invention and the manufacturing method of an electrode material are demonstrated in detail, this invention is not limited to these Examples.

[実施例1]
Cu粉末と、Cr粉末Bと、Mo粉末と、Te粉末(平均粒子径45μm)と、を重量比(wt%)で、Cu:Cr:Mo:Te=76:19:5:0.05の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1058℃で2時間焼成し、実施例1の焼結体(電極材料)を得た。
[Example 1]
Cu powder, Cr powder B, Mo powder, and Te powder (average particle diameter 45 μm) are in a weight ratio (wt%), Cu: Cr: Mo: Te = 76: 19: 5: 0.05 The mixture was mixed so as to have a composition, and 80 g of the mixed powder was filled in a mold having an inner diameter of 50 mm and molded with a press pressure of 4 t / cm 2 . The obtained molded body was fired at 1058 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Example 1.

[参考例6]
Cu粉末と、Cr粉末Bと、Mo粉末と、を重量比(wt%)で、Cu:Cr:Mo=76:19:5の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1058℃で2時間焼成し、参考例6の焼結体(電極材料)を得た。
[Reference Example 6]
Cu powder, Cr powder B, and Mo powder are mixed in a weight ratio (wt%) so as to have a composition of Cu: Cr: Mo = 76: 19: 5, and this mixed powder has an inner diameter of 50 mm. The mold was filled with 80 g and molded with a press pressure of 4 t / cm 2 . The obtained molded body was fired at 1058 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Reference Example 6.

[参考例7]
Cu粉末と、Cr粉末Bと、Mo粉末と、Te粉末(平均粒子径45μm)と、を重量比(wt%)で、Cu:Cr:Mo:Te=74:19:7:0.05の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1058℃で2時間焼成し、参考例7の焼結体(電極材料)を得た。
[Reference Example 7]
Cu powder, Cr powder B, Mo powder, and Te powder (average particle diameter 45 μm) are in a weight ratio (wt%), Cu: Cr: Mo: Te = 74: 19: 7: 0.05 The mixture was mixed so as to have a composition, and 80 g of the mixed powder was filled in a mold having an inner diameter of 50 mm and molded with a press pressure of 4 t / cm 2 . The obtained molded body was fired at 1058 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Reference Example 7.

[参考例8]
Cu粉末と、Cr粉末Bと、Mo粉末と、Te粉末(平均粒子径45μm)と、を重量比(wt%)で、Cu:Cr:Mo:Te=73:18:9:0.05の組成となるように混合し、この混合粉末を内径が50mmの金型に80g充填して4t/cm2のプレス圧で成形した。得られた成形体を非酸化性雰囲気(5×10-5Torrの真空中)にて1058℃で2時間焼成し、参考例8の焼結体(電極材料)を得た。
[Reference Example 8]
Cu powder, Cr powder B, Mo powder, and Te powder (average particle diameter 45 μm) are in a weight ratio (wt%), Cu: Cr: Mo: Te = 73: 18: 9: 0.05 The mixture was mixed so as to have a composition, and 80 g of the mixed powder was filled in a mold having an inner diameter of 50 mm and molded with a press pressure of 4 t / cm 2 . The obtained compact was fired at 1058 ° C. for 2 hours in a non-oxidizing atmosphere (in a vacuum of 5 × 10 −5 Torr) to obtain a sintered body (electrode material) of Reference Example 8.

[電極材料の特性評価]
まず、実施例1の焼結体の断面を顕微鏡(反射電子画像)により観察した。
[Characteristic evaluation of electrode materials]
First, the cross section of the sintered body of Example 1 was observed with a microscope (reflection electron image).

図4に示すように、実施例1の焼結体では、Cu相10にCr粒子11が分散し、且つ、Cu相10の中にMo−Crの固溶体12が分散している組織を有することがわかる。   As shown in FIG. 4, the sintered body of Example 1 has a structure in which Cr particles 11 are dispersed in the Cu phase 10 and a Mo—Cr solid solution 12 is dispersed in the Cu phase 10. I understand.

次に、実施例1及び参考例6〜8の焼結体に対して、充填率、ろう付け性、耐電圧性能、溶着力を測定した。溶着性試験は、STC試験(25kA−3s)により電極間を溶着させ、その電極間を引き剥がすのに必要な力(kN)に基づいて評価した。なお、耐電圧性能は、参考例6の焼結体を1.0とした場合の相対値で示している。各焼結体の測定結果を表2に示す。なお、溶着性試験は、可動電極に参考例6の焼結体を設け、固定電極に測定対象となる焼結体(例えば、実施例1の焼結体)を設けて行った。よって、ろう付け性が低下した焼結体(すなわち、参考例7,8の焼結体)に対しては、溶着性試験を行うことができなかったので表2では測定不可となっている。また、溶着性試験は、各サンプルに対して2回行い、その平均値を記載している。例えば、実施例1の焼結体の溶着性試験結果及び溶着面積の測定結果は、表3のようになった。   Next, with respect to the sintered bodies of Example 1 and Reference Examples 6 to 8, the filling rate, brazing property, withstand voltage performance, and welding force were measured. The weldability test was evaluated based on the force (kN) required for welding the electrodes by the STC test (25 kA-3 s) and peeling the electrodes apart. In addition, withstand voltage performance is shown by the relative value when the sintered body of Reference Example 6 is 1.0. Table 2 shows the measurement results of each sintered body. The weldability test was conducted by providing the movable electrode with the sintered body of Reference Example 6 and providing the fixed electrode with the sintered body to be measured (for example, the sintered body of Example 1). Therefore, since the weldability test could not be performed on the sintered body having reduced brazeability (that is, the sintered bodies of Reference Examples 7 and 8), measurement is impossible in Table 2. Moreover, the weldability test was performed twice with respect to each sample, and the average value is described. For example, the weldability test results and the measurement results of the weld area of the sintered body of Example 1 are as shown in Table 3.

表2に示すように、実施例1及び参考例6の焼結体は、ろう付け性に優れ、且つ溶着性に優れた電極材料である。特に、実施例1の焼結体は、参考例6と同等の耐電圧性を備え、溶着力が著しく低下している。なお、表1の結果では、充填率89%で、ろう付け性が△となっているが、これは、表1の試験で用いたろう材と、表2の試験で用いたろう材の種類が異なることに起因する。また、Teは、0.01wt%以上0.2wt%以下の範囲で混合粉体に添加することで、実施例1と同様の効果を得ることができた。また、Moの添加量の増加とともに、電極材料の充填率の低下(すなわち、ろう付け性の低下)が確認された。よって、Moの添加量は、混合粉体に対して1重量%以上7重量%未満の範囲とすることで、ろう付け性、耐電圧性及び耐溶着性に優れた電極材料を得ることができると考えられる。   As shown in Table 2, the sintered bodies of Example 1 and Reference Example 6 are electrode materials having excellent brazing properties and excellent weldability. In particular, the sintered body of Example 1 has a voltage resistance equivalent to that of Reference Example 6, and the welding power is remarkably reduced. In the results shown in Table 1, the filling rate is 89% and the brazing property is Δ. This is because the brazing material used in the test of Table 1 is different from the brazing material used in the test of Table 2. Due to that. Further, when Te was added to the mixed powder in the range of 0.01 wt% to 0.2 wt%, the same effect as in Example 1 could be obtained. In addition, a decrease in the filling rate of the electrode material (that is, a decrease in brazing properties) was confirmed as the amount of Mo added increased. Therefore, the addition amount of Mo is in the range of 1% by weight or more and less than 7% by weight with respect to the mixed powder, whereby an electrode material excellent in brazing property, voltage resistance and welding resistance can be obtained. it is conceivable that.

[電極材料にTeを添加することによる効果]
実施例1及び参考例6−8の焼結体に対して、引張強さの試験を行った結果を図5に示す。
[Effects of adding Te to electrode material]
The result of having tested the tensile strength with respect to the sintered compact of Example 1 and Reference Example 6-8 is shown in FIG.

図5に示すように、Teを添加することで、焼結体の引張強さが著しく低下(1/2以下に低減)することがわかる。引張強さが低下することで、電極材料が溶着した際の引き剥がし力が低下することが考えられる。ゆえに、Teの添加により引張強さが低下することによって、電極材料の耐溶着性を大幅に向上できるものと考えられる。なお、Moを添加することでも、引張強さが低下していることから、Moの添加量を増加させることで、電極材料の耐溶着性を向上させることができるものと考えられる。   As shown in FIG. 5, it can be seen that the addition of Te significantly reduces the tensile strength of the sintered body (reduced to 1/2 or less). It is conceivable that the peeling force when the electrode material is welded is reduced due to the decrease in tensile strength. Therefore, it is considered that the welding resistance of the electrode material can be greatly improved by reducing the tensile strength by adding Te. In addition, since tensile strength is falling also by adding Mo, it is thought that the welding resistance of an electrode material can be improved by increasing the addition amount of Mo.

以上のような、本発明の実施形態に係る電極材料及び電極材料の製造方法によれば、Cu粉末と、Cr粉末と、耐火性金属粉末とを混合し、得られた混合粉体を加圧成形して焼結する電極材料において、粒子径が40μm以下の粒子の体積相対粒子量が10%未満であるCr粉末を混合粉体に混合することで、ろう付け性に優れ、且つ耐電圧性が良好な電極材料を得ることができる。さらに、混合粉体に、Teを0.01wt%以上0.2wt%以下の範囲で添加することで、優れた耐電圧特性を維持しつつ、耐溶着性に優れた電極材料を得ることができる。Teの添加量は、耐溶着性向上の効果と、充填率の低下の程度を勘案して、最適な添加量が求められることとなる。例えば、Teを0.2wt%を大きく超えた量添加した場合、Teが揮散し、耐溶着性向上の効果は少なく、真空炉内のメンテナンスコストの増大が懸念される。また、Teの添加量が、0.01wt%の場合と、0.2wt%の場合とでは、電極材料の充填率はそれほど変わらなかった。   According to the electrode material and the electrode material manufacturing method according to the embodiment of the present invention as described above, Cu powder, Cr powder, and refractory metal powder are mixed, and the obtained mixed powder is pressed. In the electrode material to be molded and sintered, Cr powder whose particle size is less than 10μm and whose volume relative particle amount is less than 10% is mixed with the mixed powder, so that it has excellent brazeability and voltage resistance. Can be obtained. Furthermore, by adding Te to the mixed powder in the range of 0.01 wt% or more and 0.2 wt% or less, it is possible to obtain an electrode material excellent in welding resistance while maintaining excellent voltage resistance characteristics. . The addition amount of Te is required to be an optimum addition amount in consideration of the effect of improving the welding resistance and the degree of decrease in the filling rate. For example, when Te is added in an amount greatly exceeding 0.2 wt%, Te is volatilized, the effect of improving the welding resistance is small, and there is a concern that the maintenance cost in the vacuum furnace increases. Moreover, the filling rate of the electrode material did not change so much when the amount of Te added was 0.01 wt% and 0.2 wt%.

すなわち、本発明の実施形態に係る電極材料の製造方法は、予め粒度を調整したCr粉末を混合粉末に混合し、混合粉末を加圧成形し、この成形体をCuの融点以下で焼結させるようにすることで、焼結後の充填率が高くなり、ろう付けが可能な電極材料を比較的低コストで製造することができる。さらに、低融点金属であるTeを微量に含有させることで、耐溶着性に優れた電極材料を比較的低コストで製造することができる。   That is, in the method for producing an electrode material according to an embodiment of the present invention, Cr powder whose particle size has been adjusted in advance is mixed with mixed powder, the mixed powder is pressure-molded, and the molded body is sintered at a melting point of Cu or lower. By doing so, the filling rate after sintering becomes high, and an electrode material that can be brazed can be manufactured at a relatively low cost. Furthermore, an electrode material excellent in welding resistance can be manufactured at a relatively low cost by containing a small amount of Te which is a low melting point metal.

また、本発明による電極材料及び電極材料の製造方法によれば、実質的に焼結後の充填率が89%以上であって、Cu相の中にCrと耐火性金属の固溶体が分散している組織を有する電極材料を得ることができる。   In addition, according to the electrode material and the electrode material manufacturing method of the present invention, the filling rate after sintering is substantially 89% or more, and a solid solution of Cr and a refractory metal is dispersed in the Cu phase. An electrode material having a certain tissue can be obtained.

また、本発明の電極材料の製造方法によれば、高融点金属(Cr、Mo等)の固溶体がCu相に均一に分散し、緻密で耐電圧性能の良い電極材料を低コストで製造することができる。   In addition, according to the method for producing an electrode material of the present invention, a solid solution of a refractory metal (Cr, Mo, etc.) is uniformly dispersed in the Cu phase, and a dense electrode material having good withstand voltage performance is produced at low cost. Can do.

本発明の電極材料を、例えば、真空インタラプタ(VI)の固定電極及び可動電極の少なくとも一方に設けることで、真空インタラプタの電極接点の耐電圧性が向上する。電極接点の耐電圧性が向上すると、従来の真空インタラプタよりも開閉時の可動側電極と固定側電極のギャップを短くでき、さらに電極と絶縁筒とのギャップを短くすることが可能であることから、真空インタラプタの構造を小さくすることが可能となる。その結果、真空インタラプタを小型化することができる。真空インタラプタの部品を小型化することで、真空インタラプタの製造コストを低減することができる。   For example, by providing the electrode material of the present invention on at least one of the fixed electrode and the movable electrode of the vacuum interrupter (VI), the voltage resistance of the electrode contact of the vacuum interrupter is improved. When the voltage resistance of the electrode contact is improved, the gap between the movable side electrode and the fixed side electrode at the time of opening and closing can be shortened and the gap between the electrode and the insulating cylinder can be further shortened than the conventional vacuum interrupter. The structure of the vacuum interrupter can be reduced. As a result, the vacuum interrupter can be reduced in size. By reducing the size of the vacuum interrupter components, the manufacturing cost of the vacuum interrupter can be reduced.

また、本発明の電極材料及び真空インタラプタによれば、Moを含有する電極材料を用いた場合でも、優れた耐溶着性を有する真空インタラプタを得ることができる。例えば、高融点金属であるMoを添加した場合には、接触抵抗が増加することで、通電時の発熱量が多くなり、引き剥がし力が大きくなることが懸念されるが、Teを添加することにより電極材料の耐溶着性が向上し、引き剥がし力を小さくすることができる。このように電極材料の耐溶着性が向上すると、電極を引き離す際(真空インタラプタの開閉動作時)の操作機構部を小型化することができる。その結果、真空インタラプタと操作機構部等とにより構成される真空遮断器を大幅に小型化することができる。   Moreover, according to the electrode material and the vacuum interrupter of the present invention, a vacuum interrupter having excellent welding resistance can be obtained even when an electrode material containing Mo is used. For example, when Mo, which is a refractory metal, is added, there is a concern that the amount of heat generated during energization increases due to an increase in contact resistance, and the peeling force increases, but Te should be added. As a result, the welding resistance of the electrode material is improved, and the peeling force can be reduced. When the welding resistance of the electrode material is improved in this way, the operation mechanism unit when the electrodes are separated (during the opening / closing operation of the vacuum interrupter) can be reduced in size. As a result, the vacuum circuit breaker constituted by the vacuum interrupter and the operation mechanism unit can be greatly reduced in size.

1…真空インタラプタ
2…真空容器
3…固定電極
4…可動電極
5…絶縁筒
6…固定側端板
7…可動側端板
8…電極材料(電極接点)
9…ベローズ
10…Cu相
11…Cr粒子
12…Mo−Crの固溶体
DESCRIPTION OF SYMBOLS 1 ... Vacuum interrupter 2 ... Vacuum container 3 ... Fixed electrode 4 ... Movable electrode 5 ... Insulating cylinder 6 ... Fixed side end plate 7 ... Movable side end plate 8 ... Electrode material (electrode contact)
9 ... Bellows 10 ... Cu phase 11 ... Cr particles 12 ... Solid solution of Mo-Cr

Claims (6)

10〜50重量%の、粒子径が40μm以下の粒子の体積相対粒子量が10%未満であるCr粉末と、
1重量%以上〜7重量%未満の耐火性金属粉末と、
0.01〜0.2重量%のTeと、を含有し、
残部がCu粉末と不可避的不純物である混合物を、加圧成形して焼結した
ことを特徴とする電極材料。
10 to 50% by weight of Cr powder with a particle diameter of 40 μm or less and a volume relative particle amount of less than 10%,
1% by weight to less than 7% by weight of refractory metal powder,
0.01 to 0.2% by weight of Te,
An electrode material characterized in that a mixture in which the balance is Cu powder and inevitable impurities is pressed and sintered.
前記耐火性金属は、Mo、W、Nb、Ta、V、Zr、Be、Hf、Ir、Pt、Ti、Si、Rh及びRuのいずれかから選択される少なくとも1種である
ことを特徴とする請求項1に記載の電極材料。
The refractory metal is at least one selected from Mo, W, Nb, Ta, V, Zr, Be, Hf, Ir, Pt, Ti, Si, Rh, and Ru. The electrode material according to claim 1.
前記耐火性金属粉末の粒子径は、30μm以下である
ことを特徴とする請求項1または請求項2に記載の電極材料。
The electrode material according to claim 1 or 2, wherein a particle size of the refractory metal powder is 30 µm or less.
前記Cr粉末の平均粒子径は、150μm以下である
ことを特徴とする請求項1から請求項3のいずれか1項に記載の電極材料。
4. The electrode material according to claim 1, wherein an average particle diameter of the Cr powder is 150 μm or less. 5.
10〜50重量%の、粒子径が40μm以下の粒子の体積相対粒子量が10%未満であるCr粉末と、1重量%以上〜7重量%未満の耐火性金属粉末と、0.01〜0.2重量%のTeと、残部であるCu粉末と、を混合する混合工程と、
前記混合工程で得られた混合物を加圧成形する成形工程と、
前記成形工程で得られた成形体を焼結する焼結工程と、
を有することを特徴とする電極材料の製造方法。
10 to 50% by weight of Cr powder having a particle size of 40 μm or less and a volume relative particle amount of less than 10%, refractory metal powder of 1 to 7% by weight, 0.01 to 0% A mixing step of mixing 2% by weight of Te and the remaining Cu powder;
A molding step of pressure-molding the mixture obtained in the mixing step;
A sintering step of sintering the molded body obtained in the molding step;
A method for producing an electrode material comprising:
真空容器内に、固定電極と、当該固定電極に離接可能に対向配置される可動電極とを設けた真空インタラプタであって、
前記固定電極と前記可動電極の少なくとも一方の電極を、
10〜50重量%の、粒子径が40μm以下の粒子の体積相対粒子量が10%未満であるCr粉末と、
1重量%以上〜7重量%未満の耐火性金属粉末と、
0.01〜0.2重量%のTeと、を含有し、
残部がCu粉末と不可避的不純物である混合物を、加圧成形後、焼結して形成する
ことを特徴とする真空インタラプタ。
In the vacuum container, a vacuum interrupter provided with a fixed electrode and a movable electrode disposed so as to face and separate from the fixed electrode,
At least one of the fixed electrode and the movable electrode;
10 to 50% by weight of Cr powder with a particle diameter of 40 μm or less and a volume relative particle amount of less than 10%,
1% by weight to less than 7% by weight of refractory metal powder,
0.01 to 0.2% by weight of Te,
A vacuum interrupter characterized in that a mixture of which the remainder is Cu powder and inevitable impurities is sintered and formed after pressure molding.
JP2014009953A 2014-01-23 2014-01-23 Electrode material and method for producing electrode material Active JP6311325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009953A JP6311325B2 (en) 2014-01-23 2014-01-23 Electrode material and method for producing electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014009953A JP6311325B2 (en) 2014-01-23 2014-01-23 Electrode material and method for producing electrode material

Publications (2)

Publication Number Publication Date
JP2015138682A true JP2015138682A (en) 2015-07-30
JP6311325B2 JP6311325B2 (en) 2018-04-18

Family

ID=53769550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009953A Active JP6311325B2 (en) 2014-01-23 2014-01-23 Electrode material and method for producing electrode material

Country Status (1)

Country Link
JP (1) JP6311325B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212731A1 (en) 2016-06-08 2017-12-14 株式会社明電舎 Method for manufacturing electrode material
CN107922998A (en) * 2015-08-11 2018-04-17 株式会社明电舍 The manufacture method of electrode material and electrode material
CN110225803A (en) * 2017-02-02 2019-09-10 株式会社明电舍 For manufacturing the method and electrode material of electrode material
CN113839044A (en) * 2021-11-29 2021-12-24 广东工业大学 Lithium-sulfur battery positive electrode, preparation method thereof and lithium-sulfur battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505985A (en) * 1989-05-31 1992-10-15 シーメンス アクチエンゲゼルシヤフト Manufacturing method of CuCr contact piece for vacuum switch and attached contact piece
JPH11232971A (en) * 1998-02-12 1999-08-27 Hitachi Ltd Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof
JP2009170372A (en) * 2008-01-21 2009-07-30 Hitachi Ltd Electrical contact for vacuum valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505985A (en) * 1989-05-31 1992-10-15 シーメンス アクチエンゲゼルシヤフト Manufacturing method of CuCr contact piece for vacuum switch and attached contact piece
JPH11232971A (en) * 1998-02-12 1999-08-27 Hitachi Ltd Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof
JP2009170372A (en) * 2008-01-21 2009-07-30 Hitachi Ltd Electrical contact for vacuum valve

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922998A (en) * 2015-08-11 2018-04-17 株式会社明电舍 The manufacture method of electrode material and electrode material
US10361039B2 (en) 2015-08-11 2019-07-23 Meidensha Corporation Electrode material and method for manufacturing electrode material
WO2017212731A1 (en) 2016-06-08 2017-12-14 株式会社明電舎 Method for manufacturing electrode material
US10766069B2 (en) 2016-06-08 2020-09-08 Meidensha Corporation Method for manufacturing electrode material
CN110225803A (en) * 2017-02-02 2019-09-10 株式会社明电舍 For manufacturing the method and electrode material of electrode material
US10614969B2 (en) 2017-02-02 2020-04-07 Meidensha Corporation Method for manufacturing electrode material and electrode material
CN110225803B (en) * 2017-02-02 2020-08-11 株式会社明电舍 Method for producing electrode material and electrode material
CN113839044A (en) * 2021-11-29 2021-12-24 广东工业大学 Lithium-sulfur battery positive electrode, preparation method thereof and lithium-sulfur battery
CN113839044B (en) * 2021-11-29 2022-03-18 广东工业大学 Lithium-sulfur battery positive electrode, preparation method thereof and lithium-sulfur battery

Also Published As

Publication number Publication date
JP6311325B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP5862695B2 (en) Method for producing electrode material
JP5880789B1 (en) A composite metal in which Cu is infiltrated into a compact formed from solid solution particles
JP5904308B2 (en) Method for producing electrode material
JP5861807B1 (en) Method for producing electrode material
JP6311325B2 (en) Electrode material and method for producing electrode material
JP6075423B1 (en) Vacuum circuit breaker
US10614969B2 (en) Method for manufacturing electrode material and electrode material
CN107709583B (en) Method for producing electrode material and electrode material
US10058923B2 (en) Method for manufacturing electrode material and electrode material
JP6398415B2 (en) Method for producing electrode material
WO2016178388A1 (en) Method for producing electrode material, and electrode material
CN111670261B (en) Electric contact and vacuum valve using same
JP6398530B2 (en) Method for producing electrode material
JP6657655B2 (en) Manufacturing method of electrode material
JP6507830B2 (en) Method of manufacturing electrode material and electrode material
JP6090388B2 (en) Electrode material and method for producing electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R150 Certificate of patent or registration of utility model

Ref document number: 6311325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150