JP2000235825A - Electrode member for vacuum circuit-breaker and manufacture thereof - Google Patents

Electrode member for vacuum circuit-breaker and manufacture thereof

Info

Publication number
JP2000235825A
JP2000235825A JP11036816A JP3681699A JP2000235825A JP 2000235825 A JP2000235825 A JP 2000235825A JP 11036816 A JP11036816 A JP 11036816A JP 3681699 A JP3681699 A JP 3681699A JP 2000235825 A JP2000235825 A JP 2000235825A
Authority
JP
Japan
Prior art keywords
electrode
arc
conductive metal
metal
highly conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11036816A
Other languages
Japanese (ja)
Inventor
Masayuki Doi
昌之 土井
Noboru Baba
馬場  昇
Masao Shimizu
政男 清水
Katsuhiro Komuro
勝博 小室
Teru Mehata
輝 目幡
Toru Tanimizu
徹 谷水
Yoshimi Hakamata
好美 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11036816A priority Critical patent/JP2000235825A/en
Publication of JP2000235825A publication Critical patent/JP2000235825A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reliability while lowering dispersion of the circuit- breaking performance and the withstand voltage performance by forming an arc electrode member of a high conductive metal and a fire resistant metal having a melting point higher than that of the high conductive metal, and using the high conductive metal and the fire resistant metal having flat particle shape. SOLUTION: An arc electrode 1 is made of the compound alloy obtained by thermally spraying the mixture powder of the high conductive metal and the fire resistant metal, and the arc electrode 1, an electrode support 2, a back conductor 4 and an external conductor connection part 3 are integrally formed with each other by diffusion of the high conductive metal. As an electrode member to be used, the metal powder composed of one or two kinds of Cu, Au, Ag as a high conductive metal, one or two kinds of Cr, W, Mo, Fe as a fire resistant metal and one or more kinds of Nb, V, Ti having effective withstand voltage performance is used. Each metal powder is mixed, and laminated for coating on a rough surface part of a material to be thermally sprayed with the mixture powder, and fine chrome particles are evenly distributed in the matrix of the flat copper particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な真空遮断器と
それに用いる真空バルブ、更にそれに用いられる電気接
点に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel vacuum circuit breaker, a vacuum valve used for the same, and an electric contact used for the same.

【0002】[0002]

【従来の技術】真空遮断器の電極構造は、一対の固定電
極及び可動電極からなっている。上記固定及び可動電極
の構造は、アーク電極と該アーク電極を支持するアーク
支持部材と、該アーク支持部材に連なるコイル電極端部
には電極棒の4部品から構成されている。
2. Description of the Related Art The electrode structure of a vacuum circuit breaker comprises a pair of fixed and movable electrodes. The structure of the fixed and movable electrodes includes an arc electrode, an arc support member for supporting the arc electrode, and an electrode rod at an end of a coil electrode connected to the arc support member.

【0003】上述したアーク電極材は、高電圧,大電流
を開閉遮断するために直接アークにさらされる。アーク
電極に要求される満足すべき特性は、遮断容量が大きい
こと、耐電圧値が高いこと、接触抵抗値が小さいこと
(電気伝導に優れていること)、耐溶着性に優れているこ
と、接点消耗量が少ないこと及び裁断電流値が小さいこ
と、等基本的な要件が挙げられる。しかし、これらの特
性を全て満足させることは困難であって一般には用途に
応じて特に重要な特性を重視し、他の特性はある程度犠
牲にした材料が使用されている。大電流,高電圧遮断用
アーク電極材料としては、特開昭63−96204 号公報には
Cr又はCr−CuスケルトンにCuを溶浸させる方法
が開示されている。
The above-mentioned arc electrode material is directly exposed to an arc in order to open and close a high voltage and a large current. Satisfactory characteristics required for the arc electrode include a large breaking capacity, a high withstand voltage, and a small contact resistance.
(Excellent electrical conduction), excellent welding resistance, low contact wear, and small cutting current value. However, it is difficult to satisfy all of these characteristics, and in general, a material that emphasizes particularly important characteristics according to the application and sacrifices other characteristics to some extent is used. As a material for an arc electrode for interrupting a large current and a high voltage, Japanese Patent Application Laid-Open No. 63-96204 discloses a method of infiltrating Cu into a Cr or Cr-Cu skeleton.

【0004】また、特開昭62−15716 号では、溶浸法に
より作製した電極材の表面に、Fe族元素(Fe,N
i,Coなど)またはそれらの合金系を約3μmの厚さ
にコーティングする。被覆法としては電気メッキ,ドラ
イメッキ,プラズマ溶射,CVD法あるいはスパッタ蒸
着法などを用い電極用接点材料の製造が記載されてい
る。しかし、溶浸法により作製した電極材の表面に、プ
ラズマ溶射法により約3μm厚さの皮膜を形成した状態
では、基材との接着力が脆弱なため、小さな衝撃で皮膜
が剥離する恐れがある。また皮膜が極めて薄いので効果
が小さい。更に、電極材の製造工数が多くなるので経費
が高くなる。
In Japanese Patent Application Laid-Open No. Sho 62-15716, a Fe group element (Fe, N
i, Co, etc.) or their alloy system to a thickness of about 3 μm. As a coating method, production of a contact material for an electrode is described using electroplating, dry plating, plasma spraying, CVD, or sputter deposition. However, if a film with a thickness of about 3 μm is formed on the surface of the electrode material prepared by the infiltration method by the plasma spraying method, the adhesive force with the substrate is weak, and the film may be peeled off by a small impact. is there. Also, the effect is small because the film is extremely thin. Further, the number of manufacturing steps of the electrode material is increased, so that the cost is increased.

【0005】クロム粉末と銅粉末との混合体を粉末冶金
法によって焼結体として形成されたり、多孔質のクロム
仮焼結体に銅を溶浸させて溶浸材として成形されたもの
や溶解法によって溶製材として成形されたものが使用さ
れている。しかし、これらの手法で作製した多孔質の混
合金属成形体の金属粒子間の結合力が弱いため、成形体
のハンドリング等の取り扱いに問題がある。また、この
成形体に高導電性金属である銅を溶融含浸した複合体中
の耐火性金属である結合力の脆弱なクロム粒子は軽いた
め、遊離浮上し、電極支持部(銅)中に溶け込み複合材
の脱クロム現象がみられる。また、アーク電極部(複合
部材)と電極支持部との界面に凹凸の食われ現象が著し
い。更に、成形体の減肉あるいは組成の不均一性が生じ
真空遮断器用電極部材としての性能を劣化させる恐れが
ある。
[0005] A mixture of chromium powder and copper powder is formed as a sintered body by powder metallurgy, or a porous chromium pre-sintered body is formed by infiltrating copper into an infiltration material. What was formed as a smelting material by the method is used. However, since the bonding force between the metal particles of the porous mixed metal molded body produced by these techniques is weak, there is a problem in handling such as handling of the molded body. In addition, the chromium particles having weak bonding force, which is a refractory metal, in the composite obtained by melting and impregnating copper, which is a highly conductive metal, into this molded product, are lightly floated and floated up, and melt into the electrode support (copper). The dechroming phenomenon of the composite material is observed. In addition, the phenomenon of unevenness being eroded at the interface between the arc electrode portion (composite member) and the electrode support portion is remarkable. Further, the molded article may be reduced in wall thickness or the composition may be non-uniform, which may deteriorate the performance as an electrode member for a vacuum circuit breaker.

【0006】[0006]

【発明が解決しようとする課題】電極材料として使用さ
れる銅合金において、一般的に、耐溶着性,耐電圧性を
向上させるためにクロムなど添加されている。しかし、
大きいクロム粉末粒子を用いて金型成形した成形体は脆
弱である。また溶浸した電極材料はアーク電極材と電極
支持材との界面に凹凸の食われ現象が生じるとともに減
肉される恐れがある。
In a copper alloy used as an electrode material, chromium or the like is generally added to improve welding resistance and voltage resistance. But,
Molded articles molded with large chromium powder particles are brittle. In addition, the infiltrated electrode material may cause unevenness to be eroded at the interface between the arc electrode material and the electrode support material, and may reduce the thickness.

【0007】本発明の目的は、上記の問題点を解決し電
極部材を構成する銅基地中の微細クロム粒子等の均一分
散性を向上させて、真空遮断器の遮断性能及び耐電圧性
能のばらつきを低減でき、真空遮断器の信頼性を向上さ
せる真空遮断器及びそれに用いる真空バルブと電気接点
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and improve the uniform dispersibility of fine chromium particles and the like in a copper matrix constituting an electrode member, so that variations in the breaking performance and withstand voltage performance of a vacuum circuit breaker. It is an object of the present invention to provide a vacuum circuit breaker which can reduce the pressure and improve the reliability of the vacuum circuit breaker, and a vacuum valve and an electric contact used therefor.

【0008】[0008]

【課題を解決するための手段】本発明は、アーク電極と
しての役割を果たす、表面層をプラズマ溶射法により銅
微粒子,クロム微粒子を偏平かつ均一に分散する積層を
銅(アーク電極支持部材)に形成し、更に真空熱処理を
施すことにより、複合部材(アーク電極)と銅(アーク
電極支持部材)との界面は平坦かつ強固な結合力を有し
ている。粉末冶金法で作製した成形体に銅を溶浸した時
に見られるような脱クロムあるいは成形体の減肉もな
く、従来銅合金よりも優れた電気特性が得られる。
SUMMARY OF THE INVENTION According to the present invention, there is provided a method of forming a laminate in which a copper layer and a chromium particle are flatly and uniformly dispersed by a plasma spraying method on a copper (arc electrode supporting member). By forming and further performing a vacuum heat treatment, the interface between the composite member (arc electrode) and copper (arc electrode support member) has a flat and strong bonding force. There is no dechromation or thinning of the molded body as seen when copper is infiltrated into the molded body produced by the powder metallurgy method, and electrical characteristics superior to conventional copper alloys can be obtained.

【0009】本発明は、Cu,Ag,Au等の高導電性
金属の粉末と、粒径5〜100μmのCr,W,Mo、
及びTa等の耐火性金属の1種又はそれ以上で構成され
る合金において、高導電性金属の粉末の粒径を5〜10
0μmのものを70重量%以上、好ましくは80重量%
以上、より好ましくは90重量%以上としたものであ
る。
According to the present invention, a powder of a highly conductive metal such as Cu, Ag, Au or the like, and Cr, W, Mo having a particle size of 5 to 100 μm,
And an alloy composed of one or more of refractory metals such as Ta and the like.
70% by weight or more, preferably 80% by weight
The content is more preferably 90% by weight or more.

【0010】前記合金は、融点1800℃以上のCr,
W,Mo、及びTaの1種又は2種以上の耐火性金属の
合計が10〜80重量%とCu等の高導電性金属を20
〜90重量%とするのが望ましい。
The alloy comprises Cr having a melting point of 1800 ° C. or more,
The total of one or more refractory metals of W, Mo, and Ta is 10 to 80% by weight, and a highly conductive metal such as Cu is 20%.
It is desirably about 90% by weight.

【0011】前記合金は、Pbを10重量%以下、S
b,Biの少なくとも1種以上の金属の合計10重量%
以下,Tiを10重量%以下添加することができる。
The above alloy contains Pb at 10% by weight or less,
b, total 10% by weight of at least one metal of Bi
Hereafter, 10% by weight or less of Ti can be added.

【0012】本発明は、前記金属混合粉末をプラズマ溶
射あるいは火炎溶射法のいずれかを用い、溶射すること
によって高導電性金属と耐火性金属とが偏平状の結晶粒
によって形成されていること、又はアーク電極とアーク
電極支持部との界面での凹凸が100μm以下であるこ
とを特徴とするものである。
The present invention is characterized in that the highly conductive metal and the refractory metal are formed by flat crystal grains by spraying the metal mixed powder using either plasma spraying or flame spraying. Alternatively, the unevenness at the interface between the arc electrode and the arc electrode support is 100 μm or less.

【0013】本発明は、絶縁性の真空容器内に固定側電
極と可動側電極とを備えた真空バルブと、該真空バルブ
内の前記固定側電極と可動側電極との各々に前記真空バ
ルブ外に接続された導体端子と、前記可動側電極を駆動
する開閉手段とを備えた真空遮断器において、前記固定
側電極及び可動側電極は耐火性金属と高導電性金属との
前述の合金からなるアーク電極を有することを特徴とす
る真空遮断器にある。電極材料は、耐火性金属とCu等
を主にした高導電性金属との複合合金からなり、前者に
はCr,W,Mo,Ta等の約1800℃以上の高融点
の耐火性金属が用いられ、Cuに対する固溶量として3
%以下の小さいものが好ましい。
[0013] The present invention provides a vacuum valve having a fixed side electrode and a movable side electrode in an insulating vacuum vessel, and each of the fixed side electrode and the movable side electrode in the vacuum valve is provided outside the vacuum valve. In the vacuum circuit breaker provided with a conductor terminal connected to the movable side electrode and an opening / closing means for driving the movable side electrode, the fixed side electrode and the movable side electrode are made of the above-mentioned alloy of a refractory metal and a highly conductive metal. A vacuum circuit breaker having an arc electrode. The electrode material is made of a composite alloy of a refractory metal and a highly conductive metal mainly composed of Cu or the like. For the former, a refractory metal having a high melting point of about 1800 ° C. or more, such as Cr, W, Mo, and Ta, is used. And the solid solution amount to Cu is 3
% Or less is preferable.

【0014】耐火性金属は20〜80重量%、特に55
〜75重量%とCu25〜45重量%を含む合金である
ことが望ましい。耐火性金属としては特に、Crに対し
て1〜10重量%のNb,V,Fe,Coの1種以上を
含むのが好ましい。
The refractory metal is 20 to 80% by weight, especially 55%.
It is desirable that the alloy contains 75 to 75% by weight of Cu and 25 to 45% by weight of Cu. It is particularly preferable that the refractory metal contains 1 to 10% by weight, based on Cr, of one or more of Nb, V, Fe, and Co.

【0015】前記アーク電極はCr,W,Mo及びTa
の1種又は2種以上の混合物とCu,Ag及びAuの1
種からなる高導電性金属又はこれらを主にした高導電性
合金、Pb,Bi,Te及びSbの1種又は2種以上と
の合金からなり、前記電極支持部は前記高導電性金属又
は合金からなるのが望ましい。
The arc electrode is made of Cr, W, Mo and Ta.
One or a mixture of two or more of Cu, Ag and Au
A highly conductive metal or a highly conductive alloy mainly composed of these, an alloy with one or more of Pb, Bi, Te and Sb, wherein the electrode supporting portion is formed of the highly conductive metal or alloy. It is desirable to consist of

【0016】前記電極支持部,裏導体及び外部導体接続
部は、Cr,Ag,W,V,Nb,Mo,Ta,Zr,
Si,Be,Ti,Co,Feの1種又は2種以上の合
計量が2.5 重量%以下と、Cu,Ag又はAuとの合
金からなるものが好ましい。本発明におけるアーク電極
は高導電性金属と耐火性金属との混合粉末を溶射した複
合合金よりなり、前記アーク電極と電極支持部,裏導体
及び外部導体接続部とは好ましくは前記高導電性金属の
拡散によって一体に形成されるのが好ましい。
The electrode support, the back conductor and the external conductor connection are made of Cr, Ag, W, V, Nb, Mo, Ta, Zr,
It is preferable that one or more of Si, Be, Ti, Co, and Fe be made of an alloy of 2.5% by weight or less and Cu, Ag, or Au. The arc electrode according to the present invention is made of a composite alloy obtained by spraying a mixed powder of a highly conductive metal and a refractory metal, and the arc electrode and the electrode support, the back conductor and the external conductor connection are preferably formed of the highly conductive metal. Are preferably formed integrally by the diffusion of

【0017】本発明における電極支持部は0.2%耐力
が10kg/mm2 以上で、比抵抗が2.8μΩcm以下のもの
が好ましい。
The electrode support in the present invention preferably has a 0.2% proof stress of 10 kg / mm 2 or more and a specific resistance of 2.8 μΩcm or less.

【0018】本発明は、前記固定側電極と可動側電極は
互いに接触するアーク電極中央部に真円の凹部が設けら
れているものである。
In the present invention, the fixed side electrode and the movable side electrode are provided with a perfect circular concave portion at the center of the arc electrode in contact with each other.

【0019】前記アーク電極,電極支持部,裏導体及び
外部導体接続部は前記高導電性金属の拡散接合によって
一体に形成することが好ましい。
It is preferable that the arc electrode, the electrode support, the back conductor, and the external conductor connection are integrally formed by diffusion bonding of the highly conductive metal.

【0020】前記アーク電極及び電極支持部に複数本、
好ましくは3〜6本のスパイラル状のスリット溝、又は
直線状のスリット溝が設けられているのが好ましい。
A plurality of arc electrodes and electrode support parts;
Preferably, three to six spiral slit grooves or linear slit grooves are provided.

【0021】本発明の電極の中央部側から外周側方向に
延びた外側端側より電極側面に達する前述の複数のスリ
ット溝は、各スリット溝間に形成した複数のアーク走行
面と、上記スリット溝外周側とアーク走行面外側端との
間のスリット溝を跨いで両アーク走行面と一体に連絡
し、かつ両アーク走行面から流れる電流の通路が一方側
アーク走行面の方が他方側アーク走行面より長くした両
アーク走行面と同抵抗値を有する連絡部とを備え、上記
連絡部の断面積を調整して両アーク走行面から上記連絡
部に流れる電流を制御するように形成するのが好まし
い。
The plurality of slit grooves reaching the electrode side surface from the outer end side extending from the center portion side to the outer peripheral side of the electrode according to the present invention include a plurality of arc running surfaces formed between the slit grooves and the slits. The two arc running surfaces are integrally connected to each other across the slit groove between the outer periphery of the groove and the outer end of the arc running surface, and the path of the current flowing from both arc running surfaces is one side of the arc running surface on the other side. A connecting portion having the same resistance value as the two arc running surfaces longer than the running surface, wherein a cross-sectional area of the connecting portion is adjusted to control a current flowing from the both arc running surfaces to the connecting portion. Is preferred.

【0022】本発明は、高真空に保たれた絶縁容器内に
固定側電極と可動側電極とを備えた真空バルブにおい
て、前記両電極は前述の耐火性金属粒子と高導電性金属
と、更に好ましくは低融点金属とを含む複合部材よりな
るアーク電極と、該アーク電極を支持する高導電性金属
からなる電極支持部と、該電極支持部より細径である裏
導体及び該裏導体より大径である外部導体接続部とは前
記高導電性金属によって一体に形成されており、アーク
電極が前述の溶射によって形成されていることを特徴と
する。
According to the present invention, there is provided a vacuum valve provided with a fixed side electrode and a movable side electrode in an insulating container maintained in a high vacuum, wherein both the electrodes have the above-mentioned refractory metal particles, a highly conductive metal, and Preferably, an arc electrode made of a composite member containing a low melting point metal, an electrode support made of a highly conductive metal supporting the arc electrode, a back conductor smaller in diameter than the electrode support, and a back conductor larger than the back conductor. The outer conductor connecting portion having a diameter is formed integrally with the highly conductive metal, and the arc electrode is formed by the above-described thermal spraying.

【0023】また、本発明は、前述の耐火性金属粒子と
高導電性金属と好ましくは低融点金属とを有する合金か
らなるアーク電極と、該アーク電極を支持する高導電性
金属からなる電極支持部と、該電極支持部より細径であ
る裏導体及び該裏導体より大径である外部導体接続部を
有し、前記アーク電極は電極支持部,裏導体及び外部裏
導体接続部に対して溶射によって一体に形成されている
ことを特徴とする電気接点にある。
Further, the present invention provides an arc electrode made of an alloy containing the above-mentioned refractory metal particles, a highly conductive metal and preferably a low melting point metal, and an electrode support made of a highly conductive metal for supporting the arc electrode. And a back conductor having a smaller diameter than the electrode support, and an outer conductor connection having a larger diameter than the back conductor. The arc electrode is connected to the electrode support, the back conductor, and the outer back conductor connection. An electric contact characterized by being formed integrally by thermal spraying.

【0024】本発明の電気接点の製造法として、前記ア
ーク電極は前述の粒径を有する耐火性金属と高導電性金
属の混合粉末を被溶射材上に、金属溶射により任意な厚
さに形成する。その後、前記金属溶射複合合金を真空中
で拡散接合の熱処理を施す。その加熱温度としては80
0から1000℃に加熱するのが好ましい。
According to the method of manufacturing an electric contact of the present invention, the arc electrode is formed by spraying a mixed powder of a refractory metal and a highly conductive metal having the above-described particle size on a material to be sprayed to a desired thickness by metal spraying. I do. Thereafter, the metal spray composite alloy is subjected to a heat treatment for diffusion bonding in a vacuum. The heating temperature is 80
It is preferred to heat to 0 to 1000 ° C.

【0025】真空遮断器の電極構造は、アーク電極,ア
ーク電極支持部材,裏導体及び外部裏導体接合部からな
り、アーク電極は前述の粒径を有する耐火性金属と高導
電性金属との複合合金からなり、前者にはCr,W,M
o,Ta等の1800℃以上の高融点の金属が用いら
れ、高導電性金属としてはCu,Ag,Auに対する固
溶量が3%以下の小さい、金属が好ましい。アーク電極
支持部材以外には特に純Cuが好ましいが、強度が小さ
いことからこれらの各部材の変形防止対策として鉄系材
料の純Fe,ステンレス鋼で補強し電極の変形防止に努
めている。
The electrode structure of the vacuum circuit breaker comprises an arc electrode, an arc electrode support member, a back conductor and an outer back conductor joint, and the arc electrode is a composite of a refractory metal having the above-mentioned particle size and a highly conductive metal. Alloy, the former being Cr, W, M
A metal having a high melting point of 1800 ° C. or more, such as o or Ta, is used. As the highly conductive metal, a metal having a small solid solution amount of 3% or less in Cu, Ag, and Au is preferable. Pure Cu is particularly preferable other than the arc electrode supporting member. However, since the strength is low, the members are reinforced with pure iron or stainless steel, which is an iron-based material, to prevent deformation of these members.

【0026】本発明はアーク電極は特に重量でCr30
〜60%,Nb0.5〜5.0%好ましくは0.3〜3.0
%及びPb0.1〜0.5%を含む金属溶射複合合金から
なるのが好ましい。
According to the present invention, the arc electrode is preferably made of Cr30 by weight.
-60%, Nb 0.5-5.0%, preferably 0.3-3.0.
% And Pb 0.1 to 0.5%.

【0027】本発明はアーク電極とアーク電極支持部材
以外の部材とは金相学的に連続した一体構造で構成する
ものである。この結果、前述のスリット溝をアーク電極
支持部まで形成でき、遮断時のアーク発生による発熱に
よる従来のろう付けによる問題が生じないのでより小型
化が可能となるとともに高い電流の遮断が可能になっ
た。
According to the present invention, the arc electrode and the members other than the arc electrode supporting member are constituted by a monolithically continuous integral structure. As a result, the above-mentioned slit groove can be formed up to the arc electrode support portion, and the problem caused by the conventional brazing due to the heat generated by the arc at the time of interruption does not occur, so that it is possible to reduce the size and to interrupt the high current. Was.

【0028】また、本発明によれば電極を構成するアー
ク電極,アーク電極支持部材及び外部導体接続部コイル
電極材は、金相学的に連続した一体構造で構成されると
同時に一体構造の電極製造と同一工程内で形成されるア
ーク電極支持部材以外の高導電性金属には、0.01〜
2.5重量%のCr,W,V,Zr,Si,Mo,T
a,Be,Nb,Tiの1種又は2種以上をAu,A
g,Cu中に含有せしめたものを用いることができる。
したがって、アーク電極支持部材以外の材料の電気導伝
性をあまり低下させずに機械的強度、特に耐力を大幅に
高めることができる。その結果、電極間の接触圧力の増
大,電極間の開閉時の衝撃力にも充分対応でき、経時的
な変形も解決できる。
Further, according to the present invention, the arc electrode, the arc electrode supporting member, and the coil electrode material of the external conductor connecting portion constituting the electrode are formed in a monolithically continuous integrated structure, and at the same time, the electrode structure of the integrated structure is manufactured. Highly conductive metals other than the arc electrode supporting member formed in the same process include 0.01 to
2.5% by weight of Cr, W, V, Zr, Si, Mo, T
a, Be, Nb, Ti, one or more of Au, A
g and Cu can be used.
Therefore, the mechanical strength, particularly the proof stress, can be greatly increased without significantly lowering the electrical conductivity of the material other than the arc electrode supporting member. As a result, it is possible to sufficiently cope with an increase in the contact pressure between the electrodes and the impact force at the time of opening and closing between the electrodes, and it is possible to solve temporal deformation.

【0029】このように、アーク電極材とアーク電極支
持部材以外とは非接合であるとともに金相学的に連続し
た一体構造にしたことと、上記各部材の高強度化の組み
合わせにより、従来の電極構造に比べて悪影響を除去し
たより信頼性及び安全性の高い真空遮断器を提供でき
る。本発明における金属溶射法によればCr,W,M
o,Ta粉末とPb,Bi,Te,Sb粉末あるいは他
の任意の金属粒子とを所定組成に混合した金属混合粉末
とCu,Ag,Au又はこれらの合金からなるブロック
に前記金属混合粉末をプラズマ溶射,火炎溶射で金属複
合合金を形成する。更に処理金属複合部材を真空熱処理
を施し合金化する。その後金属複合部材を所定形状の電
極に加工する。
As described above, the conventional electrode structure is obtained by combining the arc electrode material and the members other than the arc electrode supporting member with each other by not joining them together and forming a metallographically continuous integrated structure and increasing the strength of each of the above members. As a result, a highly reliable and safe vacuum circuit breaker in which adverse effects are eliminated can be provided. According to the metal spraying method of the present invention, Cr, W, M
o, Ta powder and Pb, Bi, Te, Sb powder or any other metal particles mixed in a predetermined composition and a metal mixed powder and a block made of Cu, Ag, Au, or an alloy thereof, and the plasma mixed with the metal mixed powder. A metal composite alloy is formed by thermal spraying and flame spraying. Further, the treated metal composite member is subjected to vacuum heat treatment to be alloyed. Thereafter, the metal composite member is processed into an electrode having a predetermined shape.

【0030】本発明は、金属溶射法より前記金属混合粉
末を溶射し、金属複合合金を形成することを特徴とする
真空遮断器用電極部材にある。
The present invention resides in an electrode member for a vacuum circuit breaker, wherein the metal mixed powder is sprayed by a metal spraying method to form a metal composite alloy.

【0031】真空遮断器用電極部材の製造において、従
来の圧粉成形法で作製した高多孔質な混合金属成形体は
粒子間の結合力が非常に脆弱であり、取り扱いに苦慮す
る。またこの前記成形体に高導電性成分である銅系,銀
系金属を溶融含浸した複合部材は、成形体のクロムが銅
あるいは銀中に溶け込む脱クロムによる組成の不均一、
あるいは溶浸部界面の浸食による減肉等の現象が生じ好
ましくない。
In the production of an electrode member for a vacuum circuit breaker, a highly porous mixed metal compact produced by a conventional compacting method has a very weak bonding force between particles, and is difficult to handle. Further, the composite member obtained by melting and impregnating a copper-based or silver-based metal, which is a highly conductive component, into the molded body has a non-uniform composition due to dechromization in which chromium of the molded body dissolves in copper or silver.
Alternatively, phenomena such as wall thinning due to erosion at the interface of the infiltration portion occur, which is not preferable.

【0032】本発明の該真空遮断器用電極部材では上記
の問題は解決される。
The above problem is solved by the electrode member for a vacuum circuit breaker of the present invention.

【0033】本発明において、高導電性金属であるC
u,Au,Agの1種または2種、耐火性金属としての
Cr,W,Mo,Feの1種または2種、耐電圧性に有
効な粒子であるNb,V,Ti,Ta,Zr,硅素の1
種以上からなる金属粉末。更に高導電性金属であるC
u,Au,Agの1種または2種、耐火性金属としての
Cr,W,Mo,Feの1種または2種、耐電圧性に有
効な粒子であるNb,V,Ti,Ta,Zr,Siの1
種以上、耐溶着成分,低融点材のPb,Bi,Sb,T
eの1種または2種以上の金属粉末からなるのが好まし
い。該金属粉末をガラス製の混合器に収納し、該ガラス
製容器を数時間回転させ十分に個々の金属粉末を混合さ
せる。この金属混合粉末を用い、プラズマジェット(ア
ルゴン,アルゴン−水素,アルゴン−ヘリウム)中に金
属混合粉末を投入し、予め被溶射材の表面をグリットブ
ラスチィングの前処理により粗面化した部位に積層コー
ティングする。前記金属混合粉末粒子を均一に混合分散
させることを特徴とする真空遮断器用電極材料の製造方
法にある。
In the present invention, the highly conductive metal C
one or two of u, Au, Ag, one or two of Cr, W, Mo, Fe as refractory metals, and Nb, V, Ti, Ta, Zr, particles which are effective for withstand voltage. Silicon 1
Metal powder consisting of more than one species. C, which is a highly conductive metal
one or two of u, Au, Ag, one or two of Cr, W, Mo, Fe as refractory metals, and Nb, V, Ti, Ta, Zr, particles which are effective for withstand voltage. Si 1
Or more, Pb, Bi, Sb, T
It is preferable that it is composed of one or more metal powders of e. The metal powder is housed in a glass mixer, and the glass container is rotated for several hours to sufficiently mix the individual metal powders. Using this metal mixed powder, the metal mixed powder is put into a plasma jet (argon, argon-hydrogen, argon-helium), and the surface of the material to be sprayed is roughened in advance by grit blasting pretreatment. Laminate coating. A method of manufacturing an electrode material for a vacuum circuit breaker, wherein the metal mixed powder particles are uniformly mixed and dispersed.

【0034】本発明で得られた金属溶射複合合金は、個
々の粒子間の結合力が強固であり、更に被溶射材との界
面の結合力も強固であることから、耐電圧性,耐溶着
性,遮断特性など十分な効果が得られる。生産性及び経
済性を考慮すると、耐火性金属である粒子は53μm以
下が好ましい。その含有量は高導電性金属に対して、耐
火性金属が20〜60重量%、耐電圧性金属は1〜10
重量%、耐溶着性金属は0.1〜1重量%が好ましい。
The metal-sprayed composite alloy obtained in the present invention has a strong bonding force between individual particles and a strong bonding force at the interface with the material to be sprayed. Sufficient effects such as the cutoff characteristics can be obtained. In consideration of productivity and economy, the particle size of the refractory metal is preferably 53 μm or less. The content is 20 to 60% by weight of the refractory metal and 1 to 10% by weight with respect to the highly conductive metal.
% By weight and 0.1 to 1% by weight of the welding resistant metal.

【0035】本発明において、前記金属混合粉末をプラ
ズマ溶射法で個々の粒子間の結合力が強固で欠陥のない
金属複合合金を製造することを特徴とする真空遮断器用
電極部材にある。
According to the present invention, there is provided an electrode member for a vacuum circuit breaker, wherein the metal mixed powder is produced by a plasma spraying method to produce a metal composite alloy having a strong bonding force between individual particles and having no defect.

【0036】本発明において、前記金属溶射複合部材に
は、クロム粒子が遊離し浮上することなく銅(電極支持
部)中への溶け込み、あるいは界面の浸食による減肉等
の現象がなく、高導電性金属中に微細な耐火性金属が均
一に分散した健全な真空遮断器用電極部材を提供でき
る。
In the present invention, the metal-sprayed composite member is free of chromium particles and does not float and melt into copper (electrode supporting portion), or has no phenomenon such as wall thinning due to erosion at the interface. It is possible to provide a sound electrode member for a vacuum circuit breaker in which fine refractory metals are uniformly dispersed in a conductive metal.

【0037】[0037]

【発明の実施の形態】(実施例1)粒径150μm以
下,純度99.99% の電解銅粉末と、粒径100μm
以下,純度99.99%のクロム粉末20.0〜80.0
重量%,粒径75〜45μm,純度99.9%のニオブ粉
末1.0重量%の粉末を、Vミキサー器により150rpm
で、1時間混合した粉末を無酸素銅製の基材にプラズ
マ溶射法により溶射した。溶射条件は、プラズマガスA
r+H2 ,プラズマ電流600A,プラズマ電圧60
V,粉末供給量36g/min ,溶射距離100mm,皮膜
厚さ2mmである。 (実施例2)粒径150μm以下,純度99.99%の
電解銅粉末と、粒径100μm以下,純度99.99%
のクロム粉末20.0〜80.0重量%,粒径75〜45
μm,純度99.9%のニオブ粉末1.0重量%の粉末
を、Vミキサー器により150rpm で、1時間混合した
粉末を無酸素銅製の基材にプラズマ溶射法により溶射し
た。溶射条件は、プラズマガスAr+H2 ,プラズマ電
流600A,プラズマ電圧60V,粉末供給量36g/
min ,溶射距離100mm,皮膜厚さ2mmである。溶射
後、被溶射材を10-5Torrの真空中で、処理温度800
〜1000℃で1時間の熱処理を行った。
(Example 1) Electrolytic copper powder having a particle diameter of 150 μm or less and a purity of 99.99%, and a particle diameter of 100 μm
Hereinafter, a chromium powder having a purity of 99.99% 20.0 to 80.0%
% Of niobium powder having a particle size of 75 to 45 μm and a purity of 99.9% was mixed with a V mixer at 150 rpm.
The powder mixed for 1 hour was sprayed onto a substrate made of oxygen-free copper by a plasma spraying method. Thermal spraying conditions are plasma gas A
r + H 2 , plasma current 600A, plasma voltage 60
V, powder supply amount: 36 g / min, spraying distance: 100 mm, film thickness: 2 mm. (Example 2) Electrolytic copper powder having a particle size of 150 μm or less and a purity of 99.99%, and an electrolytic copper powder having a particle size of 100 μm or less and a purity of 99.99%
Chromium powder 20.0-80.0% by weight, particle size 75-45
Niobium powder having a purity of 99.9% and 1.0 wt% of niobium powder were mixed by a V mixer at 150 rpm for 1 hour, and the resulting powder was sprayed onto a substrate made of oxygen-free copper by a plasma spraying method. The spraying conditions were as follows: plasma gas Ar + H 2 , plasma current 600 A, plasma voltage 60 V, powder supply amount 36 g /
min, spraying distance 100 mm, coating thickness 2 mm. After thermal spraying, the material to be sprayed is treated at a processing temperature of 800 in a vacuum of 10 -5 Torr.
Heat treatment was performed at ~ 1000 ° C for 1 hour.

【0038】(実施例3)粒径150μm以下,純度9
9.99%の電解銅粉末と、粒径100μm以下,純度9
9.99% のクロム粉末20.0〜80.0重量%,粒径
75〜45μm,純度99.9%のニオブ粉末1.0重量
%の粉末を、Vミキサー器により150rpm で、1時間
混合した粉末を無酸素銅製の基材に高速火炎溶射法によ
り溶射した。溶射条件は、溶射ガスC36+O2 +空
気,粉末供給量35g/min ,溶射距離200mm,皮膜
厚さ2mmである。
Example 3 Particle size: 150 μm or less, purity: 9
9.99% electrolytic copper powder, particle size 100 μm or less, purity 9
9.9% chromium powder 20.0-80.0% by weight, particle size 75-45 μm, purity 99.9% niobium powder 1.0% by weight were mixed for 1 hour at 150 rpm using a V mixer. The powder thus obtained was sprayed onto a substrate made of oxygen-free copper by a high-speed flame spraying method. The spraying conditions were as follows: spray gas C 3 H 6 + O 2 + air, powder supply amount 35 g / min, spray distance 200 mm, coating thickness 2 mm.

【0039】(実施例4)粒径150μm以下,純度9
9.99%の電解銅粉末と、粒径100μm以下,純度9
9.99% のクロム粉末20.0〜80.0重量%,粒径
75〜45μm,純度99.9%のニオブ粉末1.0重量
%の粉末を、Vミキサー器により150rpm で、1時間
混合した粉末を無酸素銅製の基材に高速火炎溶射法によ
り溶射した。溶射条件は、溶射ガスC36+O2 +空
気,粉末供給量35g/min ,溶射距離200mm,皮膜
厚さ2mmである。溶射後、被溶射材を10-5Torrの真空
中で、処理温度800〜1000℃で1時間の熱処理を
行った。
Example 4 Particle size: 150 μm or less, purity: 9
9.99% electrolytic copper powder, particle size 100 μm or less, purity 9
9.9% chromium powder 20.0-80.0% by weight, particle size 75-45 μm, purity 99.9% niobium powder 1.0% by weight were mixed for 1 hour at 150 rpm using a V mixer. The powder thus obtained was sprayed onto a substrate made of oxygen-free copper by a high-speed flame spraying method. The spraying conditions were as follows: spray gas C 3 H 6 + O 2 + air, powder supply amount 35 g / min, spray distance 200 mm, coating thickness 2 mm. After thermal spraying, the material to be sprayed was heat-treated at a processing temperature of 800 to 1000 ° C. for 1 hour in a vacuum of 10 −5 Torr.

【0040】図1は、溶射後の金属溶射複合合金の断面
外観である。溶射後のアーク電極1とアーク電極支持部
2,外部導体接続部3及び裏導体4を示す。切削加工後
のアーク電極1とアーク電極支持部2との両者の界面部
の断面の顕微鏡組織写真により観察した結果、本発明の
組織(倍率:50倍)は、偏平な銅粒のマトリックス中
に微細なクロム粒子が偏平かつ均一に分布し、界面にお
いて約40μmの凹凸を有するものの平滑な界面状態を
示していた。従来の粉末冶金法で成形した部材の組織
(倍率:50倍)は、大きなクロム粒子が分布し、界面
で約400μmという凹凸のうねりが大きい界面形態と
なっていた。
FIG. 1 is a cross-sectional view of a metal spray composite alloy after thermal spraying. The arc electrode 1, the arc electrode support 2, the outer conductor connection 3, and the back conductor 4 after thermal spraying are shown. As a result of observing a microstructure photograph of a cross section of the interface between the arc electrode 1 and the arc electrode support 2 after cutting, the structure of the present invention (magnification: 50 times) was found to be in a matrix of flat copper particles. The fine chromium particles were flat and uniformly distributed, and had a smooth interface state although the interface had irregularities of about 40 μm. The structure (magnification: 50 times) of the member formed by the conventional powder metallurgy method had an interface configuration in which large chromium particles were distributed and the unevenness of the interface was large at about 400 μm.

【0041】このように本発明方法によればアーク電極
1とアーク電極支持部2,外部導体接続部3及び裏導体
4とが一体構造で構成されている。アーク電極1とアー
ク電極支持部2との間にはこれより径の小さい細径を有
する裏導体4が設けられる。またアーク電極材とアーク
電極支持部材との界面は金相学的に完全に連続一体化が
なされており、ろう付け等による接合が不必要であるこ
とがわかる。
As described above, according to the method of the present invention, the arc electrode 1, the arc electrode supporting portion 2, the external conductor connecting portion 3, and the back conductor 4 are integrally formed. Between the arc electrode 1 and the arc electrode support 2, there is provided a back conductor 4 having a smaller diameter and a smaller diameter. Further, the interface between the arc electrode material and the arc electrode supporting member is completely and continuously integrated in a metallographic manner, and it can be seen that joining by brazing or the like is unnecessary.

【0042】図1に示すように切削により得た電極はア
ーク電極1とアーク電極支持部2との界面は合金を形成
しており、ろう材例えば銀ろうより融点が高く、溶融し
にくく、耐アークに強く電流遮断容量の向上に寄与する
ことができる。
As shown in FIG. 1, in the electrode obtained by cutting, the interface between the arc electrode 1 and the arc electrode support 2 forms an alloy. It is strong against arcs and can contribute to improvement of current interrupting capacity.

【0043】[0043]

【表1】 [Table 1]

【0044】表1は、プラズマ溶射した後のアーク電極
1の減肉量を示す。本発明部材の減肉量は全くない。従
来部材は3.0mm と大きく減肉している。このことか
ら、本発明部材は良好な部材である。
Table 1 shows the thickness reduction of the arc electrode 1 after plasma spraying. There is no thickness reduction of the member of the present invention. The conventional member is greatly reduced in thickness to 3.0 mm. From this, the member of the present invention is a good member.

【0045】(実施例5)図2は、前述の実施例1〜4
に係わるアーク電極を用いた真空バルブの断面図であ
る。真空容器は絶縁材で形成された絶縁筒体28の上・
下開口部に上・下一体をなすシーリング27を設けて真
空室を形成する真空容器を構成し、上記シーリングの中
程に固定電極21の一部を形成する固定導体22を垂設
し、この固定電極21の直下に位置する上記シーリング
の中程に可動電極23の一部を形成する可動導体からな
る通電部を収納している。上記可動導体21は金属ベロ
ーズ26を介して真空容器に接合されており、気密をた
もって電極の開閉を行う。シールド部材25は、遮断
時、上記固定電極21及び可動電極間23に発生するア
ークから絶縁筒体28を保護し、飛散する溶融金属を固
着させ、アークを冷却する。さらには電離を制御する働
きを損なわないようにして構成したものである。
(Embodiment 5) FIG. 2 shows Embodiments 1 to 4 described above.
FIG. 2 is a cross-sectional view of a vacuum valve using an arc electrode according to FIG. The vacuum vessel is placed on an insulating cylinder 28 made of insulating material.
A ceiling 27 is provided in the lower opening to form a vacuum chamber by forming an upper and lower sealing 27, and a fixed conductor 22 forming a part of the fixed electrode 21 is vertically provided in the middle of the ceiling. In the middle of the ceiling located immediately below the fixed electrode 21, a current-carrying portion formed of a movable conductor forming a part of the movable electrode 23 is housed. The movable conductor 21 is joined to a vacuum vessel via a metal bellows 26, and opens and closes the electrodes in an airtight manner. The shield member 25 protects the insulating cylinder 28 from an arc generated between the fixed electrode 21 and the movable electrode 23 at the time of interruption, fixes the scattered molten metal, and cools the arc. Further, the configuration is such that the function of controlling ionization is not impaired.

【0046】[0046]

【表2】 [Table 2]

【0047】表2に示す試料A〜Kは実施例、試料L〜
Oは比較例である。
Samples A to K shown in Table 2 are examples and samples L to
O is a comparative example.

【0048】遮断試験は、一対の供試電極を遮断試験部
に組み込み、遮断試験部を真空排気しながら300℃で
2時間のベーキングを行う。その後、ギャップ2.5mm
の電極間に最大60kV交流電圧を印加しながら放電し
易い低耐電圧部分を除去するコンデーショニングを2回
行う。300Aの小電流遮断後のインパルス耐圧試験で
は、AC100V,300Aでアーク点孤10回を行っ
た後、電極ギャップ2.5mm における最小の放電電圧を
測定する。この点孤10回と耐電圧測定を10回繰り返
して小電流遮断後の耐電圧特性とした。裁断電流測定で
は、遮断時の電流波形をデジタルメモリーに記憶させた
後シンクロスコープに再現させて裁断電流値を読み取
り、これを50回繰り返して最大値と平均値を求めた。
遮断試験では、LC共振回路設備を用い、回路定数の関
係から遮断電流の周波数58Hz,過渡回復電圧の周波
数は約11Hzとし、遮断電流が500〜1000Aス
テップで増加するように試験電圧1〜5.6kV の範囲
で順次増加させて遮断不能となるまで試験を続行した。
試験途中で遮断不能が起きた場合は、遮断電流を一旦下
げて遮断試験を行い電極表面をクリーニングした後、遮
断電流を上昇しこれ以上の遮断が困難と思われる遮断電
流の限界値をもって遮断性能とした。大電流遮断後のイ
ンパルス耐電圧測定では、試験後に電極ギャップ2.5m
m における最小インパルス耐電圧を測定し、大電流遮断
後の耐電圧特性とした。大電流小電流遮断後の耐電圧試
験を行った。測定では、電極面にAC100V,300
Aでアーク点孤し、電極ギャップ2.5mm における最小
インパルス耐電圧を測定する。この小電流10回遮断と
耐電圧測定を10回繰り返し大電流小電流遮断後の耐電
圧特性とした。
In the cutoff test, a pair of test electrodes are incorporated in the cutoff test section, and baking is performed at 300 ° C. for 2 hours while evacuating the cutoff test section. After that, gap 2.5mm
While applying an AC voltage of 60 kV at the maximum between the electrodes, conditioning is performed twice to remove a low withstand voltage portion that is easily discharged. In the impulse withstand voltage test after the interruption of the small current of 300 A, the arc discharge is performed 10 times at 100 V AC and 300 A, and then the minimum discharge voltage at the electrode gap of 2.5 mm is measured. This withstand operation was repeated 10 times and the withstand voltage measurement was repeated 10 times to obtain the withstand voltage characteristics after the interruption of the small current. In the cutting current measurement, the current waveform at the time of interruption was stored in a digital memory and then reproduced on a synchroscope to read the cutting current value. This was repeated 50 times to obtain the maximum value and the average value.
In the cutoff test, the LC resonance circuit equipment was used, the cutoff current frequency was set to 58 Hz and the transient recovery voltage frequency was set to about 11 Hz from the relation of circuit constants, and the test voltages 1 to 5 were set so that the cutoff current increased in 500 to 1000 A steps. The test was continued in the range of 6 kV until the cut-off was impossible.
If the interruption cannot be performed during the test, the interruption current is lowered, the interruption test is performed, and after cleaning the electrode surface, the interruption current is increased. And In the impulse withstand voltage measurement after interrupting the large current, the electrode gap is 2.5m after the test.
The minimum impulse withstand voltage at m was measured, and the withstand voltage characteristics after interruption of a large current were determined. A withstand voltage test after breaking a large current and a small current was performed. In the measurement, AC100V, 300
The arc is turned on at A, and the minimum impulse withstand voltage at the electrode gap of 2.5 mm is measured. This small current interruption 10 times and withstand voltage measurement were repeated 10 times, and the withstand voltage characteristics after interruption of the large current and small current were determined.

【0049】[0049]

【表3】 [Table 3]

【0050】表3に遮断及び耐電圧試験結果を示す。特
性は、試料Aの特性基準値(1.0とする)として示
す。試料H,I,J,Kは試料Aの1.5 倍の遮断およ
び耐電圧性が得られる。この結果から、銅粉末,クロム
粉末,ニオブ粉末の粒径はいずれも53〜32μm,3
2〜22μm及び22μm以下が好ましい。しかし、粒
径22μm以下になると成形性,生産性,コストの点で
問題があるので、53〜22μmが特に好ましい。
Table 3 shows the results of the breaking and withstand voltage tests. The characteristics are shown as characteristic reference values of sample A (assumed to be 1.0). Samples H, I, J, and K have 1.5 times the cutoff and withstand voltage of Sample A. From these results, the particle diameters of the copper powder, chromium powder and niobium powder were all 53 to 32 μm, 3
It is preferably 2 to 22 μm and 22 μm or less. However, if the particle size is 22 μm or less, there are problems in terms of moldability, productivity, and cost. Therefore, 53 to 22 μm is particularly preferable.

【0051】(実施例6)図3は前述の実施例5に示し
たプラズマ溶射によって形成した図1の電極部材に、本
実施例におけるスパイラル型電極の平面図及び図4はそ
の断面図である。電極はこれらの図に示すように更に切
削加工によって電極中央部の真円の凹部5Aと互いの接
触面を兼ねるようにその外側にアーク走行面5B,5
C,5Dを一体に設け、各アーク走行面5B,5C,5
D間に凹部5Aからアーク走行面5B,5C,5Dの外
側端5Eの手前までに3本のスリット溝13A〜13C
を螺旋状にアーク電極1とアーク電極支持部に切られて
いる。このスパイラル構造の溝は3本であるが4本でも
5本でもよく、曲線又は直線でもよい。真円凹部5Aは
裏導体4の直径とほぼ同じ径とするのが好ましい。
(Embodiment 6) FIG. 3 is a plan view of a spiral type electrode in this embodiment, and FIG. 4 is a sectional view of the electrode member of FIG. 1 formed by the plasma spraying shown in the above-mentioned Embodiment 5. . As shown in these figures, the electrodes are further cut by arc processing surfaces 5B and 5B on the outside so as to serve as contact surfaces with a perfect circular recess 5A at the center of the electrode.
C, 5D are provided integrally, and each arc running surface 5B, 5C, 5
D, three slit grooves 13A to 13C extending from the concave portion 5A to a position just before the outer end 5E of the arc running surfaces 5B, 5C, 5D.
Is spirally cut into an arc electrode 1 and an arc electrode support. The spiral structure has three grooves, but may have four or five grooves, and may have a curved line or a straight line. It is preferable that the diameter of the perfect circular recess 5A is substantially the same as the diameter of the back conductor 4.

【0052】複数のスリット溝13A〜13Cは凹部に
なっているアーク走行面5Bからスリット溝の外周側先
端部13Eより電極側面に達している。各スリット溝間
に複数のアーク走行面5B〜5Dを形成している。連絡
部14は外周側先端部13Eと電極外周端のアーク走行
面5Bとの間のスリット溝13A〜13Cを跨いでい
る。つまり橋の役割をしている。連絡部14は両アーク
走行面5B〜5Dと一体に形成すると共に、両アーク走
行面5B〜5Dと同じ抵抗値を有している。
The plurality of slit grooves 13A to 13C extend from the arc running surface 5B, which is a concave portion, to the electrode side surface from the outer peripheral end portion 13E of the slit groove. A plurality of arc running surfaces 5B to 5D are formed between the slit grooves. The connecting portion 14 straddles the slit grooves 13A to 13C between the outer peripheral end portion 13E and the arc running surface 5B at the outer peripheral end of the electrode. In other words, it acts as a bridge. The connecting portion 14 is formed integrally with the two arc running surfaces 5B to 5D and has the same resistance as the two arc running surfaces 5B to 5D.

【0053】このため、アークAが各アーク走行面と連
絡部14とを流れる時の発生熱が少なく、電極の電流容
量を向上することができる。連絡部14と両アーク走行
面5B〜5Dとの表面を等しい高さにできるので、従来
のバルブに比べて軸方向を縮小できるばかりか、また電
界集中がなく、電界を緩和することができるので、更に
遮断電流容量を向上することができる。
For this reason, the heat generated when the arc A flows between each arc running surface and the connecting portion 14 is small, and the current capacity of the electrode can be improved. Since the surfaces of the connecting portion 14 and the two arc running surfaces 5B to 5D can be made equal in height, not only can the axial direction be reduced as compared with the conventional valve, but also the electric field can be reduced without electric field concentration. In addition, the breaking current capacity can be further improved.

【0054】(実施例7)(Embodiment 7)

【0055】[0055]

【表4】 [Table 4]

【0056】表4は前述のアーク電極を溶射によって形
成した真空バルブを用いた各種定格における真空バルブ
の諸元を示すものである。図5は表4に示すNo.1の真
空バルブ、図6はNo.4の真空バルブの断面図である。
Table 4 shows the specifications of the vacuum valve at various ratings using the vacuum valve formed by spraying the above-mentioned arc electrode. FIG. 5 is a cross-sectional view of the No. 1 vacuum valve shown in Table 4, and FIG. 6 is a cross-sectional view of the No. 4 vacuum valve.

【0057】絶縁材料で形成された絶縁筒体の35の上
下開口部に上下一体をなすシールリング38a,38b
を設けて真空室を形成する真空容器を構成し、上記シー
ルリング38aの中程に固定電極30aを垂設し、この
固定電極30aの直下に位置する上記シールリング38
aの中程に可動電極30bの一部を形成する可動側の電
極棒34を昇降自在に設け、更に、上記固定電極30a
のアーク電極33bに対して上記可動電極30bのアー
ク電極31bを接離するようにし、上記可動側の電極棒
34の周りに位置する上記シールリング38aの内側に
金属製のベローズ37を伸縮するようにして被冠して設
け、更に、上記両アーク電極の周りの円筒状をなす金属
板のシール部材36を絶縁筒体35の真空容器によって
設置し、このシール部材36は上記絶縁筒体35の真空
容器の絶縁性を損なわないようにして構成したものであ
る。
The upper and lower openings of the insulating cylinder 35 made of an insulating material are vertically integrated with seal rings 38a and 38b.
Are provided to form a vacuum chamber, a fixed electrode 30a is vertically provided in the middle of the seal ring 38a, and the seal ring 38 located immediately below the fixed electrode 30a is formed.
a movable electrode rod 34, which forms a part of the movable electrode 30b, is provided in the middle of the movable electrode 30b so as to be movable up and down.
So that the arc electrode 31b of the movable electrode 30b is brought into contact with and separated from the arc electrode 33b of the movable electrode 30b, and the metal bellows 37 is expanded and contracted inside the seal ring 38a located around the movable electrode rod 34. Further, a cylindrical metal plate sealing member 36 around both of the arc electrodes is provided by a vacuum vessel of an insulating cylinder 35, and the sealing member 36 is provided on the insulating cylinder 35. The structure is such that the insulation of the vacuum vessel is not impaired.

【0058】更に、上記アーク電極31a,31bは前
述のプラズマ溶射によって得られたアーク電極支持部3
2a,32bに一体固着され、外部導体接続部33a,3
3b及び裏導体39a,39bによって構成されてい
る。絶縁筒体35から真空容器にはガラス,セラミック
ス焼結体が用いられている。絶縁筒体35から真空容器
はシールリング38a,38bにコパール等のガラス,
セラミックスの熱膨張係数に近い合金板を介してろう付
けされ、10-6mmHg以下の真空に保たれる。
Further, the arc electrodes 31a and 31b are connected to the arc electrode supporting portions 3 obtained by the above-described plasma spraying.
2a, 32b are integrally fixed to the external conductor connection portions 33a, 3
3b and the back conductors 39a and 39b. Glass and ceramics sintered bodies are used for the insulating cylinder 35 to the vacuum container. From the insulating cylinder 35, the vacuum vessel is made of glass such as copearl or the like on the seal rings 38a and 38b.
It is brazed through an alloy plate having a coefficient of thermal expansion close to that of ceramics, and is kept at a vacuum of 10 −6 mmHg or less.

【0059】いずれの電極においても外部導体接続部に
はねじ45a,45bが設けられ、外部端子に接続さ
れ、電流の通路となる。ゲッタは真空容器内部に微量の
ガスが発生した場合に吸収して真空を保つ働きとして設
けられる。シール部材36はアークによって発生した主
電極表面の金属蒸気を付着させ、冷却させる働きを有
し、また付着した金属はゲッタ作用を有する真空度保持
の働きを有する。
In any of the electrodes, screws 45a and 45b are provided at the external conductor connection portions, and are connected to external terminals to serve as current paths. The getter is provided to absorb a small amount of gas generated inside the vacuum vessel and maintain the vacuum. The sealing member 36 has a function of adhering and cooling metal vapor on the surface of the main electrode generated by the arc, and the adhered metal has a function of maintaining a degree of vacuum having a getter function.

【0060】図中の寸法は43が絶縁筒の外径,44が
その長さ,41が電極裏導体直径,40が電極の直径で
ある。46はガイド、47はボタンである。ボタン47
は所望の深さを有する真円からなる凹部で、図4に示す
凹部5Aと同じものである。表3に示すように、本発明
に係る真空バルブは定格の遮断容量の違いによって、ス
パイラル溝本数及びスパイラルが異なるものである。
In the figure, 43 is the outer diameter of the insulating cylinder, 44 is its length, 41 is the diameter of the conductor behind the electrode, and 40 is the diameter of the electrode. 46 is a guide, and 47 is a button. Button 47
Is a recess formed of a perfect circle having a desired depth, which is the same as the recess 5A shown in FIG. As shown in Table 3, in the vacuum valve according to the present invention, the number of spiral grooves and the number of spirals are different depending on the difference in rated breaking capacity.

【0061】図7は本発明に係る真空バルブ59とその
操作機とを示す真空遮断器の構成図である。
FIG. 7 is a block diagram of a vacuum circuit breaker showing the vacuum valve 59 and its operating device according to the present invention.

【0062】操作機構部を前面配置とし、背面に真空バ
ルブを支持する3相一括型の3組の耐トラッキング性を
有するエポキシレジン筒60を配置した小型,軽量な構
造である。
This is a small and lightweight structure in which the operating mechanism section is disposed on the front side, and three sets of three-phase epoxy resin cylinders 60 having tracking resistance, which support a vacuum valve, are disposed on the rear side.

【0063】各相端はエポキシレジン筒,真空バルブ支
持板で水平に支持されてた水平引き出し形である。真空
バルブは、絶縁操作ロッド61を介して、操作機構によ
って開閉される。
Each phase end is of a horizontal draw-out type supported horizontally by an epoxy resin cylinder and a vacuum valve support plate. The vacuum valve is opened and closed by an operating mechanism via an insulating operating rod 61.

【0064】操作機構は、構造が簡単で小型,軽量な電
磁操作式の機械的引き出し自由機械である。開閉ストロ
ークが少なく、可動部の質量が小さいために衝撃は僅少
である。本体前面には、手動連結式の二次端子のほか、
開閉表示器,動作回数計,手動引き出しボタン,手動投
入装置,引出装置及びインターロックレバーなどが配置
されている。
The operating mechanism is an electromagnetically operated mechanical free-drawing machine with a simple structure, small size and light weight. Shock is small because the opening and closing stroke is small and the mass of the movable part is small. On the front of the main unit, in addition to the manually connected secondary terminal,
An open / close indicator, an operation counter, a manual pull-out button, a manual input device, a pull-out device, an interlock lever, and the like are arranged.

【0065】(a)閉路状態 遮断器の閉路状態を示し、電流は上部端子62,主電極
30,集電子63,下部端子64を流れる。主電極間の
接触力は、絶縁操作ロッド61に装着された接触ばね6
5によって保たれている。
(A) Closed state The closed state of the circuit breaker is shown, and current flows through the upper terminal 62, the main electrode 30, the current collector 63, and the lower terminal 64. The contact force between the main electrodes is determined by the contact spring 6 mounted on the insulating operation rod 61.
5 is kept.

【0066】主電極間の接触力,早切ばねの力及び短絡
電流による電磁力は、支えレバー66及びブロック67
で保持されている。投入コイルを励磁すると開路状態か
らプランジャ68がノッキングロッド69を介してロー
ラ70を押し上げ、主レバー71を回して接触子をとじ
たあと、支えレバー66で保持している。
The contact force between the main electrodes, the force of the quick-release spring, and the electromagnetic force due to the short-circuit current are applied to the support lever 66 and the block 67.
Is held in. When the closing coil is excited, the plunger 68 pushes up the roller 70 via the knocking rod 69 from the open state, turns the main lever 71 to close the contact, and is held by the support lever 66.

【0067】(b)引出し自由状態 開離動作により可動主電極が下方に動かされ、固定・可
動両主電極が開離からアークが発生する。アークは、真
空中の高い絶縁耐力と激しい拡散作用によって短時間に
消孤される。
(B) Free-drawing state The movable main electrode is moved downward by the separating operation, and an arc is generated from the separation of the fixed and movable main electrodes. The arc is extinguished in a short time due to the high dielectric strength in the vacuum and the vigorous diffusion action.

【0068】引出しコイル72が励磁されると、引出し
レバー73がブロック67の係合を外し、主レバー71
は早切ばねの力で回って主電極が開かれる。この動作
は、閉路動作の有無には全く関係なく行われる機械的引
出し自由方式である。
When the extraction coil 72 is excited, the extraction lever 73 disengages the block 67 and the main lever 71
Is turned by the force of the quick-release spring to open the main electrode. This operation is a mechanical free-drawing method that is performed irrespective of the presence or absence of a closing operation.

【0069】(c)開路状態 主電極が開かれたあと、リセットばね74によってリン
クが復帰し同時にブロック67が係合する。この状態で
投入コイル75を励磁すると(a)の閉路状態になる。
76は排気筒である。
(C) Open circuit state After the main electrode is opened, the link is returned by the reset spring 74 and the block 67 is simultaneously engaged. When the closing coil 75 is excited in this state, the closed state shown in FIG.
76 is an exhaust pipe.

【0070】真空遮断器は高真空中でアーク遮断し、真
空の持っている高い絶縁耐力と、アークの高速拡散作用
により優れた遮断性能を有しているが、反面無負荷のモ
ートル,変圧器を開閉する場合電流が零点に達する以前
に遮断してしまい、所謂裁断電流を生じ、この電流とサ
ージインピーダンスの積に比例する開閉サージ電圧を発
生する場合がある。このため3kV変圧器や3kV,6
kV回転機などを真空遮断器で直接開閉するときは、サ
ージアブソーバを回路に接触してサージ電圧を抑制し、
機器を保護する必要がある。サージアブソーバとして
は、コンデンサを標準としますが、負荷の衝撃波耐電圧
値によって、ZnO非直線抵抗体を使用することもでき
る。
The vacuum circuit breaker cuts off the arc in a high vacuum and has excellent breaking performance due to the high dielectric strength of the vacuum and the high-speed diffusion action of the arc. When the switch is opened and closed, the current is cut off before reaching the zero point, so that a so-called cutting current is generated, and a switching surge voltage proportional to the product of this current and the surge impedance may be generated. For this reason, 3kV transformers and 3kV, 6
When directly opening and closing a kV rotating machine with a vacuum circuit breaker, suppress the surge voltage by contacting the surge absorber with the circuit.
Equipment needs to be protected. As the surge absorber, a capacitor is used as a standard, but a ZnO nonlinear resistor can be used depending on the withstand voltage of the shock wave of the load.

【0071】以上の本実施例により、圧力150kg,遮
断速度0.93m/秒で、7.2kV,31.45kAの
遮断が可能となる。
According to the above-described embodiment, 7.2 kV and 31.45 kA can be cut off at a pressure of 150 kg and a cutoff speed of 0.93 m / sec.

【0072】図8は本実施例の真空遮断器2段積スイッ
チギアの内部構造を示すものである。91は上段遮断器
コンパートメント、92はメタルクラッドフレームコン
パートメント、93は下段遮断器コンパートメント、9
4は母線コンパートメント、95は変流器、96は接続
導体、97はケーブルコンパートメント、98は制御引
込ケーブ部、99はサージアブソーバである。真空遮断
器は電源が3相であるので一電源に対して紙面に対して
奥行きに3個有する。
FIG. 8 shows the internal structure of the vacuum switchgear two-stage switchgear of this embodiment. 91 is an upper circuit breaker compartment, 92 is a metal clad frame compartment, 93 is a lower circuit breaker compartment, 9
Reference numeral 4 denotes a bus compartment, 95 denotes a current transformer, 96 denotes a connection conductor, 97 denotes a cable compartment, 98 denotes a control lead-in cable portion, and 99 denotes a surge absorber. Since the power supply of the vacuum circuit breaker has three phases, three vacuum circuit breakers are provided for one power supply at a depth with respect to the paper surface.

【0073】[0073]

【発明の効果】本発明によれば、アーク電極と該アーク
電極を支持する支持部材と該支持部材に連なるコイル電
極とを有する固定側電極及び可動側電極を兼ね備えた真
空遮断器において、微細金属混合粉末を溶射を用い金属
複合合金を形成することで、高導電性金属,耐火性金
属,耐電圧性金属及び耐溶着性金属ともに結晶粒が微細
になり、初期性能の良い高性能電極部材が得られ、さら
に、前記アーク電極と上記アーク電極支持部材,コイル
電極材、好ましくは導電棒とは非接合からなる焼結又は
摩擦圧力接合処理による金相学的に一体の構造を有し、
前記支持部材及びコイル電極のろう付けが不要となるの
で、アーク電極支持部材及びコイル電極材の強度向上に
より電極変形に伴う溶着障害を防止できることからより
信頼性,安全性の高い真空遮断器が得られる。
According to the present invention, in a vacuum circuit breaker having both a fixed-side electrode and a movable-side electrode having an arc electrode, a supporting member for supporting the arc electrode, and a coil electrode connected to the supporting member, a fine metal By forming a metal composite alloy by spraying the mixed powder, the crystal grains of all highly conductive metals, refractory metals, voltage-resistant metals and welding-resistant metals become fine, and high-performance electrode members with good initial performance can be obtained. The arc electrode and the arc electrode supporting member, the coil electrode material, and preferably the conductive rod are obtained by a non-joining sintering or frictional pressure bonding process, and have a monolithically integrated structure.
Since the brazing of the support member and the coil electrode is not required, a welding failure due to electrode deformation can be prevented by improving the strength of the arc electrode support member and the coil electrode material, so that a more reliable and safe vacuum circuit breaker can be obtained. Can be

【0074】本発明によれば、アーク電極と該アーク電
極を支持する支持部材以降とを有する固定側電極及び可
動側電極を備えた真空バルブにおいて、前記アーク電極
と上記アーク電極支持部材以降の高導電性金属とは溶射
によって一体の構造を有する。また、好ましくは前記支
持部材以降として溶射後拡散熱処理によって一体にする
ものでは、0.01〜0.5重量%のCr,Ag,V,N
b,Zr,Si,W及びBe等を含有したCu合金から
構成されるのが好ましく、ろう付け接合に伴う各部材の
機械加工工程及び組立工程の低減とろう付け接合不良に
よる電極材の破壊や脱落防止するとともに強度向上にも
役立ち、電極変形に伴う溶着障害を防止できる。更に、
アーク電極内にPb等の低融点金属を多く含有でき溶着
を防止できることからより小型で、信頼性及び安全性の
高い真空遮断器とそれに用いる真空バルブ及び電気接点
が得られる。
According to the present invention, in a vacuum valve having a fixed-side electrode and a movable-side electrode having an arc electrode and a support member supporting the arc electrode and thereafter, the height of the arc electrode and the arc electrode support member and thereafter is increased. The conductive metal has an integral structure by thermal spraying. Preferably, the support member and the subsequent members are integrated by diffusion heat treatment after thermal spraying, wherein 0.01 to 0.5% by weight of Cr, Ag, V, N
It is preferably composed of a Cu alloy containing b, Zr, Si, W, Be, etc., which reduces the machining process and assembly process of each member involved in brazing, and the destruction of the electrode material due to poor brazing. It also helps to prevent falling off and to improve the strength, and prevents welding failure due to electrode deformation. Furthermore,
Since a large amount of low melting point metal such as Pb is contained in the arc electrode and welding can be prevented, a more compact, highly reliable and safe vacuum circuit breaker, and a vacuum valve and an electric contact used therefor can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金属溶射によって形成した電極の断面
図。
FIG. 1 is a cross-sectional view of an electrode formed by metal spraying of the present invention.

【図2】真空バルブの断面図。FIG. 2 is a sectional view of a vacuum valve.

【図3】本発明のスパイラル溝を有する電極の平面図。FIG. 3 is a plan view of an electrode having a spiral groove according to the present invention.

【図4】本発明のスパイラル溝を有する電極の断面図。FIG. 4 is a sectional view of an electrode having a spiral groove of the present invention.

【図5】真空バルブの断面図。FIG. 5 is a sectional view of a vacuum valve.

【図6】真空バルブの断面図。FIG. 6 is a sectional view of a vacuum valve.

【図7】真空遮断器の全体構成図。FIG. 7 is an overall configuration diagram of a vacuum circuit breaker.

【図8】真空遮断器2段積スイッチギアの構成図。FIG. 8 is a configuration diagram of a vacuum circuit breaker two-stage switchgear.

【符号の説明】[Explanation of symbols]

1,31a,31b…アーク電極、2…アーク電極支持
部、3,33a,33b…外部導体接続部、4,39a,
39b…裏導体、5A…凹部、5B,5C,5D…アー
ク走行面、5E…電極外周端、13,13A,13B,
13C…スリット溝、14…連絡部、L…幅、30a…
固定電極、30b…可動電極、34…電極棒、35…絶
縁筒体、36…シール部材、37…ベローズ、38a,
38b…シールリング、60…エポキシレジン筒、61
…絶縁操作ロッド、62…上部端子、63…集電子、6
4…下部端子、65…接触ばね、66…支えレバー、6
8…プランジャ、71…主レバー、72…引出しコイ
ル、75…投入コイル、76…排気筒。
1, 31a, 31b: arc electrode, 2: arc electrode support, 3, 33a, 33b: external conductor connection, 4, 39a,
39b: back conductor, 5A: recess, 5B, 5C, 5D: arc running surface, 5E: electrode outer peripheral end, 13, 13A, 13B,
13C: slit groove, 14: connecting part, L: width, 30a:
Fixed electrode, 30b movable electrode, 34 electrode rod, 35 insulating cylinder, 36 sealing member, 37 bellows, 38a,
38b: seal ring, 60: epoxy resin cylinder, 61
... Insulated operating rod, 62 ... Top terminal, 63 ... Current collector, 6
4 lower terminal, 65 contact spring, 66 support lever, 6
8: Plunger, 71: Main lever, 72: Extraction coil, 75: Input coil, 76: Exhaust cylinder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 政男 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小室 勝博 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 目幡 輝 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 谷水 徹 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 袴田 好美 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 Fターム(参考) 5G026 BA02 BB02 BB03 BB04 BB08 BB10 BB12 BB14 BB15 BB16 BB17 BB18 BB22 BB24 BB25 BB27 BB30 BC04 BC08 DA01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masao Shimizu 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Katsuhiro Komuro 7-1, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Akira Mehata 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory Hitachi Research Laboratory, Ltd. (72) Inventor Tohru Tanizu Hitachi, Ibaraki Prefecture 1-1-1, Kokubucho, Kokubu Factory, Hitachi, Ltd. (72) Inventor Yoshimi Hakamada 1-1-1, Kokubuncho, Hitachi, Hitachi, Ibaraki Prefecture F-term, Hitachi Kokubu Factory 5G026 BA02 BB02 BB03 BB04 BB08 BB10 BB12 BB14 BB15 BB16 BB17 BB18 BB22 BB24 BB25 BB27 BB30 BC04 BC08 DA01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】真空容器内に固定側電極と可動側電極とを
備えた真空バルブと、前記可動側電極を駆動する開閉手
段とを備え、前記固定側電極と可動側電極がアーク電極
部材と該アーク電極部材を支持するアーク電極支持部材
とを備えた真空遮断器において、前記アーク電極部材は
高導電性金属と、該高導電性金属より高融点の耐火性金
属とを有し、前記高導電性金属及び前記耐火性金属は偏
平状の粒子形状を有することを特徴とする真空遮断器。
A vacuum valve having a fixed side electrode and a movable side electrode in a vacuum vessel; and an opening / closing means for driving the movable side electrode, wherein the fixed side electrode and the movable side electrode are an arc electrode member. A vacuum circuit breaker provided with an arc electrode support member for supporting the arc electrode member, wherein the arc electrode member has a highly conductive metal and a refractory metal having a higher melting point than the highly conductive metal; A vacuum circuit breaker, wherein the conductive metal and the refractory metal have a flat particle shape.
【請求項2】真空容器内に固定側電極と可動側電極とを
備えた真空バルブと、前記可動側電極を駆動する開閉手
段とを備え、前記固定側電極と可動側電極がアーク電極
部材と該アーク電極部材を支持するアーク電極支持部材
とを備えた真空遮断器において、前記アーク電極部材は
高導電性金属と該高導電性金属よりも高融点である耐火
性金属とを有し、前記アーク電極部材とアーク電極支持
部材との界面での凹凸が100μm以下であることを特
徴とする真空遮断器。
2. A vacuum valve having a fixed side electrode and a movable side electrode in a vacuum vessel, and opening / closing means for driving the movable side electrode, wherein the fixed side electrode and the movable side electrode are an arc electrode member. A vacuum circuit breaker comprising an arc electrode support member for supporting the arc electrode member, wherein the arc electrode member has a highly conductive metal and a refractory metal having a higher melting point than the highly conductive metal, A vacuum circuit breaker, wherein irregularities at an interface between an arc electrode member and an arc electrode support member are 100 μm or less.
【請求項3】真空容器内に固定側電極と可動側電極とを
備えた真空バルブと、前記アーク電極部材は高導電性金
属と該高導電性金属より高融点の耐火性金属とを有し、
溶射によって形成されていることを特徴とする真空遮断
器。
3. A vacuum valve having a fixed electrode and a movable electrode in a vacuum vessel, and the arc electrode member has a highly conductive metal and a refractory metal having a higher melting point than the highly conductive metal. ,
A vacuum circuit breaker characterized by being formed by thermal spraying.
【請求項4】真空容器内に固定側電極と可動側電極とを
備えた真空バルブにおいて、前記両電極は耐火性金属と
高導電性金属とを有するアーク電極部材と、該アーク電
極部材を支持する高導電性金属からなるアーク電極支持
部材又は通電電極棒とを有し、前記アーク電極部材は高
導電性金属と該高導電性金属より高融点である耐火性金
属とを有し、前記高導電性金属及び耐火性金属は偏平状
の粒子形状を有することを特徴とする真空バルブ。
4. A vacuum valve having a fixed side electrode and a movable side electrode in a vacuum vessel, wherein both electrodes support an arc electrode member having a refractory metal and a highly conductive metal, and support the arc electrode member. An arc electrode support member or a current-carrying electrode rod made of a highly conductive metal, wherein the arc electrode member has a highly conductive metal and a refractory metal having a higher melting point than the highly conductive metal. A vacuum valve, wherein the conductive metal and the refractory metal have a flat particle shape.
【請求項5】真空容器内に固定側電極と可動側電極とを
備えた真空バルブにおいて、前記両電極は耐火性金属と
高導電性金属とを有するアーク電極部材と、該アーク電
極部材を支持する高導電性金属からなるアーク電極支持
部材又は通電電極棒とを有し、前記アーク電極部材は高
導電性金属と該高導電性金属より高融点である耐火性金
属とを有し、前記アーク電極部材とアーク電極支持部材
との界面での凹凸が100μm以下であることを特徴と
する真空バルブ。
5. A vacuum valve having a fixed side electrode and a movable side electrode in a vacuum vessel, wherein both electrodes support an arc electrode member having a refractory metal and a highly conductive metal, and support the arc electrode member. An arc electrode support member or a current-carrying electrode rod made of a highly conductive metal, the arc electrode member comprising a highly conductive metal and a refractory metal having a higher melting point than the highly conductive metal, A vacuum valve wherein irregularities at an interface between an electrode member and an arc electrode support member are 100 μm or less.
【請求項6】真空容器内に固定側電極と可動側電極とを
備えた真空バルブにおいて、前記両電極は耐火性金属と
高導電性金属とを有するアーク電極部材と、該アーク電
極部材を支持する高導電性金属からなるアーク電極支持
部材又は通電電極棒とを有し、前記アーク電極部材は高
導電性金属と該高導電性金属より高融点である耐火性金
属とを有し、溶射によって形成されていることを特徴と
する真空バルブ。
6. A vacuum valve having a fixed side electrode and a movable side electrode in a vacuum vessel, wherein the two electrodes support an arc electrode member having a refractory metal and a highly conductive metal, and support the arc electrode member. An arc electrode support member or a conductive electrode rod made of a highly conductive metal, the arc electrode member having a highly conductive metal and a refractory metal having a higher melting point than the highly conductive metal, and A vacuum valve characterized by being formed.
【請求項7】請求項1〜3のいずれかにおいて、前記固
定側電極及び可動側電極は前記アーク電極支持部に連結
し、該支持部より細径である裏導体及び該裏導体より大
径である外部導体接続部を有することを特徴とする真空
遮断器。
7. The fixed electrode and the movable electrode according to claim 1, wherein the fixed electrode and the movable electrode are connected to the arc electrode support, and the back conductor has a diameter smaller than the support and a diameter larger than the back conductor. A vacuum circuit breaker having an external conductor connection portion.
【請求項8】請求項4〜6のいずれかにおいて、前記固
定側電極及び可動側電極は前記アーク電極支持部に連結
し、該支持部より細径である裏導体及び該裏導体より大
径である外部導体接続部を有することを特徴とする真空
バルブ。
8. The fixed electrode and the movable electrode according to claim 4, wherein the fixed electrode and the movable electrode are connected to the arc electrode support, and the back conductor has a diameter smaller than the support and a diameter larger than the back conductor. A vacuum valve having an external conductor connection portion as described above.
【請求項9】耐火性金属と高導電性金属とを有するアー
ク電極部材と、該アーク電極部材を支持する高導電性金
属からなるアーク電極支持部材又は通電電極棒とを有
し、前記アーク電極部材が金属溶射によって一体に形成
することを特徴とする電気接点。
9. An arc electrode comprising: an arc electrode member having a refractory metal and a highly conductive metal; and an arc electrode support member or a current-carrying electrode rod made of a highly conductive metal for supporting the arc electrode member. An electrical contact, wherein the member is integrally formed by metal spraying.
JP11036816A 1999-02-16 1999-02-16 Electrode member for vacuum circuit-breaker and manufacture thereof Pending JP2000235825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11036816A JP2000235825A (en) 1999-02-16 1999-02-16 Electrode member for vacuum circuit-breaker and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11036816A JP2000235825A (en) 1999-02-16 1999-02-16 Electrode member for vacuum circuit-breaker and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000235825A true JP2000235825A (en) 2000-08-29

Family

ID=12480296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11036816A Pending JP2000235825A (en) 1999-02-16 1999-02-16 Electrode member for vacuum circuit-breaker and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000235825A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765167B2 (en) 2001-04-13 2004-07-20 Hitachi, Ltd. Electric contact member and production method thereof
US7230304B2 (en) 2004-01-08 2007-06-12 Hitachi, Ltd. Electric contacts and method of manufacturing thereof, and vacuum interrupter and vacuum circuit breaker using thereof
FR2931303A1 (en) * 2008-05-15 2009-11-20 Daniel Bernard Electrical contact system i.e. electrical conductor, manufacturing method for e.g. circuit breaker, involves performing metallic or composite coating by cold or heat spray, and finishing layer by surfacing or polishing
WO2010052992A1 (en) * 2008-11-04 2010-05-14 株式会社日本Aeパワーシステムズ Electrode structure for vacuum circuit breaker
JP2013073701A (en) * 2011-09-27 2013-04-22 Hitachi Ltd Bonding structure, electric contact, and manufacturing method therefor
JP2014089959A (en) * 2013-11-01 2014-05-15 Hitachi Ltd Junction structure and electric contact
KR101498228B1 (en) * 2010-12-03 2015-03-04 에이비비 테크놀로지 아게 Circuit breaker arrangement for medium voltage to high voltage applications
CN106229229A (en) * 2016-10-08 2016-12-14 德力西电气有限公司 A kind of protector of current mutual inductor of band arc baffle
JP2021107698A (en) * 2019-12-27 2021-07-29 島根県 Lightning resistance device for wind turbine, and guide part thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765167B2 (en) 2001-04-13 2004-07-20 Hitachi, Ltd. Electric contact member and production method thereof
EP1249848A3 (en) * 2001-04-13 2004-12-22 Hitachi, Ltd. Electric contact and manufacturing method thereof
CN1311492C (en) * 2001-04-13 2007-04-18 株式会社日立制作所 Electric contact unit and manufacturing method thereof
US7230304B2 (en) 2004-01-08 2007-06-12 Hitachi, Ltd. Electric contacts and method of manufacturing thereof, and vacuum interrupter and vacuum circuit breaker using thereof
CN100386835C (en) * 2004-01-08 2008-05-07 株式会社日立制作所 Electric contacts and method of manufacturing thereof, and vacuum interrupter and vacuum circuit breaker using thereof
DE102005000727B4 (en) * 2004-01-08 2008-09-04 Hitachi, Ltd. Electric contact element and method of making same, and vacuum interrupter, vacuum circuit breaker and load switch using the same
FR2931303A1 (en) * 2008-05-15 2009-11-20 Daniel Bernard Electrical contact system i.e. electrical conductor, manufacturing method for e.g. circuit breaker, involves performing metallic or composite coating by cold or heat spray, and finishing layer by surfacing or polishing
WO2010052992A1 (en) * 2008-11-04 2010-05-14 株式会社日本Aeパワーシステムズ Electrode structure for vacuum circuit breaker
KR101498228B1 (en) * 2010-12-03 2015-03-04 에이비비 테크놀로지 아게 Circuit breaker arrangement for medium voltage to high voltage applications
JP2013073701A (en) * 2011-09-27 2013-04-22 Hitachi Ltd Bonding structure, electric contact, and manufacturing method therefor
JP2014089959A (en) * 2013-11-01 2014-05-15 Hitachi Ltd Junction structure and electric contact
CN106229229A (en) * 2016-10-08 2016-12-14 德力西电气有限公司 A kind of protector of current mutual inductor of band arc baffle
JP2021107698A (en) * 2019-12-27 2021-07-29 島根県 Lightning resistance device for wind turbine, and guide part thereof
JP7391304B2 (en) 2019-12-27 2023-12-05 島根県 Wind turbine lightning protection device

Similar Documents

Publication Publication Date Title
KR100315732B1 (en) Vacuum circuit breaker and the vacuum valve and electrical contacts used therein
US5852266A (en) Vacuum circuit breaker as well as vacuum valve and electric contact used in same
JP3598195B2 (en) Contact material
EP0155322B1 (en) Electrode of vacuum breaker
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JPH11232971A (en) Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof
EP0929088A2 (en) Contact material
US5697150A (en) Method forming an electric contact in a vacuum circuit breaker
JPH0534406B2 (en)
JP2001135206A (en) Electrode, vacuum valve electrode, vacuum valve and vacuum switch
JP4249356B2 (en) Electrical contact material
JPH1012103A (en) Vacuum circuit-breaker, and vacuum valve and electric contact using the breaker
EP1026709B1 (en) Vacuum interrupter and vacuum switch thereof
JP4515696B2 (en) Contact materials for vacuum circuit breakers
JP3382000B2 (en) Contact material for vacuum valve
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JP3381605B2 (en) Vacuum circuit breaker and vacuum valve and electrical contacts used for it
JP3627712B2 (en) Vacuum circuit breaker and vacuum valve and electrical contact used therefor
JPH059888B2 (en)
JPH0347931A (en) Contact material for vacuum valve
JP2000149732A (en) Vacuum breaker and vacuum bulb used in it and its electrode
JPH04132127A (en) Contact point for vacuum bulb
JPH11167847A (en) Vacuum circuit breaker and vacuum bule for vacuum circuit breaker and electrode of vacuum bulb
JP3688473B2 (en) Manufacturing method of contact material for vacuum valve
JPH07335092A (en) Vacuum circuit breaker, and vacuum valve and electrical contact for vacuum circuit breaker, and manufacture thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205