JP6398415B2 - Method for producing electrode material - Google Patents

Method for producing electrode material Download PDF

Info

Publication number
JP6398415B2
JP6398415B2 JP2014148427A JP2014148427A JP6398415B2 JP 6398415 B2 JP6398415 B2 JP 6398415B2 JP 2014148427 A JP2014148427 A JP 2014148427A JP 2014148427 A JP2014148427 A JP 2014148427A JP 6398415 B2 JP6398415 B2 JP 6398415B2
Authority
JP
Japan
Prior art keywords
powder
electrode material
electrode
mocr
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014148427A
Other languages
Japanese (ja)
Other versions
JP2016023335A (en
Inventor
啓太 石川
啓太 石川
薫 北寄崎
薫 北寄崎
将大 林
将大 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2014148427A priority Critical patent/JP6398415B2/en
Publication of JP2016023335A publication Critical patent/JP2016023335A/en
Application granted granted Critical
Publication of JP6398415B2 publication Critical patent/JP6398415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Contacts (AREA)

Description

本発明は、電極材料の組成制御技術に関する。   The present invention relates to a composition control technique for electrode materials.

真空インタラプタ(VI)等の電極に用いられる電極材料には、(1)遮断容量が大きいこと、(2)耐電圧性能が高いこと、(3)接触抵抗が低いこと、(4)耐溶着性が高いこと、(5)接点消耗量が低いこと、(6)裁断電流が低いこと、(7)加工性に優れること、(8)機械強度が高いこと、等の特性を満たすことが求められる。   Electrode materials used for electrodes such as vacuum interrupter (VI) include (1) large breaking capacity, (2) high withstand voltage performance, (3) low contact resistance, and (4) welding resistance. It is required to satisfy the following characteristics: (5) low contact consumption, (6) low cutting current, (7) excellent workability, (8) high mechanical strength, etc. .

銅(Cu)−クロム(Cr)電極は、遮断容量が大きく、耐電圧性能が高く、耐溶着性が高い等の特性を有し、真空インタラプタの接点材料として広く用いられている。Cu−Cr電極では、Cr粒子の粒径が細かい方が、遮断電流や接触抵抗の面において良好であるとの報告がある(例えば、非特許文献1)。   A copper (Cu) -chromium (Cr) electrode has characteristics such as a large breaking capacity, a high withstand voltage performance, and a high welding resistance, and is widely used as a contact material for a vacuum interrupter. In the Cu-Cr electrode, it has been reported that the smaller the particle size of the Cr particles, the better in terms of breaking current and contact resistance (for example, Non-Patent Document 1).

Cu−Cr電極材料の製造方法として、一般に固相焼結法と溶浸法の2通りが良く知られている(例えば、特許文献1−4)。固相焼結法は、導電性の良好なCuと耐アーク性に優れるCrとを一定の割合で混合し、その混合粉末を加圧成形してから、真空中等の非酸化雰囲気で焼結して焼結体を製造する。固相焼結法は、CuとCrの組成を自由に選ぶことができる長所がある。   As a method for producing a Cu—Cr electrode material, generally, two methods of solid phase sintering and infiltration are well known (for example, Patent Documents 1-4). The solid-phase sintering method mixes Cu with good conductivity and Cr with excellent arc resistance at a constant ratio, presses the mixed powder, and then sinters in a non-oxidizing atmosphere such as in a vacuum. To produce a sintered body. The solid-phase sintering method has an advantage that the composition of Cu and Cr can be freely selected.

一方、溶浸法は、Cr粉末を加圧成形して(若しくは、成形せずに)、容器に充填し、真空中等の非酸化雰囲気でCuの融点以上に加熱することによりCr粒子間の空隙にCuを溶浸して電極を製造する。溶浸法は、CuとCrの組成比を自由に選ぶことができないが、固相焼結法よりもガス・空隙の少ない素材が得られ、機械強度が高いという長所がある。   On the other hand, the infiltration method is a method in which Cr powder is pressure-molded (or not molded), filled into a container, and heated to a temperature higher than the melting point of Cu in a non-oxidizing atmosphere such as in a vacuum. Cu is infiltrated into the electrode to produce an electrode. The infiltration method cannot freely select the composition ratio of Cu and Cr, but has the advantage that a material with less gas and voids can be obtained and the mechanical strength is higher than the solid phase sintering method.

近年、真空インタラプタの使用条件が厳しくなるとともにコンデンサ回路への真空インタラプタの適用拡大が進んでいる。コンデンサ回路では、通常の2〜3倍の電圧が電極間に印加されるため、電流遮断時や電流開閉時のアークによって接点表面が著しく損傷し再点弧が発生しやすくなると考えられる。そのため、従来のCu−Cr電極より優れた耐電圧性能及び電流遮断性能を有する電極材料が求められている。   In recent years, the use conditions of vacuum interrupters have become stricter, and the application of vacuum interrupters to capacitor circuits has been expanded. In the capacitor circuit, since a voltage 2 to 3 times the normal voltage is applied between the electrodes, it is considered that the contact surface is remarkably damaged by an arc at the time of current interruption or current switching and re-ignition is likely to occur. Therefore, an electrode material having a withstand voltage performance and a current interruption performance superior to conventional Cu—Cr electrodes is required.

電流遮断性能や耐電圧性能等の電気的特性の良好なCu−Cr系電極材料の製造方法として、基材であるCu粉末に、電気的特性を向上させるCr粉末と、Cr粒子を微細にする耐熱元素(モリブデン(Mo)、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、バナジウム(V)、ジルコニウム(Zr)等)粉末とを混合した後、混合粉末を型に挿入して加圧成形し焼結体とする電極の製造方法がある(例えば、特許文献1,2)。   As a method for producing a Cu-Cr-based electrode material with good electrical characteristics such as current interruption performance and withstand voltage performance, a Cr powder that improves electrical characteristics and a finer Cr particle are made into Cu powder as a base material. After mixing heat-resistant element (molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), vanadium (V), zirconium (Zr), etc.) powder, the mixed powder is inserted into a mold and added. There is a method of manufacturing an electrode that is compacted to form a sintered body (for example, Patent Documents 1 and 2).

具体的には、200〜300μmの粒子サイズを有するCrを原料としたCu−Cr系電極材料に耐熱元素を添加し、微細組織技術を通してCrを微細化する。つまり、Crと耐熱元素の合金化を促進させ、Cu基材組織内部に微細なCr−X(Xは耐熱元素)粒子の析出を増加させている。その結果、直径20〜60μmのCr粒子が、その内部に耐熱元素を有する形態で、Cu基材組織内に均一に分散されることとなる。   Specifically, a heat-resistant element is added to a Cu—Cr-based electrode material made from Cr having a particle size of 200 to 300 μm, and Cr is refined through a microstructure technique. That is, alloying of Cr and a heat-resistant element is promoted, and precipitation of fine Cr—X (X is a heat-resistant element) particles is increased inside the Cu base material structure. As a result, Cr particles having a diameter of 20 to 60 μm are uniformly dispersed in the Cu base structure in a form having a heat-resistant element therein.

また、複数種類の耐熱元素を固相拡散させ、複数種類の耐熱元素を含有する固溶体を形成し、この固溶体を粉砕した粉末と銅粉末とを混合し、加圧成形後に焼結する電極製造方法がある(例えば、特許文献4)。この製造方法では、微細組織技術を適用せずに、電極組織内にCrとMo等の耐熱元素を含有させている。   Also, an electrode manufacturing method in which a plurality of types of heat-resistant elements are solid-phase diffused to form a solid solution containing a plurality of types of heat-resistant elements, a powder obtained by pulverizing the solid solution and a copper powder are mixed, and sintered after pressure forming (For example, Patent Document 4). In this manufacturing method, heat resistant elements such as Cr and Mo are contained in the electrode structure without applying the fine structure technique.

特開2012−7203号公報JP 2012-7203 A 特開2002−180150号公報JP 2002-180150 A 特開2004−211173号公報Japanese Patent Laid-Open No. 2004-211173 特開平4−334832号公報Japanese Patent Laid-Open No. 4-334832

RIEDER, F. u.a.、”The Influence of Composition and Cr Particle Size of Cu/Cr Contacts on Chopping Current, Contact Resistance, and Breakdown Voltage in Vacuum Interrupters”、IEEE Transactions on Components, Hybrids, and Manufacturing Technology、Vol. 12、1989、273-283RIEDER, F. ua, “The Influence of Composition and Cr Particle Size of Cu / Cr Contacts on Chopping Current, Contact Resistance, and Breakdown Voltage in Vacuum Interrupters”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, 1989, 273-283

本発明は、従来のCu−Cr電極より優れた耐電圧性能及び電流遮断性能を有する電極材料を提供することであり、特に従来の固溶体金型プレス成型では、得ることが困難であった微細な耐熱元素を有した電極材料を提供することを目的とする。   The present invention is to provide an electrode material having a withstand voltage performance and a current interruption performance superior to those of a conventional Cu-Cr electrode. In particular, it is difficult to obtain a fine material that is difficult to obtain by conventional solid solution die press molding. An object is to provide an electrode material having a heat-resistant element.

上記目的を達成する本発明の電極材料の一態様は、耐熱元素と粒径が45μm以下のCr粉末を混合し、加熱して得られる固溶体を粉砕して得た固溶体粉末と、Cu粉末と、を混合した混合粉末を成形して得られる成形体を焼結した電極材料であって、前記電極材料は、当該電極材料に対して重量比でCuを40〜80%、Crを2〜30%、耐熱元素を10〜54%、含有し、前記耐熱元素の含有量は、重量比でCrの含有量より多いことを特徴としている。   One aspect of the electrode material of the present invention that achieves the above object is a solid solution powder obtained by mixing a heat-resistant element and a Cr powder having a particle size of 45 μm or less, and pulverizing the solid solution obtained by heating, Cu powder, An electrode material obtained by sintering a molded body obtained by molding a mixed powder in which Cu is mixed, and the electrode material has a weight ratio of 40 to 80% Cu and 2 to 30% Cr. The heat-resistant element is contained in an amount of 10 to 54%, and the content of the heat-resistant element is larger than the content of Cr in a weight ratio.

また、上記目的を達成する本発明の電極材料の他の態様は、上記電極材料において、前記固溶体粉末は、該固溶体粉末のX線回折測定においてCr元素に対応するピークが消失していることを特徴としている。   Another aspect of the electrode material of the present invention that achieves the above object is that, in the electrode material, the solid solution powder has lost a peak corresponding to Cr element in the X-ray diffraction measurement of the solid solution powder. It is a feature.

以上の発明によれば、電極材料の耐電圧性能及び電流遮断性能が向上する。   According to the above invention, the withstand voltage performance and the current interruption performance of the electrode material are improved.

本発明の実施形態に係る電極材料の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the electrode material which concerns on embodiment of this invention. 本発明の実施形態に係る電極材料を有する真空インタラプタの概略断面図である。It is a schematic sectional drawing of the vacuum interrupter which has the electrode material which concerns on embodiment of this invention. 実施例1の電極材料に係るMoCr固溶体のXRD測定の測定結果を示す図である。It is a figure which shows the measurement result of the XRD measurement of the MoCr solid solution which concerns on the electrode material of Example 1. FIG. 実施例1の電極材料に係るMoCr固溶体のXRD測定の測定結果を示す図である。It is a figure which shows the measurement result of the XRD measurement of the MoCr solid solution which concerns on the electrode material of Example 1. FIG. 実施例1の電極材料の電子顕微鏡写真である。2 is an electron micrograph of the electrode material of Example 1. 比較例1の電極材料の電子顕微鏡写真である。4 is an electron micrograph of an electrode material of Comparative Example 1.

本発明の実施形態に係る電極材料について、図を参照して詳細に説明する。なお、実施形態の説明において、特に断りがない限り、平均粒子径(メディアン径d50)、粒径、及び体積相対粒子量は、レーザー回折式粒度分布測定装置(シーラス社:シーラス1090L)により測定された値を示す。   The electrode material which concerns on embodiment of this invention is demonstrated in detail with reference to figures. In the description of the embodiment, unless otherwise specified, the average particle diameter (median diameter d50), particle diameter, and volume relative particle amount are measured by a laser diffraction particle size distribution measuring apparatus (Cirrus Corporation: Cirrus 1090L). Value.

本発明は、銅(Cu)、クロム(Cr)、耐熱元素(Mo等)を含有する電極材料において、Crと耐熱元素の固溶体を電極材料中に微細分散させた組織を有するよう組成制御する技術に関するものである。このように組成制御することで、遮断性能及び耐電圧性能に優れ、かつ量産性に優れた電極材料を得るものである。   The present invention relates to an electrode material containing copper (Cu), chromium (Cr), and a heat-resistant element (Mo, etc.), and a technique for controlling the composition so as to have a structure in which a solid solution of Cr and the heat-resistant element is finely dispersed in the electrode material. It is about. By controlling the composition in this way, an electrode material excellent in breaking performance and withstand voltage performance and mass productivity is obtained.

特に、本発明の電極材料は、耐熱元素とCrの固溶体形成時に、耐熱元素とCrの重量比を、耐熱元素>Crの割合で混合することで、工業的に実施が可能な条件で耐熱元素とCrの固溶体粉末を得ることができるものである。また、耐熱元素とCrの固溶体粉末のX線回折測定において、Cr元素のピークが実質上消失するまで耐熱元素とCrとを反応させることで、機械強度や加工性を損なうことなく電極材料の耐電圧性能及び電流遮断性能を向上させることができる。   In particular, the electrode material of the present invention is a heat-resistant element under conditions that can be industrially implemented by mixing the weight ratio of the heat-resistant element and Cr at a ratio of heat-resistant element> Cr when forming a solid solution of the heat-resistant element and Cr. And a solid solution powder of Cr can be obtained. Further, in the X-ray diffraction measurement of the solid solution powder of the heat-resistant element and Cr, by reacting the heat-resistant element with Cr until the Cr element peak substantially disappears, the resistance of the electrode material is reduced without impairing the mechanical strength and workability. The voltage performance and current interruption performance can be improved.

Cu粉末は、例えば、市販の電解銅粉末を用いる。Cu粉末の形状は、必ずしも樹枝状である必要はなく、例えば、アトマイズ粉のような球状でも、不規則形状であってもよい。また、Cu粉末の粒径は、特に限定されるものではなく、焼結法に一般的に用いられる粒径のCu粉末を用いればよい。Cuは、電極材料に対して40〜80重量%含有させることで、耐電圧性能や電流遮断性能を損なうことなく、電極材料の接触抵抗を低減することができる。Cuの含有率が80%を超えると、電極材料の機械強度が低下するおそれがあり、Cuの含有率が40%未満とすると、電極材料の導電率が低下することによる電流遮断性能の低下のおそれがあるためである。なお、電極材料に対して添加されるCu、Cr及び耐熱元素の合計は100重量%を超えることはない。   As the Cu powder, for example, a commercially available electrolytic copper powder is used. The shape of the Cu powder is not necessarily a dendritic shape, and may be a spherical shape such as an atomized powder or an irregular shape. In addition, the particle size of the Cu powder is not particularly limited, and Cu powder having a particle size generally used in the sintering method may be used. By containing 40 to 80% by weight of Cu with respect to the electrode material, the contact resistance of the electrode material can be reduced without impairing the withstand voltage performance and the current interruption performance. If the Cu content exceeds 80%, the mechanical strength of the electrode material may be reduced, and if the Cu content is less than 40%, the current interruption performance may be reduced due to a decrease in the conductivity of the electrode material. This is because there is a fear. Note that the total of Cu, Cr and heat-resistant elements added to the electrode material does not exceed 100% by weight.

耐熱元素は、例えば、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)、バナジウム(V)、ジルコニウム(Zr)、ベリリウム(Be)、ハフニウム(Hf)、イリジウム(Ir)、白金(Pt)、チタン(Ti)、ケイ素(Si)、ロジウム(Rh)及びルテニウム(Ru)等の元素から選択される元素を単独若しくは組み合わせて用いることができる。特に、Cr粒子を微細化する効果が顕著であるMo、W、Ta、Nb、V、Zrを用いることが好ましい。耐熱元素を粉末として用いる場合、耐熱元素粉末の平均粒子径を、例えば、2〜20μm、より好ましくは2〜10μmにすることで、電極材料にCrを含有する粒子(耐熱元素とCrの固溶体を含む)を微細化して均一に分散させることができる。耐熱元素は、電極材料に対して10〜54重量%含有させることで、機械強度や加工性を損なうことなく、電極材料の耐電圧性能及び電流遮断性能を向上させることができる。   Examples of the heat-resistant element include molybdenum (Mo), tungsten (W), tantalum (Ta), niobium (Nb), vanadium (V), zirconium (Zr), beryllium (Be), hafnium (Hf), and iridium (Ir). In addition, elements selected from elements such as platinum (Pt), titanium (Ti), silicon (Si), rhodium (Rh), and ruthenium (Ru) can be used alone or in combination. In particular, it is preferable to use Mo, W, Ta, Nb, V, or Zr, which has a remarkable effect of refining Cr particles. When the heat-resistant element is used as a powder, the average particle diameter of the heat-resistant element powder is, for example, 2 to 20 μm, and more preferably 2 to 10 μm, so that the electrode material contains particles containing Cr (a solid solution of the heat-resistant element and Cr). Can be finely dispersed and uniformly dispersed. By containing 10 to 54% by weight of the heat-resistant element with respect to the electrode material, it is possible to improve the withstand voltage performance and current interruption performance of the electrode material without impairing the mechanical strength and workability.

Crは、電極材料に対して2〜30重量%含有させることで、機械強度や加工性を損なうことなく、電極材料の耐電圧性能及び電流遮断性能を向上させることができる。Cr粉末を用いる場合、Cr粉末の粒径を、例えば、−325メッシュ(粒径45μm以下)とすることで、耐電圧性能及び電流遮断性能に優れた電極材料を得ることができ、また原料に用いたCr粉末の粒径が小さいため、残留したCr粒子は本焼結時にMoやCuにより微細化されて粒子径が十分小さくなり電極表面の接触抵抗は低くなる。また、電極材料中に微細化したCrを含有する粒子を分散させる点では、粒径が小さいCr粉末を用いることが好ましいが、Cr粒子を細かくするほど電極材料に含有される不純物量が増加して電流遮断性能が低下する。Cr粒子の粒径を小さくすることによる電極材料の不純物の増加は、Crを微細に粉砕する際に回避できないものである。しかし、Crが酸化しない条件、例えば、不活性ガス中でCrを微細な粉末とすることができるのであれば、粒径が−325メッシュ未満のCr粉末を用いてもよく、電極材料中に微細化したCrを含有する粒子を分散させる点では、粒径が小さいCr粉末を用いることが好ましい。   By containing 2 to 30% by weight of Cr with respect to the electrode material, it is possible to improve the withstand voltage performance and the current interruption performance of the electrode material without impairing the mechanical strength and workability. When using Cr powder, for example, by setting the particle size of Cr powder to −325 mesh (particle size of 45 μm or less), an electrode material excellent in withstand voltage performance and current interruption performance can be obtained. Since the particle size of the Cr powder used is small, the remaining Cr particles are refined by Mo or Cu during the main sintering, and the particle size becomes sufficiently small, so that the contact resistance of the electrode surface becomes low. In addition, it is preferable to use a Cr powder having a small particle diameter in order to disperse particles containing fine Cr in the electrode material, but the amount of impurities contained in the electrode material increases as the Cr particles become finer. Current interrupting performance is reduced. An increase in the impurities of the electrode material by reducing the particle size of the Cr particles cannot be avoided when Cr is finely pulverized. However, a Cr powder having a particle size of less than −325 mesh may be used as long as Cr can be made into a fine powder in an inert gas, for example, an inert gas. It is preferable to use a Cr powder having a small particle diameter in order to disperse the particles containing modified Cr.

本発明の実施形態に係る電極材料の製造方法について、図1のフローチャートを参照して詳細に説明する。なお、以下の説明では、耐熱元素としてMoを例示して説明するが、他の耐熱元素の粉末を用いた場合も同様である。   A method for manufacturing an electrode material according to an embodiment of the present invention will be described in detail with reference to the flowchart of FIG. In the following description, Mo is exemplified as the heat-resistant element, but the same applies to the case where powder of other heat-resistant elements is used.

混合工程S1では、耐熱元素粉末(例えば、Mo粉末)とCr粉末とを混合する。例えば、Cr粉末の粒径を、Mo粉末の粒径よりも大きく、かつ−325メッシュとすることで、量産性に優れた熱処理温度及び熱処理時間で、MoCr固溶体を形成することができる。また、混合粉末において、Moの重量がCrの重量よりも多く、より好ましくはCrの重量1に対してMoの重量が3以上、さらに好ましくはCrの重量1に対してMoの重量が7以上となるようにMo粉末とCr粉末とを混合することで、後の粉砕工程S3において、粉砕にかかる力が軽減され、より微細な粉末を得ることができる。   In the mixing step S1, heat-resistant element powder (for example, Mo powder) and Cr powder are mixed. For example, by setting the particle size of Cr powder to be larger than the particle size of Mo powder and −325 mesh, a MoCr solid solution can be formed at a heat treatment temperature and a heat treatment time excellent in mass productivity. In the mixed powder, the weight of Mo is larger than the weight of Cr, more preferably the weight of Mo is 3 or more with respect to the weight of Cr, and more preferably the weight of Mo is 7 or more with respect to the weight of Cr. By mixing the Mo powder and the Cr powder so as to become, in the subsequent pulverization step S3, the force required for pulverization is reduced, and a finer powder can be obtained.

熱処理工程S2では、混合工程S1で得られたMo粉末とCr粉末の混合粉末を、Mo及びCrと反応しない容器(例えば、アルミナ容器)に充填して、非酸化性雰囲気(水素雰囲気や真空雰囲気等)にて所定の温度(例えば、1200℃〜1500℃)で熱処理を行う。熱処理を行うことで、MoとCrが相互に固溶拡散したMoCr固溶体が得られる。熱処理工程S2では、残存するCr元素が存在しないように熱処理を行うことが好ましい。例えば、熱処理工程S2では、MoCr固溶体のX線解析におけるCr元素ピーク(及びMo元素ピーク)が消失するように、熱処理の温度と時間が選択される。   In the heat treatment step S2, the mixed powder of the Mo powder and the Cr powder obtained in the mixing step S1 is filled in a container (for example, an alumina container) that does not react with Mo and Cr, and a non-oxidizing atmosphere (hydrogen atmosphere or vacuum atmosphere). Etc.) at a predetermined temperature (for example, 1200 ° C. to 1500 ° C.). By performing the heat treatment, a MoCr solid solution in which Mo and Cr are in solution with each other is obtained. In the heat treatment step S2, it is preferable to perform the heat treatment so that the remaining Cr element does not exist. For example, in the heat treatment step S2, the temperature and time of the heat treatment are selected so that the Cr element peak (and the Mo element peak) in the X-ray analysis of the MoCr solid solution disappears.

また、熱処理工程S2では、熱処理を行う前に混合粉末を加圧成形(プレス処理)しても良い。混合粉末を加圧成形することで、MoとCrとの相互拡散が促進され熱処理時間を短くしたり、熱処理温度を低減したりすることができる。加圧成形時の圧力は、特に限定するものではないが、0.1t/cm2以下とすることが好ましい。混合粉体の加圧成形時の圧力が非常に大きい場合、熱処理後の焼結体が硬くなり、後の粉砕工程S3での粉砕作業が困難となるおそれがある。 Further, in the heat treatment step S2, the mixed powder may be pressure-formed (pressed) before the heat treatment. By pressure forming the mixed powder, interdiffusion between Mo and Cr is promoted, and the heat treatment time can be shortened or the heat treatment temperature can be reduced. The pressure at the time of pressure molding is not particularly limited, but is preferably 0.1 t / cm 2 or less. When the pressure at the time of pressure molding of the mixed powder is very large, the sintered body after the heat treatment becomes hard, and there is a possibility that the pulverization operation in the subsequent pulverization step S3 may be difficult.

粉砕工程S3では、粉砕機(例えば、遊星ボールミル)を用いてMoCr固溶体の粉砕を行い、MoCr固溶体を含有する粉末(以下、MoCr粉末と称する)を得る。粉砕工程S3の粉砕雰囲気は、非酸化性雰囲気が望ましいが、大気中において粉砕しても構わない。粉砕条件は、MoCr固溶体粒子が相互に結合している粒子(2次粒子)を粉砕する程度の粉砕条件でよい。なお、MoCr固溶体の粉砕は、粉砕時間を長くすればするほど、MoCr固溶体粒子の平均粒子径が小さくなる。したがって、例えば、MoCr粉末において、粒径30μm以下の粒子(より好ましくは、粒径20μm以下の粒子)の体積相対粒子量が50%以上となるような粉砕条件を設定することで、MoCr粒子(MoとCrが相互に固溶拡散した粒子)及びCu組織が均一に分散した電極材料(すなわち、耐電圧性能に優れた電極材料)を得ることができる。   In the pulverization step S3, the MoCr solid solution is pulverized using a pulverizer (for example, a planetary ball mill) to obtain a powder containing the MoCr solid solution (hereinafter referred to as MoCr powder). The pulverizing atmosphere in the pulverizing step S3 is preferably a non-oxidizing atmosphere, but may be pulverized in the air. The pulverization conditions may be such that the particles (secondary particles) in which the MoCr solid solution particles are bonded to each other are pulverized. In addition, in the pulverization of the MoCr solid solution, the longer the pulverization time, the smaller the average particle diameter of the MoCr solid solution particles. Therefore, for example, in the MoCr powder, by setting the pulverization conditions such that the volume relative particle amount of particles having a particle size of 30 μm or less (more preferably, particles having a particle size of 20 μm or less) is 50% or more, MoCr particles ( Particles in which Mo and Cr are dissolved and dissolved in each other) and an electrode material in which the Cu structure is uniformly dispersed (that is, an electrode material excellent in withstand voltage performance) can be obtained.

Cu粉末混合工程S4では、粉砕工程S3で得られたMoCr粉末と、Cu粉末とを混合する。混合後、MoCr粉末とCu粉末の混合粉末(以後、MoCr−Cu粉末とする)を加圧成形する。成形時の成形圧力は、例えば、焼結法で一般的に用いられる成形圧力(例えば、1〜4t/cm2)である。 In the Cu powder mixing step S4, the MoCr powder obtained in the pulverizing step S3 and the Cu powder are mixed. After mixing, a mixed powder of MoCr powder and Cu powder (hereinafter referred to as MoCr-Cu powder) is pressure-molded. The molding pressure at the time of molding is, for example, a molding pressure (for example, 1 to 4 t / cm 2 ) generally used in a sintering method.

焼結工程S5では、成形されたMoCr−Cu粉末の焼結を行い、本発明の実施形態に係る電極材料を得る。焼結は、非酸化性雰囲気中(例えば、水素雰囲気中や真空雰囲気中)で、Cuの融点(1083℃)以下の温度で行う。   In the sintering step S5, the molded MoCr—Cu powder is sintered to obtain the electrode material according to the embodiment of the present invention. Sintering is performed in a non-oxidizing atmosphere (for example, in a hydrogen atmosphere or a vacuum atmosphere) at a temperature not higher than the melting point of Cu (1083 ° C.).

なお、本発明の実施形態に係る電極材料を用いて真空インタラプタを構成することができる。図2に示すように、本発明の実施形態に係る電極材料を有する真空インタラプタ1は、真空容器2と、固定電極3と、可動電極4と、主シールド10を有する。   In addition, a vacuum interrupter can be comprised using the electrode material which concerns on embodiment of this invention. As shown in FIG. 2, a vacuum interrupter 1 having an electrode material according to an embodiment of the present invention includes a vacuum vessel 2, a fixed electrode 3, a movable electrode 4, and a main shield 10.

真空容器2は、絶縁筒5の両開口端部が、固定側端板6及び可動側端板7でそれぞれ封止されることで構成される。   The vacuum vessel 2 is configured by sealing both open end portions of the insulating cylinder 5 with a fixed side end plate 6 and a movable side end plate 7, respectively.

固定電極3は、固定側端板6を貫通した状態で固定される。固定電極3の一端は、真空容器2内で、可動電極4の一端と対向するように固定されており、固定電極3の可動電極4と対向する端部には、本発明の実施形態に係る電極材料である電極接点材8が設けられる。   The fixed electrode 3 is fixed in a state of passing through the fixed side end plate 6. One end of the fixed electrode 3 is fixed so as to face one end of the movable electrode 4 in the vacuum vessel 2, and the end of the fixed electrode 3 facing the movable electrode 4 is in accordance with the embodiment of the present invention. An electrode contact material 8 which is an electrode material is provided.

可動電極4は、可動側端板7に設けられる。可動電極4は、固定電極3と同軸上に設けられる。可動電極4は、図示省略の開閉手段により軸方向に移動させられ、固定電極3と可動電極4の開閉が行われる。可動電極4の固定電極3と対向する端部には、電極接点材8が設けられる。なお、可動電極4と可動側端板7との間には、ベローズ9が設けられ、真空容器2内を真空に保ったまま可動電極4を上下させ、固定電極3と可動電極4の開閉が行われる。   The movable electrode 4 is provided on the movable side end plate 7. The movable electrode 4 is provided coaxially with the fixed electrode 3. The movable electrode 4 is moved in the axial direction by an opening / closing means (not shown), and the fixed electrode 3 and the movable electrode 4 are opened and closed. An electrode contact material 8 is provided at the end of the movable electrode 4 facing the fixed electrode 3. A bellows 9 is provided between the movable electrode 4 and the movable side end plate 7, and the movable electrode 4 is moved up and down while keeping the inside of the vacuum vessel 2 in a vacuum, so that the fixed electrode 3 and the movable electrode 4 can be opened and closed. Done.

主シールド10は、固定電極3の電極接点材8と可動電極4の電極接点材8との接触部を覆うように設けられ、固定電極3と可動電極4との間で発生するアークから絶縁筒5を保護する。   The main shield 10 is provided so as to cover a contact portion between the electrode contact material 8 of the fixed electrode 3 and the electrode contact material 8 of the movable electrode 4, and is insulated from an arc generated between the fixed electrode 3 and the movable electrode 4. Protect 5

[実施例1]
具体的な実施例を挙げて、本発明の実施形態に係る電極材料について詳細に説明する。実施例1の電極材料は、図1に示すフローチャートにしたがって作製した電極材料である。
[Example 1]
A specific example is given and the electrode material which concerns on embodiment of this invention is demonstrated in detail. The electrode material of Example 1 is an electrode material produced according to the flowchart shown in FIG.

Mo粉末は、粒径が0.8〜6μmのものを用いた。このMo粉末の平均粒子径をフィッシャー法により測定したところ3.3μmであった。Cr粉末は、−325メッシュ(ふるい目開き45μm)で分級した粉末、すなわち粒径が45μm以下の粉末を用いた。Cu粉末は、市販の電解銅粉末を用いた。   Mo powder having a particle size of 0.8 to 6 μm was used. The average particle size of the Mo powder was measured by the Fischer method and found to be 3.3 μm. As the Cr powder, powder classified by −325 mesh (a sieve opening of 45 μm), that is, a powder having a particle size of 45 μm or less was used. As the Cu powder, a commercially available electrolytic copper powder was used.

実施例1の電極材料は、まずMo粉末とCr粉末を重量比率でMo:Cr=7:1の割合で混合し、V型混合器を用いて均一となるように十分に混合した。   In the electrode material of Example 1, Mo powder and Cr powder were first mixed at a weight ratio of Mo: Cr = 7: 1, and sufficiently mixed using a V-type mixer.

混合後、Mo粉末とCr粉末の混合粉末をアルミナ容器内に移し、真空加熱炉にて1250℃で3時間熱処理を行った。焼結後の真空加熱炉の真空度は、3.5×10-3Paであった。なお、熱処理温度で所定時間維持した後の真空度が5×10-3Pa以下であれば、得られた固溶体を用いて作製した電極材料中の酸素含有量が少なくなり、電極材料の電流遮断性能を損なうことがない。 After mixing, the mixed powder of Mo powder and Cr powder was transferred into an alumina container and heat-treated at 1250 ° C. for 3 hours in a vacuum heating furnace. The degree of vacuum of the vacuum heating furnace after sintering was 3.5 × 10 −3 Pa. In addition, if the degree of vacuum after maintaining for a predetermined time at the heat treatment temperature is 5 × 10 −3 Pa or less, the oxygen content in the electrode material produced using the obtained solid solution decreases, and the current interruption of the electrode material There is no loss of performance.

冷却後、真空加熱炉からMoCr固溶体を取り出し、遊星ボールミルを用いて10分間粉砕を行い、MoCr粉末を得た。粉砕後のMoCr粉末の平均粒子径をレーザー回折式粒度分布測定により測定したところ、10μm以下であった。粉砕後、MoCr粉末のX線回折(XRD)測定を行った。測定結果を図3に示す。図3に示すように、実施例1の電極材料に係るMoCr粉末において、Mo(110)に対応するピークとCr(110)に対応するピークが消失しており、Cr原料粉末はMoCr粉末中に存在していないと考えられる。なお、図3の図には、実施例1の電極材料に係るMoCr粉末のX線回折測定結果だけでなく、MoとCrの混合比率(重量比)を変化させて、実施例1の電極材料と同じ方法により作製されたMoCr粉末のX線回折測定結果も示している。   After cooling, the MoCr solid solution was taken out from the vacuum heating furnace and pulverized for 10 minutes using a planetary ball mill to obtain MoCr powder. When the average particle size of the pulverized MoCr powder was measured by laser diffraction particle size distribution measurement, it was 10 μm or less. After grinding, X-ray diffraction (XRD) measurement of the MoCr powder was performed. The measurement results are shown in FIG. As shown in FIG. 3, in the MoCr powder according to the electrode material of Example 1, the peak corresponding to Mo (110) and the peak corresponding to Cr (110) disappear, and the Cr raw material powder is in the MoCr powder. It is thought that it does not exist. 3 shows not only the X-ray diffraction measurement result of the MoCr powder related to the electrode material of Example 1, but also the mixing ratio (weight ratio) of Mo and Cr to change the electrode material of Example 1. The X-ray diffraction measurement result of the MoCr powder produced by the same method is also shown.

図4は、MoとCrの混合比率(重量比)を変化させて、実施例1の電極材料と同じ方法により作製されたMoCr粉末のX線回折測定結果を示す図である。図3及び図4から明らかなように、Moの重量に対するCrの重量が増加すればするほど、Cr元素に対応するピークの値が大きくなっている。つまり、混合粉末において、Moの重量に対してCrの重量が多い場合、熱処理工程S2の熱処理後に残存するCr元素の量が多くなるものと考えられる。したがって、MoとCrとを重量比率で、Mo>CrとなるようにMoとCrとを混合することで、熱処理工程S2の熱処理後に、Cr元素に対応するピークがほぼ消失しているMoCr固溶体を得ることができる。   FIG. 4 is a diagram showing X-ray diffraction measurement results of MoCr powder produced by the same method as the electrode material of Example 1 by changing the mixing ratio (weight ratio) of Mo and Cr. As apparent from FIGS. 3 and 4, the peak value corresponding to the Cr element increases as the Cr weight increases with respect to the Mo weight. That is, in the mixed powder, when the weight of Cr is larger than the weight of Mo, it is considered that the amount of Cr element remaining after the heat treatment in the heat treatment step S2 increases. Therefore, by mixing Mo and Cr in a weight ratio of Mo and Cr so that Mo> Cr, the MoCr solid solution in which the peak corresponding to the Cr element has almost disappeared after the heat treatment in the heat treatment step S2 is obtained. Can be obtained.

また、MoCr粉末のX線回折測定の結果に基づいて、実施例1の電極材料に係るMoCr粉末、Mo粉末及びCr粉末の結晶定数を求めた。MoCr粉末(Mo:Cr=7:1)の格子定数aは、0.3107nmであった。また、Mo粉末の格子定数a(Mo)は0.3151nmであり、Cr粉末の格子定数a(Cr)は、0.2890nmであった。   Moreover, based on the result of the X-ray diffraction measurement of the MoCr powder, the crystal constants of the MoCr powder, the Mo powder, and the Cr powder according to the electrode material of Example 1 were obtained. The lattice constant a of the MoCr powder (Mo: Cr = 7: 1) was 0.3107 nm. The lattice constant a (Mo) of the Mo powder was 0.3151 nm, and the lattice constant a (Cr) of the Cr powder was 0.2890 nm.

次に、Cu粉末とMoCr粉末とを、重量比率でCu:MoCr=4:1の割合で均一に混合し、プレス金型成形にて成形体を作製し、1070℃−2時間非酸化性雰囲気中で焼結して実施例1の電極材料を作製した。   Next, Cu powder and MoCr powder are uniformly mixed at a weight ratio of Cu: MoCr = 4: 1, a molded body is produced by press die molding, and a non-oxidizing atmosphere at 1070 ° C. for 2 hours. The electrode material of Example 1 was produced by sintering in the medium.

図5は、実施例1の電極材料の断面顕微鏡写真である。図5において比較的白く見える領域(白色部分)がMoとCrが固溶体化した合金組織であり、比較的黒く見える部分(灰色部分)がCu組織である。つまり、実施例1の電極材料では、25μm以下の微細な合金組織(白色部分)がCu相に均一に微細化して分散している。   FIG. 5 is a cross-sectional micrograph of the electrode material of Example 1. In FIG. 5, the region that appears relatively white (white portion) is an alloy structure in which Mo and Cr are in a solid solution, and the portion that appears relatively black (gray portion) is a Cu structure. That is, in the electrode material of Example 1, a fine alloy structure (white portion) of 25 μm or less is uniformly refined and dispersed in the Cu phase.

[比較例1]
比較例1の電極材料は、Cu粉末とCr粉末とを混合し、得られた混合粉末をプレス金型成形にて成形後に焼結したものである。
[Comparative Example 1]
The electrode material of Comparative Example 1 is obtained by mixing Cu powder and Cr powder, and sintering the obtained mixed powder after molding by press die molding.

Cu粉末とCr粉末を重量比率でCu:Cr=4:1の割合で混合し、V型混合器を用いて均一になるまで十分に混合した。Cu粉末は、実施例1と同じものを用いた。Cr粉末は、粒径80μm以下(80μmの目のふるいで分級したもの)を使用した。混合後、Cu粉末とCr粉末の混合粉末をプレス圧4t/cm2でプレス金型成形して成形体を作製し、この成形体を1070℃−2時間非酸化性雰囲気中で焼結して、比較例1の電極材料を作製した。 Cu powder and Cr powder were mixed at a weight ratio of Cu: Cr = 4: 1 and mixed well using a V-type mixer until uniform. The same Cu powder as in Example 1 was used. As the Cr powder, a particle size of 80 μm or less (classified with an 80 μm sieve) was used. After mixing, a mixed powder of Cu powder and Cr powder is press-molded at a press pressure of 4 t / cm 2 to produce a molded body, and this molded body is sintered in a non-oxidizing atmosphere at 1070 ° C. for 2 hours. The electrode material of Comparative Example 1 was produced.

図6は、比較例1の電極材料の断面を示す顕微鏡写真である。図6より、比較例1の電極材料では、Cu相にCr粒子が点在していることがわかる。   6 is a photomicrograph showing a cross section of the electrode material of Comparative Example 1. FIG. From FIG. 6, it can be seen that in the electrode material of Comparative Example 1, Cr particles are scattered in the Cu phase.

[比較例2]
比較例2の電極材料は、Mo粉末とCr粉末の混合比が異なること以外は、実施例1の電極材料と同じ方法で作製した電極材料である。
[Comparative Example 2]
The electrode material of Comparative Example 2 is an electrode material produced by the same method as the electrode material of Example 1 except that the mixing ratio of Mo powder and Cr powder is different.

具体的に説明すると、Mo粉末とCr粉末を重量比率でMo:Cr=1:4の割合で混合し、V型混合器を用いて均一となるように十分に混合した。   More specifically, Mo powder and Cr powder were mixed at a weight ratio of Mo: Cr = 1: 4, and sufficiently mixed using a V-type mixer so as to be uniform.

混合後、Mo粉末とCr粉末の混合粉末をアルミナ容器内に移し、真空加熱炉にて1250℃で3時間混合粉末の熱処理を行った。1250℃で3時間焼結後の真空加熱炉の真空度は、3.5×10-3Paであった。 After mixing, the mixed powder of Mo powder and Cr powder was transferred into an alumina container, and the mixed powder was heat-treated at 1250 ° C. for 3 hours in a vacuum heating furnace. The degree of vacuum of the vacuum heating furnace after sintering at 1250 ° C. for 3 hours was 3.5 × 10 −3 Pa.

冷却後、真空加熱炉からMoCr固溶体を取り出し、遊星ボールミルを用いて10分間粉砕を行い、MoCr粉末を得た。粉砕後のMoCr粉末の平均粒子径をレーザー回折式粒度分布測定により測定したところ、40μm程度であった。   After cooling, the MoCr solid solution was taken out from the vacuum heating furnace and pulverized for 10 minutes using a planetary ball mill to obtain MoCr powder. When the average particle diameter of the pulverized MoCr powder was measured by laser diffraction particle size distribution measurement, it was about 40 μm.

また、MoCr粉末のX線回折測定を行った結果を図4に示す。図4に示すように、比較例2の電極材料に係るMoCr粉末のX線回折測定では、Cr元素に対応するピークが存在していることが確認された。   Moreover, the result of having performed the X-ray-diffraction measurement of MoCr powder is shown in FIG. As shown in FIG. 4, in the X-ray diffraction measurement of the MoCr powder according to the electrode material of Comparative Example 2, it was confirmed that a peak corresponding to the Cr element was present.

次に、Cu粉末とMoCr粉末とを、重量比率で、Cu:MoCr=4:1として均一に混合し、プレス金型成形にて成形体を作製し、1070℃−2時間非酸化性雰囲気中で焼結して比較例2の電極材料を作製した。比較例2の電極材料は、Crリッチなため、硬度が硬くなり粉砕にかかるエネルギーが高く、量産性に影響を及ぼすことがわかった。   Next, Cu powder and MoCr powder are uniformly mixed at a weight ratio of Cu: MoCr = 4: 1 to produce a molded body by press die molding, and in a non-oxidizing atmosphere at 1070 ° C. for 2 hours. The electrode material of Comparative Example 2 was produced by sintering. Since the electrode material of Comparative Example 2 is rich in Cr, it has been found that the hardness is high and the energy required for pulverization is high, which affects mass productivity.

表1に、実施例1及び比較例1,2の電極材料処理条件及び電極特性を示す。   Table 1 shows the electrode material processing conditions and electrode characteristics of Example 1 and Comparative Examples 1 and 2.

表1に示すように、実施例1の電極材料は、従来の焼結法では困難であった耐アーク成分の微細化が実現できる。   As shown in Table 1, the electrode material of Example 1 can realize miniaturization of the arc resistance component, which was difficult by the conventional sintering method.

また、実施例1と比較例2とを比較すると、比較例2では粉砕性が困難となっている。これは、仮焼結時に、Cr同士が焼結することに起因するものと考えられる。また、実施例1の電極材料では、粉砕後の平均粒子径が10μmであるのに対して、比較例2の電極材料では、粉砕後の平均粒子径が40μmとなっている。これは、比較例2では、MoとCrの混合粉末において、Cr粉末の重量がMo粉末の重量より多いため、Cr粒子の拡散量が少なくなり、残存するCr元素の量が多いためと考えられる。そして、残存するCr元素の量が多くなることにより、比較例2の電極材料では、電極表面の接触抵抗が高くなるものと考えられる。また、Cr粉末とCu粉末の混合性が悪いため、Cr粒子を微細にしたとしても、電極組織内のCrの分散性は低くなるものと考えられる。なお、比較例2において、原料のCr粉末の粒径をできるだけ小さく(例えば、10μm以下)とすることで、電極材料に分散されるCr粒子の粒径を小さくすることが考えられるが、Cr粉末の粒径を小さくすると、電極材料の酸素含有量が増加し、電極材料の電流遮断性能が低下するおそれがある。   Moreover, when Example 1 and Comparative Example 2 are compared, in Comparative Example 2, the grindability is difficult. This is considered to be caused by the fact that Cr is sintered together during temporary sintering. In the electrode material of Example 1, the average particle diameter after pulverization is 10 μm, whereas in the electrode material of Comparative Example 2, the average particle diameter after pulverization is 40 μm. This is probably because, in Comparative Example 2, in the mixed powder of Mo and Cr, the weight of Cr powder is larger than the weight of Mo powder, so that the amount of Cr particles diffused is small and the amount of remaining Cr element is large. . And it is thought that the contact resistance of the electrode surface becomes high in the electrode material of Comparative Example 2 by increasing the amount of the remaining Cr element. Moreover, since the mixing property of Cr powder and Cu powder is poor, it is considered that the dispersibility of Cr in the electrode structure is lowered even if the Cr particles are made fine. In Comparative Example 2, it is conceivable to reduce the particle size of the Cr particles dispersed in the electrode material by setting the particle size of the raw material Cr powder as small as possible (for example, 10 μm or less). If the particle size of the electrode material is reduced, the oxygen content of the electrode material increases, and the current blocking performance of the electrode material may be reduced.

[比較例3]
比較例3の電極材料は、粒径が80μm以下のCr粉末(80μmの目のふるいで分級したCr粉末)を用いて作製した電極材料である。なお、Mo粉末やCu粉末は、実施例1の電極材料と同じものを用いた。
[Comparative Example 3]
The electrode material of Comparative Example 3 is an electrode material produced using Cr powder having a particle size of 80 μm or less (Cr powder classified by an 80 μm sieve). In addition, the same powder as the electrode material of Example 1 was used for Mo powder and Cu powder.

具体的に説明すると、Mo粉末とCr粉末を重量比率でMo:Cr=9:1の割合で混合し、V型混合器を用いて均一となるように十分に混合した。   More specifically, Mo powder and Cr powder were mixed at a weight ratio of Mo: Cr = 9: 1 and sufficiently mixed using a V-type mixer so as to be uniform.

混合後、Mo粉末とCr粉末の混合粉末をアルミナ容器内に移し、真空加熱炉にて1150℃で6時間混合粉末の熱処理を行った。1150℃で6時間焼結後の真空加熱炉の真空度は、3.5×10-3Paであった。 After mixing, the mixed powder of Mo powder and Cr powder was transferred into an alumina container, and the mixed powder was heat-treated at 1150 ° C. for 6 hours in a vacuum heating furnace. The degree of vacuum of the vacuum heating furnace after sintering at 1150 ° C. for 6 hours was 3.5 × 10 −3 Pa.

冷却後、真空加熱炉からMoCr固溶体を取り出し、遊星ボールミルを用いて10分間粉砕を行い、MoCr粉末を得た。粉砕後のMoCr粉末の平均粒子径をレーザー回折式粒度分布測定により測定したところ、10μm程度であった。   After cooling, the MoCr solid solution was taken out from the vacuum heating furnace and pulverized for 10 minutes using a planetary ball mill to obtain MoCr powder. When the average particle size of the pulverized MoCr powder was measured by laser diffraction particle size distribution measurement, it was about 10 μm.

また、MoCr粉末のX線回折測定を行った結果、比較例3の電極材料に係るMoCr粉末のX線回折測定では、Cr元素に対応するピークが存在していることが確認された。   Further, as a result of X-ray diffraction measurement of the MoCr powder, it was confirmed in the X-ray diffraction measurement of the MoCr powder according to the electrode material of Comparative Example 3 that a peak corresponding to the Cr element exists.

次に、Cu粉末とMoCr粉末とを、重量比率で、Cu:MoCr=4:1として均一に混合し、プレス金型成形にて成形体を作製し、1070℃−2時間非酸化性雰囲気中で焼結して比較例3の電極材料を作製した。比較例3の電極材料は、Moリッチなため、充填率が85%以下と低くなり、ロウ付け性に影響を及ぼし、VIの電極材料としては適用できないことがわかった。   Next, Cu powder and MoCr powder are uniformly mixed at a weight ratio of Cu: MoCr = 4: 1 to produce a molded body by press die molding, and in a non-oxidizing atmosphere at 1070 ° C. for 2 hours. The electrode material of Comparative Example 3 was produced by sintering. Since the electrode material of Comparative Example 3 was rich in Mo, the filling rate was as low as 85% or less, which affected the brazeability and was found to be inapplicable as a VI electrode material.

比較例3の電極材料は、Cr粉末と混合されるMo粉末の重量が多いにもかかわらず、得られたMoCr固溶体粉末において、残存Cr粒が確認された。つまり、Mo粉末と混合されるCr粉末の粒子径が大きい場合(例えば、80μm)、Cr粉末に混合するMo粉末の重量を多くしても、残留Cr元素が少ないMoCr粉末を得ることができないおそれがある。なお、比較例3の電極材料は、実施例や他の比較例とMo粉末とCr粉末の混合粉末の焼結温度が異なっているが、実施例や他の比較例と同様の焼結条件(1250℃−3h)で焼結した場合もCrピーク確認されており、Cr粒子が残存していた。   Although the electrode material of Comparative Example 3 had a large weight of Mo powder mixed with Cr powder, residual Cr particles were confirmed in the obtained MoCr solid solution powder. In other words, when the particle size of the Cr powder mixed with the Mo powder is large (for example, 80 μm), even if the weight of the Mo powder mixed with the Cr powder is increased, it is not possible to obtain the MoCr powder with less residual Cr element. There is. In addition, although the electrode material of the comparative example 3 differs in the sintering temperature of the mixed powder of the Mo powder and the Cr powder from the examples and other comparative examples, the same sintering conditions as the examples and other comparative examples ( In the case of sintering at 1250 ° C.-3 h), Cr peak was confirmed, and Cr particles remained.

以上のような、本発明の実施形態に係る電極材料によれば、MoCr固溶体を形成するMo粉末とCr粉末の含有量(重量比)を、Mo>Crとすることで、電極組織内におけるMoCr固溶体粒子を微細かつ均一に分散させることができる。その結果、電極材料の電流遮断性能や耐電圧性能等の電気的特性が向上する。また、高導電成分相であるCu部と、耐アーク成分であるMoCr合金相の両相が均一に微細分散された構造となっているので、電極表面の接触抵抗が低下する。   According to the electrode material according to the embodiment of the present invention as described above, the content (weight ratio) of Mo powder and Cr powder forming the MoCr solid solution is Mo> Cr, so that MoCr in the electrode structure is obtained. Solid solution particles can be finely and uniformly dispersed. As a result, electrical characteristics such as current interruption performance and withstand voltage performance of the electrode material are improved. In addition, since the Cu portion that is a highly conductive component phase and the MoCr alloy phase that is an arc resistant component are both uniformly and finely dispersed, the contact resistance of the electrode surface decreases.

すなわち、電極材料に対する耐熱元素の含有量を多くすることで、耐電圧性能及び電流遮断性能に優れた電極材料を得ることができる。Moの重量をCrの重量よりも多くすることで、残留Cr元素が少ないMoCr粉末を得られるだけでなく、MoCr固溶体形成時におけるCr粒子同士の焼結反応を抑制し、MoCr固溶体の粉砕が容易となり、より小さい力でMoCr固溶体を粉砕することができる。   That is, by increasing the content of the heat-resistant element with respect to the electrode material, it is possible to obtain an electrode material excellent in withstand voltage performance and current interruption performance. By making the weight of Mo larger than the weight of Cr, not only MoCr powder with little residual Cr element can be obtained, but also the sintering reaction between Cr particles during MoCr solid solution formation is suppressed, and the MoCr solid solution can be easily pulverized. Thus, the MoCr solid solution can be pulverized with a smaller force.

また、Cr粉末の粒径を45μm以下とすることで、熱処理により、完全に(実質的に)Cr粒子をMoに固溶させることができる。例えば、X線回折測定において、Cr元素に対応するピークが実質上消失しているMoCr粉末(すなわち、Cr元素が残留していないMoCr粉末)を得ることができる。その結果、微細な粒径を有するMoCr固溶体粒子が電極表面に分散された組織を有する電極材料を得ることができる。なお、Cr粉末の粒径を45μm以下とすることで、熱処理によりCr粒子が残留したとしても、本焼結工程(焼結工程S5)時に、MoやCuによりCr粒子はさらに微細化されるので、電極表面の接触抵抗の増加を抑制することができる。これに対して、Cr粉末の粒径が45μmより大きい場合、Mo粉末とCr粉末の含有量が、Mo>Crであったとしても、Cr粒子がMoに完全に固溶せず、Cr元素として残留することとなる。このように粒径の大きなCr粒子が電極表面に存在することで、電極同士の接触抵抗が高くなるおそれがある。よって、残留するCr元素が無くなるまで熱処理を行うことや、電極径を大きくすることで電極同士の接触抵抗を低減しなくてはならなくなる。   Moreover, by setting the particle size of the Cr powder to 45 μm or less, the Cr particles can be completely (substantially) dissolved in Mo by heat treatment. For example, in the X-ray diffraction measurement, a MoCr powder in which a peak corresponding to the Cr element has substantially disappeared (that is, a MoCr powder in which no Cr element remains) can be obtained. As a result, an electrode material having a structure in which MoCr solid solution particles having a fine particle diameter are dispersed on the electrode surface can be obtained. By setting the particle size of the Cr powder to 45 μm or less, even if Cr particles remain by heat treatment, the Cr particles are further refined by Mo or Cu during the main sintering step (sintering step S5). The increase in contact resistance on the electrode surface can be suppressed. On the other hand, when the particle size of the Cr powder is larger than 45 μm, even if the content of the Mo powder and the Cr powder is Mo> Cr, the Cr particles are not completely dissolved in the Mo, and as the Cr element It will remain. The presence of such large Cr particles on the electrode surface may increase the contact resistance between the electrodes. Accordingly, it is necessary to reduce the contact resistance between the electrodes by performing heat treatment until the remaining Cr element disappears or increasing the electrode diameter.

また、耐熱元素(Mo等)の平均粒子径の大きさは、耐熱元素とCrの固溶体粉末の粒子径の大きさを決定する一つの要因となり得る。すなわち、Cr粒子が耐熱元素粒子によって微細化され、拡散機構によって耐熱元素粒子にCrが拡散して耐熱元素とCrとが固溶体組織を形成することから、耐熱元素の粒径は、熱処理によって大きくなる。また、仮焼結によって大きくなる度合いは、Crの混合割合にも依存する。そのため、耐熱元素粉末の平均粒子径を、例えば、2〜20μm、より好ましくは、2〜10μmとすることで、耐電圧性能及び電流遮断性能に優れた電極材料を形成するための耐熱元素とCrの固溶体粉末を得ることができる。   The average particle size of the heat-resistant element (Mo or the like) can be one factor that determines the particle size of the solid solution powder of the heat-resistant element and Cr. That is, Cr particles are refined by heat-resistant element particles, Cr diffuses into the heat-resistant element particles by a diffusion mechanism, and the heat-resistant element and Cr form a solid solution structure, so the particle size of the heat-resistant element is increased by the heat treatment. . Further, the degree of increase by pre-sintering also depends on the mixing ratio of Cr. Therefore, by setting the average particle diameter of the heat-resistant element powder to, for example, 2 to 20 μm, more preferably 2 to 10 μm, the heat-resistant element and Cr for forming an electrode material having excellent withstand voltage performance and current interruption performance The solid solution powder can be obtained.

また、本発明の実施形態に係る電極材料を、例えば、真空インタラプタ(VI)の固定電極及び可動電極の少なくとも一方に設けることで、真空インタラプタの電極接点の耐電圧性能を向上させることができる。電極接点の耐電圧性能が向上すると、従来の真空インタラプタよりも固定電極と可動電極との間のギャップ長を短くでき、かつ固定電極並びに可動電極と主シールドとの間のギャップを狭めることができるため、真空インタラプタの構造を小さくすることが可能となる。その結果、真空インタラプタを小型化することができる。また、真空インタラプタを小型化することで、真空インタラプタの製造コストが低減する。   In addition, by providing the electrode material according to the embodiment of the present invention, for example, on at least one of the fixed electrode and the movable electrode of the vacuum interrupter (VI), the withstand voltage performance of the electrode contact of the vacuum interrupter can be improved. When the withstand voltage performance of the electrode contact is improved, the gap length between the fixed electrode and the movable electrode can be made shorter than that of the conventional vacuum interrupter, and the gap between the fixed electrode and the movable electrode and the main shield can be narrowed. Therefore, the structure of the vacuum interrupter can be reduced. As a result, the vacuum interrupter can be reduced in size. In addition, the manufacturing cost of the vacuum interrupter is reduced by downsizing the vacuum interrupter.

なお、本発明の実施形態の説明は、特定の望ましい実施例を例として説明したが、本発明は、実施例に限定されるものではなく、発明の特徴を損なわない範囲で、適宜設計変更が可能であり、設計変更された形態も本発明の技術範囲に属する。   The description of the embodiments of the present invention has been given by way of specific preferred examples. However, the present invention is not limited to the examples, and design changes may be made as appropriate without departing from the characteristics of the invention. Possible and modified forms are also within the technical scope of the present invention.

例えば、本発明の実施形態の説明において、熱処理工程S2における熱処理温度は、1250℃−3時間の条件であるが、熱処理工程S2における熱処理温度は、1250℃以上かつCrの融点以下、より好ましくは1250℃〜1500℃の範囲で行うことで、MoとCrの相互拡散が充分に進行し、かつその後の粉砕機を用いたMoCr固溶体の粉砕が比較的容易に行え、さらには耐電圧性能及び電流遮断性能に優れた電極材料を製造することができる。また、熱処理時間は、熱処理温度によって異なるものであり、例えば、1250℃では3時間の熱処理を行っているが、1500℃では、0.5時間の熱処理で十分である。   For example, in the description of the embodiment of the present invention, the heat treatment temperature in the heat treatment step S2 is 1250 ° C.-3 hours, but the heat treatment temperature in the heat treatment step S2 is 1250 ° C. or more and not more than the melting point of Cr, more preferably By carrying out in the range of 1250 ° C. to 1500 ° C., the mutual diffusion of Mo and Cr sufficiently proceeds, and the subsequent pulverization of the MoCr solid solution using a pulverizer can be performed relatively easily. An electrode material excellent in blocking performance can be manufactured. The heat treatment time varies depending on the heat treatment temperature. For example, heat treatment is performed for 3 hours at 1250 ° C., but heat treatment for 0.5 hour is sufficient at 1500 ° C.

また、MoCr粉末は、実施形態に記載されている製造方法により製造されたものに限定されず、公知の製造方法(例えば、ジェットミル法、アトマイズ法)で製造されたMoCr粉末を用いてもよい。   In addition, the MoCr powder is not limited to those manufactured by the manufacturing method described in the embodiment, and MoCr powder manufactured by a known manufacturing method (for example, a jet mill method or an atomizing method) may be used. .

また、本発明の電極材料は、耐熱元素、Cr、Cuのみを構成要素としたものに限定されるものではなく、電極材料の特性を向上させる元素を添加してもよい。例えば、Teを添加することにより電極材料の耐溶着性を向上することができる。   In addition, the electrode material of the present invention is not limited to those having only heat-resistant elements, Cr, and Cu as constituent elements, and an element that improves the characteristics of the electrode material may be added. For example, the welding resistance of the electrode material can be improved by adding Te.

1…真空インタラプタ
2…真空容器
3…固定電極
4…可動電極
5…絶縁筒
6…固定側端板
7…可動側端板
8…電極接点材(電極材料)
9…ベローズ
10…主シールド
DESCRIPTION OF SYMBOLS 1 ... Vacuum interrupter 2 ... Vacuum container 3 ... Fixed electrode 4 ... Movable electrode 5 ... Insulating cylinder 6 ... Fixed side end plate 7 ... Movable side end plate 8 ... Electrode contact material (electrode material)
9 ... Bellows 10 ... Main shield

Claims (1)

耐熱元素と粒径が45μm以下のCr粉末を混合し、加熱して得られる固溶体を粉砕して得た固溶体粉末と、Cu粉末と、を混合した混合粉末を成形して得られる成形体を焼結した電極材料の製造方法であって、
前記電極材料は、当該電極材料に対して重量比で
Cuを40〜80%、
Crを2〜30%、
耐熱元素を10〜54%、含有し、
前記耐熱元素の含有量は、重量比でCrの含有量より多く、
前記固溶体粉末は、該固溶体粉末のX線回折測定においてCr元素に対応するピークが消失している
ことを特徴とする電極材料の製造方法
A molded body obtained by molding a mixed powder obtained by mixing a solid solution powder obtained by pulverizing a solid solution obtained by mixing a heat-resistant element and Cr powder having a particle size of 45 μm or less, and heating, and a Cu powder is fired. A method for producing a bonded electrode material,
The electrode material is 40 to 80% Cu by weight ratio with respect to the electrode material,
2-30% Cr,
Containing 10-54% of a heat-resistant element,
The content of refractory elements, rather multi than the content of Cr by weight,
The method for producing an electrode material, wherein the solid solution powder has a peak corresponding to Cr element disappeared in X-ray diffraction measurement of the solid solution powder.
JP2014148427A 2014-07-22 2014-07-22 Method for producing electrode material Active JP6398415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148427A JP6398415B2 (en) 2014-07-22 2014-07-22 Method for producing electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148427A JP6398415B2 (en) 2014-07-22 2014-07-22 Method for producing electrode material

Publications (2)

Publication Number Publication Date
JP2016023335A JP2016023335A (en) 2016-02-08
JP6398415B2 true JP6398415B2 (en) 2018-10-03

Family

ID=55270385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148427A Active JP6398415B2 (en) 2014-07-22 2014-07-22 Method for producing electrode material

Country Status (1)

Country Link
JP (1) JP6398415B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197917B1 (en) * 2016-06-08 2017-09-20 株式会社明電舎 Method for producing electrode material
CN109290582B (en) * 2018-10-23 2022-11-29 陕西斯瑞新材料股份有限公司 Preparation method of high-performance dispersion-strengthened copper-chromium contact material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334832A (en) * 1991-05-09 1992-11-20 Meidensha Corp Manufacture of electrode material

Also Published As

Publication number Publication date
JP2016023335A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP5880789B1 (en) A composite metal in which Cu is infiltrated into a compact formed from solid solution particles
JP5904308B2 (en) Method for producing electrode material
JP5861807B1 (en) Method for producing electrode material
JP5862695B2 (en) Method for producing electrode material
JP6075423B1 (en) Vacuum circuit breaker
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP6311325B2 (en) Electrode material and method for producing electrode material
JP6398415B2 (en) Method for producing electrode material
JP6070777B2 (en) Method for producing electrode material
JP6015725B2 (en) Method for producing electrode material
WO2016178388A1 (en) Method for producing electrode material, and electrode material
JP6507830B2 (en) Method of manufacturing electrode material and electrode material
WO2015194344A1 (en) Process for producing electrode material, and electrode material
JP6090388B2 (en) Electrode material and method for producing electrode material
JP6657655B2 (en) Manufacturing method of electrode material
JP6398530B2 (en) Method for producing electrode material
JP6197917B1 (en) Method for producing electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6398415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150