JP7391304B2 - Wind turbine lightning protection device - Google Patents

Wind turbine lightning protection device Download PDF

Info

Publication number
JP7391304B2
JP7391304B2 JP2019238686A JP2019238686A JP7391304B2 JP 7391304 B2 JP7391304 B2 JP 7391304B2 JP 2019238686 A JP2019238686 A JP 2019238686A JP 2019238686 A JP2019238686 A JP 2019238686A JP 7391304 B2 JP7391304 B2 JP 7391304B2
Authority
JP
Japan
Prior art keywords
heat
blade
wind turbine
protection device
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019238686A
Other languages
Japanese (ja)
Other versions
JP2021107698A (en
Inventor
敏之 上野
吉弘 守谷
和男 山本
志弘 尾立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUTAKU CO.,LTD
Shimane Prefecture
Chubu University Educational Foundation
Original Assignee
HOKUTAKU CO.,LTD
Shimane Prefecture
Chubu University Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUTAKU CO.,LTD, Shimane Prefecture, Chubu University Educational Foundation filed Critical HOKUTAKU CO.,LTD
Priority to JP2019238686A priority Critical patent/JP7391304B2/en
Publication of JP2021107698A publication Critical patent/JP2021107698A/en
Application granted granted Critical
Publication of JP7391304B2 publication Critical patent/JP7391304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Elimination Of Static Electricity (AREA)

Description

特許法第30条第2項適用 発行者 一般社団法人電気学会 酒井 祐之 刊行物 電気学会研究会資料 高電圧研究会 発行日 2019年1月24日 〔刊行物等〕集会名 高電圧研究会 開催場所 平得公民館 開催日 2019年1月24日~2019年1月25日Article 30, Paragraph 2 of the Patent Act applies Publisher: The Institute of Electrical Engineers of Japan, Yuyuki Sakai Publications: IEEJ study group materials High Voltage Study Group Publication date: January 24, 2019 [Publications] Meeting name: High Voltage Study Group Venue Hiratoku Community Center Dates: January 24, 2019 - January 25, 2019

本発明は、風車の耐雷装置に関する。 The present invention relates to a lightning protection device for a wind turbine.

風車のブレードの表面に少なくとも一部が露出した状態で設けられたレセプタと、前記ブレードの表面における前記レセプタ以外の少なくとも一部の箇所で生じた雷電流を、該レセプタに導くガイド部と、前記レセプタと電気的に接続され且つ該レセプタ側からの雷電流をアース側に導くダウンコンダクタとを備え、前記ガイド部は導電性を有する導電性部材を複数有する風車の耐雷装置が公知になっている(例えば、特許文献1を参照。)。 a receptor provided with at least a portion exposed on the surface of a blade of a wind turbine; a guide portion that guides lightning current generated at at least a portion of the surface of the blade other than the receptor to the receptor; A lightning protection device for a wind turbine is known, which includes a down conductor that is electrically connected to a receptor and guides lightning current from the receptor side to the ground side, and the guide portion includes a plurality of conductive members having conductivity. (For example, see Patent Document 1.).

上記文献に記載された風車の耐雷装置は、ブレードの表面におけるレセプタ以外の少なくとも一部の箇所に雷が落ちて雷電流が発生した場合でも、この雷電流をガイド部によってレセプタ側まで導くことが可能になるため、落雷によるブレードの破損を抑制することが可能になる。 The lightning protection device for wind turbines described in the above-mentioned document is capable of guiding this lightning current to the receptor side by the guide portion even if lightning strikes at least a part of the surface of the blade other than the receptor and a lightning current is generated. This makes it possible to suppress damage to the blade due to lightning strikes.

一方、落雷時に生じる熱は、導電性部材が破損又は消失する原因になり得る。この導電性部材の破損又は消失に起因してガイド部の機能が低下するか、或いは機能不全に陥った場合、ブレードの破損防止という本来の目的を結局達成できないことになる。 On the other hand, heat generated during lightning strikes can cause electrically conductive members to break or disappear. If the function of the guide portion is reduced or malfunctions due to damage or disappearance of the conductive member, the original purpose of preventing damage to the blade cannot be achieved.

特開2007-100658号公報Japanese Patent Application Publication No. 2007-100658

本発明は、導電性部材の十分な耐熱性によって、安定的且つ長期的にブレードの破損を抑制できる風車の避雷装置を提供することを課題とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a lightning arrester for a wind turbine that can stably and long-term prevent damage to blades due to sufficient heat resistance of a conductive member.

上記課題を解決するため、風車の耐雷装置であって、風車のブレードの表面に少なくとも一部が露出した状態で設けられたレセプタと、前記ブレードの表面における前記レセプタ以外の少なくとも一部の箇所で生じた雷電流を、該レセプタに導くガイド部と、前記レセプタと電気的に接続され且つ該レセプタ側からの雷電流をアース側に導くダウンコンダクタとを備え、前記ガイド部は導電性を有する導電性部材を複数有し、複数の前記導電性部材は前記レセプタ側に向かって直線状又は曲線状に並べられ、前記導電性部材は、モリブデン、タングステン、ハフニウム、タンタル、クロム又はニオブの少なくとも何か1つが含有された耐熱性材料を含み、前記導電性部材は、方形板状に成形され且つ前記ブレードの表面に沿う姿勢で該ブレード側に固定され、前記導電性部材の互いに平行又は略平行に対向する隣接端面同士の間の距離は2ミリメートル以下に設定され、前記導電性部材の前記端面は、フラットな形状に成形され、その面積が3mm 以上に設定されたことを特徴とする。 In order to solve the above problems, a lightning protection device for a wind turbine is provided, which includes a receptor provided with at least a portion exposed on the surface of the blade of the wind turbine, and a receptor provided in at least a portion of the surface of the blade other than the receptor. A guide part that guides the generated lightning current to the receptor, and a down conductor that is electrically connected to the receptor and guides the lightning current from the receptor side to the ground side, and the guide part has electrical conductivity. The plurality of conductive members are arranged in a linear or curved manner toward the receptor, and the conductive member is made of at least one of molybdenum, tungsten, hafnium, tantalum, chromium, or niobium. The conductive member is formed into a rectangular plate shape and fixed to the blade side in a posture along the surface of the blade, and the conductive member is parallel or substantially parallel to each other. The distance between adjacent end faces facing each other is set to 2 mm or less, and the end faces of the conductive member are formed into a flat shape, and the area thereof is set to 3 mm 2 or more .

前記ガイド部は、前記ガイド方向に帯状に延設された絶縁部材を有し、前記導電性部材は、その少なくとも一部が前記絶縁部材に埋設して固定され、前記絶縁部材が前記ブレードの表面側に取り付けられたものとしてもよい。 The guide portion includes an insulating member extending in a band shape in the guide direction, at least a portion of the conductive member is embedded and fixed in the insulating member, and the insulating member is attached to the surface of the blade. It may also be attached to the side.

前記導電性部材の前記端面の面積が5mm以上に設定されたものとしてもよい。 The area of the end surface of the conductive member may be set to 5 mm 2 or more.

前記導電性部材が、前記耐熱性材料と、該耐熱性材料以外の材料である非耐熱性材料とを含むか、或いは、一又は複数の前記耐熱性材料のみから構成されたものとしてもよい。 The conductive member may include the heat-resistant material and a non-heat-resistant material that is a material other than the heat-resistant material, or may be composed only of one or more of the heat-resistant materials.

前記導電性部材の20℃における体積抵抗率が20μΩcm以下に設定されたものとしてもよい。 The conductive member may have a volume resistivity of 20 μΩcm or less at 20° C.

前記耐熱性材料がモリブデンであり、前記非耐熱性材料が銅であり、前記モリブデンの前記導電性部材の全体に占める重量比率が10%以上に設定されたものとしてもよい。 The heat-resistant material may be molybdenum, the non-heat-resistant material may be copper, and the weight ratio of the molybdenum to the entire conductive member may be set to 10% or more.

前記導電性部材が前記耐熱性材料のみから構成され、ものとしてもよい。 The conductive member may be made of only the heat-resistant material.

耐熱性材料が含まれた導電性部材が高い耐熱性を有するため、安定的且つ長期的にブレードの破損を防止できる。 Since the conductive member containing the heat-resistant material has high heat resistance, damage to the blade can be prevented stably and over a long period of time.

本発明を適用した耐雷装置を備えた風車の正面図である。FIG. 1 is a front view of a wind turbine equipped with a lightning protection device to which the present invention is applied. ブレードの要部拡大正面図である。FIG. 3 is an enlarged front view of the main part of the blade. 図2のA-A断面図である。3 is a sectional view taken along line AA in FIG. 2. FIG. ガイド部の正面図である。It is a front view of a guide part. 図4のB-B´断面図である。5 is a sectional view taken along line BB′ in FIG. 4. FIG. ガイド部の他の実施形態の構成を示す断面図である。FIG. 7 is a cross-sectional view showing the configuration of another embodiment of the guide portion. 雷を模した放電の波形である。This is a discharge waveform that mimics lightning. 雷を模した2種類の放電時の夫々における溶損を示したグラフである。It is a graph showing melting loss during two types of electric discharges simulating lightning. 電荷60Cの波形Bよりなる放電を生じさせた場合における各ガイド部の放電後の状態を示す写真であり、(A)が本発明を適用したモリブデン製の導電プレートを用いたガイド部の状態であり、(B)が本発明を適用した複合材製の導電プレートを用いたガイド部の状態であり、(C)がアルミニウムよりなる比較プレートを用いたガイド部の状態であり、(D)が銅よりなる比較プレートを用いたガイド部の状態である。It is a photograph showing the state of each guide part after discharge when a discharge consisting of waveform B of charge 60C is generated, and (A) is the state of the guide part using a conductive plate made of molybdenum to which the present invention is applied. (B) is the state of the guide part using a conductive plate made of a composite material to which the present invention is applied, (C) is the state of the guide part using a comparison plate made of aluminum, and (D) is the state of the guide part using a comparative plate made of aluminum. This is the state of the guide section using a comparison plate made of copper. 電荷180Cの波形Bよりなる放電を生じさせた場合における各ガイド部の放電後の状態を示す写真であり、(A)が本発明を適用したモリブデン製の導電プレートを用いたガイド部の状態であり、(B)が本発明を適用した複合材製の導電プレートを用いたガイド部の状態であり、(C)がアルミニウムよりなる比較プレートを用いたガイド部の状態であり、(D)が銅よりなる比較プレートを用いたガイド部の状態である。It is a photograph showing the state of each guide part after discharge when a discharge consisting of waveform B of charge 180C is generated, and (A) is the state of the guide part using a conductive plate made of molybdenum to which the present invention is applied. (B) is the state of the guide part using a conductive plate made of a composite material to which the present invention is applied, (C) is the state of the guide part using a comparison plate made of aluminum, and (D) is the state of the guide part using a comparative plate made of aluminum. This is the state of the guide section using a comparison plate made of copper.

図1は本発明を適用した耐雷装置を備えた風車の正面図であり、図2はブレードの要部拡大正面図であり、図3は図2のA-A´断面図である。同図に示す風車は風力発明装置として用いられる。この風車は、地上の基礎1から直上に突出形成され且つ内部に空洞を有するタワー2と、該タワー2の上端部に設置され且つ水平方向に形成されたナセル3と、該ナセル3の長手方向の一端側に配置された複数のブレード4とを備えている。ちなみに、ナセル3の形成方向を、便宜上、前後方向とし、ナセル3のブレードを備えた側を前側とする。 FIG. 1 is a front view of a wind turbine equipped with a lightning protection device to which the present invention is applied, FIG. 2 is an enlarged front view of the main part of the blade, and FIG. 3 is a sectional view taken along line AA' in FIG. The windmill shown in the figure is used as a wind power generation device. This wind turbine includes a tower 2 that protrudes directly above a foundation 1 on the ground and has a cavity inside, a nacelle 3 that is installed at the upper end of the tower 2 and is formed horizontally, and a longitudinal direction of the nacelle 3. A plurality of blades 4 are arranged on one end side of the blade. Incidentally, for convenience, the direction in which the nacelle 3 is formed is defined as the front-rear direction, and the side of the nacelle 3 provided with the blade is defined as the front side.

複数のブレード4は、ナセル3の長手方向視で中央側に配され且つ該ナセル3の方向に形成された図示しない回転軸であるハブ(図示しない)によって、全体が一体的に回転作動するように、ナセル3に支持されている。複数のブレード4は、ハブの軸方向視で該ハブから放射状に突出形成され、該ハブの軸回り方向に所定間隔毎に配置される。各ブレード4はFRP等の頑丈且つ軽量な絶縁体材料によって構成されている。各ブレード4の内部には、空洞4aが形成されている。 The plurality of blades 4 are rotated as a whole by a hub (not shown), which is a rotating shaft (not shown), which is disposed at the center of the nacelle 3 when viewed in the longitudinal direction and is formed in the direction of the nacelle 3. It is supported by nacelle 3. The plurality of blades 4 are formed to protrude radially from the hub when viewed in the axial direction of the hub, and are arranged at predetermined intervals in the direction around the axis of the hub. Each blade 4 is made of a strong and lightweight insulating material such as FRP. A cavity 4a is formed inside each blade 4.

ブレード4及び空洞4aは、該ブレード4の全長方向断面視で凸レンズ状に成形されている。空洞4aはブレード4の全長方向の全体又は略全体に亘る範囲に形成されている。また、ブレード4は、その前後の外面が外側に膨出した曲面状をなしてる。 The blade 4 and the cavity 4a are shaped like a convex lens when viewed in cross section along the entire length of the blade 4. The cavity 4a is formed over the entire or substantially entire length of the blade 4. Further, the blade 4 has a curved surface whose front and rear outer surfaces bulge outward.

複数のブレード4は、風を受けると、ハブと共に、全体が一体的に回転し、この回転動力によって、ナセル3の内部に設置した図示しない発電機が発電作動する。発電された電力は、図示しない送電線やバッテリに供給される。 When the plurality of blades 4 receive wind, they rotate together with the hub as a whole, and this rotational power causes a generator (not shown) installed inside the nacelle 3 to generate electricity. The generated power is supplied to power transmission lines and batteries (not shown).

ところで、風力発電の効率を上げるためには、周辺に影響されることなく、ブレード4が強い風を受けることが必要になるため、ブレード4を高所に設置することが望ましい。しかし、高所では落雷の可能性が高くなり、落雷によるブレード4の破損リスクが高くになる。このような落雷に対応するため、この風車には、耐雷装置が設けられている。 By the way, in order to increase the efficiency of wind power generation, it is necessary for the blades 4 to receive strong winds without being affected by the surroundings, so it is desirable to install the blades 4 at a high place. However, at high places, the possibility of lightning strikes increases, and the risk of damage to the blade 4 due to lightning strikes increases. In order to cope with such lightning strikes, this wind turbine is equipped with a lightning protection device.

耐雷装置は、各ブレード4の全長方向における前記ハブから遠い側の端部である先端部の前後の外面(表面)に設置されたレセプタ6と、レセプタ6をグランド接続するダウンコンダクタ(引き下げ導線)7と、ブレード4の空洞4aの先端寄り部分に配置され且つレセプタ6を固定する固定ブロック8と、ブレード4の表面におけるレセプタ6以外の一部の箇所への落雷等によって該箇所に生じた雷電流を該レセプタ4側に導く(雷電流の導通経路を形成する)ガイド部9とを有している。 The lightning protection device includes a receptor 6 installed on the front and rear outer surfaces (surfaces) of the tip, which is the end far from the hub in the overall length direction of each blade 4, and a down conductor (down conductor) that connects the receptor 6 to ground. 7, a fixing block 8 that is arranged near the tip of the cavity 4a of the blade 4 and fixes the receptor 6, and a lightning strike that occurs at a part of the surface of the blade 4 other than the receptor 6 due to a lightning strike or the like. It has a guide portion 9 that guides the current to the receptor 4 side (forms a conduction path for lightning current).

ブレード4の内外を貫通するボルト11によって、外側のレセプタ6と、内側の固定ブロック8とが、該ブレード4に着脱可能に共締め固定されている。固定ブロック8及びボルト11は、導電性材料の一種である金属材料から構成されているため、レセプタ6と電気的に接続され、固定ブロック8はダウンコンダクタ7によってグランド接続(アース)されている。以上の構成によって、レセプタ6がアースされ、落雷時に生じる雷電流を地中に逃すことが可能になる。ちなみに、固定ブロック8は、ブレード4の前後両方の外面側からボルト固定されている。 The outer receptor 6 and the inner fixing block 8 are removably fastened together to the blade 4 by bolts 11 passing through the inside and outside of the blade 4. Since the fixed block 8 and the bolt 11 are made of a metal material, which is a type of conductive material, they are electrically connected to the receptor 6, and the fixed block 8 is grounded (earthed) by the down conductor 7. With the above configuration, the receptor 6 is grounded, and it becomes possible to release the lightning current generated during a lightning strike into the ground. Incidentally, the fixed block 8 is bolted to the blade 4 from both the front and rear outer surfaces.

該構成によれば、ブレード4のレセプタ6又はその近傍に落雷した場合は勿論、ブレード4のレセプタ6以外の箇所に落雷した場合でも、その際に発生する雷電流を、該レセプタ6からダウンコンダクタ7を介して逃がすことが可能になる。このため、ブレード4の落雷による破損を効率的に防止できる。 According to this configuration, not only when lightning strikes the receptor 6 of the blade 4 or its vicinity, but also when lightning strikes a location other than the receptor 6 of the blade 4, the lightning current generated at that time is transferred from the receptor 6 to the down conductor. It becomes possible to escape through 7. Therefore, damage to the blade 4 due to lightning can be efficiently prevented.

次に、図2、図4及び図5に基づいて、ガイド部9を構成する説明する。 Next, the configuration of the guide portion 9 will be explained based on FIGS. 2, 4, and 5.

図4はガイド部の正面図であり、図5は図4のB-B´断面図である。ガイド部9は、ブレード4の所定位置からレセプタ4に向かう方向であるガイド方向に所定間隔毎又は連続的(図示する例では所定間隔毎)に直線状又は曲線状(図示する例では、直線状)に並べられ且つ導電性を有する複数の導電プレート(導電性部材)12と、前記ガイド方向の全体に亘り帯状に形成された絶縁テープ(絶縁部材)13とを有している。 FIG. 4 is a front view of the guide part, and FIG. 5 is a sectional view taken along line BB' in FIG. The guide portion 9 is arranged linearly or curvedly (in the illustrated example, linearly) at predetermined intervals or continuously (at predetermined intervals in the illustrated example) in the guide direction, which is a direction from a predetermined position of the blade 4 toward the receptor 4. ) and have a plurality of conductive plates (conductive members) 12 having conductivity, and an insulating tape (insulating member) 13 formed in a band shape over the entire guide direction.

前記ガイド方向は、図示する例では、ブレード4の全長方向に向けられている。そして、ハブの軸方向視で、該ブレード4の先端部のレセプタ6近傍から該ハブ側に向かって所定距離だけ離れた範囲に、前記ガイド部9が設けられている。 In the illustrated example, the guide direction is directed in the overall length direction of the blade 4. When viewed in the axial direction of the hub, the guide portion 9 is provided in a range that is a predetermined distance away from the vicinity of the receptor 6 at the tip of the blade 4 toward the hub.

各導電プレート12は、上述したガイド方向に若干長い方形状をなし、該ガイド方向視で等脚台形状をなしている。この導電プレート12は、モリブデン、タングステン、ハフニウム、タンタル、クロム又はニオブの少なくとも1つが含有される耐熱性材料のみから構成されるか、或いは耐熱性材料と、それ以外の材料である非耐熱性材料とを少なくとも有している。 Each conductive plate 12 has a slightly elongated rectangular shape in the above-mentioned guide direction, and has an isosceles trapezoid shape when viewed in the guide direction. The conductive plate 12 is made of only a heat-resistant material containing at least one of molybdenum, tungsten, hafnium, tantalum, chromium, or niobium, or a heat-resistant material and a non-heat-resistant material other than the heat-resistant material. It has at least the following.

本例では、導電プレート12が、耐熱性材料であるモリブデンと、非耐熱性材料である銅とから構成されている。モリブデンよりも銅の方が導電プレート12の全体に占める重量比率が高く設定されてる。モリブデンの導電プレート12の全体に占める具体的な重量比率は10%以上に設定され、より好ましくは20%以上に設定される。 In this example, the conductive plate 12 is made of molybdenum, which is a heat-resistant material, and copper, which is a non-heat-resistant material. The weight ratio of copper to the entire conductive plate 12 is set higher than that of molybdenum. The specific weight ratio of molybdenum to the entire conductive plate 12 is set to 10% or more, more preferably 20% or more.

ちなみに、導電プレート12において、モリブデン及び銅の夫々を可能な限り均一化させる必要がある。しかし、モリブデン及び銅を溶融させて導電プレート12を製造した場合、それぞれの材料の融点の違いにより、偏析が生じてしまう。このような材料の偏りを防止するため、粉末状の銅及びモリブデンを用い、機械的な加圧及びパルス通電加熱によって焼結させる放電プラズマ焼結(SPS)法によって、導電プレート12を製造している。 Incidentally, in the conductive plate 12, it is necessary to make each of molybdenum and copper as uniform as possible. However, when the conductive plate 12 is manufactured by melting molybdenum and copper, segregation occurs due to the difference in melting point of each material. In order to prevent such material deviation, the conductive plate 12 is manufactured by a spark plasma sintering (SPS) method in which powdered copper and molybdenum are sintered by mechanical pressure and pulsed current heating. There is.

このようにして製造される導電プレート12を用いることによって、安価なコストで高い耐熱性が付与されたガイド部9を容易に製造することが可能になる。この耐熱性によって、落雷時に生じる熱に起因したガイド部9の破損(具体的には導電プレート12の溶融や消失)を防止し、その機能を長期間保持させることが可能になる。 By using the conductive plate 12 manufactured in this way, it becomes possible to easily manufacture the guide portion 9 which is provided with high heat resistance at a low cost. This heat resistance makes it possible to prevent damage to the guide portion 9 (specifically, melting or disappearance of the conductive plate 12) due to heat generated during a lightning strike, and to maintain its function for a long period of time.

また、隣接する導電プレート12,12の端面は、夫々、近接して平行又は略平行に対向する対向面12a,12aになる。この対向面12aは、上述した導電プレート12の形状によって等脚台形状をなすフラット面である。このような導電プレート12の形状によって、前記対向面12aと導電プレート12のフラットな表裏面との接続部分や、前記対向面12aと導電プレート12の両サイド面との接続部分には、コーナーが形成される。 Further, the end surfaces of the adjacent conductive plates 12, 12 become opposing surfaces 12a, 12a that are close to each other and face parallel or substantially parallel to each other, respectively. This opposing surface 12a is a flat surface that forms an isosceles trapezoid shape due to the shape of the conductive plate 12 described above. Due to the shape of the conductive plate 12, corners are formed at the connecting portions between the facing surface 12a and the flat front and back surfaces of the conductive plate 12, and at the connecting portions between the facing surface 12a and both side surfaces of the conductive plate 12. It is formed.

導電プレート12の両側のサイド面は、該導電プレート12の表裏面に対して、その傾斜角度が適宜設定可能である。一方、導電プレート12の対向面12aの面積である対向面積と、全長方向の断面の面積である断面積とは、導電プレート12の溶融に関連するため、適切に設定する必要がある。ちなみに、対向面積と断面積とは、本例では同一である。 The inclination angles of the side surfaces on both sides of the conductive plate 12 can be set as appropriate with respect to the front and back surfaces of the conductive plate 12. On the other hand, the opposing area, which is the area of the opposing surface 12a of the conductive plate 12, and the cross-sectional area, which is the area of the cross section in the overall length direction, are related to melting of the conductive plate 12, and therefore need to be appropriately set. Incidentally, the opposing area and the cross-sectional area are the same in this example.

まず、導電プレート12の発熱量Qは以下の式により算出される。 First, the calorific value Q of the conductive plate 12 is calculated by the following formula.

Figure 0007391304000001
Figure 0007391304000001

この算出式において、Iは電流、Rは抵抗、tは時間、ρは導電プレート12を構成する材料の体積抵抗率、Lは導電プレート12の全長、Sは導電プレート12の断面積になる。 In this calculation formula, I is the current, R is the resistance, t is the time, ρ e is the volume resistivity of the material constituting the conductive plate 12, L is the total length of the conductive plate 12, and S is the cross-sectional area of the conductive plate 12. .

また、導電プレート12の熱容量Cは以下の式により算出される。 Further, the heat capacity C of the conductive plate 12 is calculated by the following formula.

Figure 0007391304000002
Figure 0007391304000002

この算出式において、Cは導電プレート12を構成する材料の比熱、ρは導電プレート12を構成する材料の密度、Vは導電プレート12の体積になる。 In this calculation formula, C p is the specific heat of the material constituting the conductive plate 12 , ρ m is the density of the material constituting the conductive plate 12 , and V is the volume of the conductive plate 12 .

そして、導電プレート12の温度上昇ΔTは以下の式により算出される。 Then, the temperature rise ΔT of the conductive plate 12 is calculated by the following formula.

Figure 0007391304000003
Figure 0007391304000003

そして、夏よりもエネルギーが高い傾向にある冬の雷は、100[kA]の電流が1[ms]流れる程度である。ここで、例えば、その融点が2600[℃]であるモリブデンを導電プレート12に含める場合、その常温(具体的には20[℃])における体積抵抗率(ρ)が5.34[μΩcm]、比熱(C)が0.25[J/gK]、密度(ρ)が10.2[g/cm]である。発生する熱が全て温度に寄与した場合、導電プレート12の前記断面積は、3[mm]以上に設定する必要があり、好ましくは5[mm]以上、より好ましくは10[mm]以上であることが望ましい。 In the case of winter lightning, which tends to have higher energy than in summer, a current of 100 [kA] flows for 1 [ms]. Here, for example, when molybdenum whose melting point is 2600 [°C] is included in the conductive plate 12, its volume resistivity (ρ e ) at room temperature (specifically, 20 [°C]) is 5.34 [μΩcm]. , specific heat (C p ) is 0.25 [J/gK], and density (ρ m ) is 10.2 [g/cm 3 ]. When all the generated heat contributes to the temperature, the cross-sectional area of the conductive plate 12 needs to be set to 3 [mm 2 ] or more, preferably 5 [mm 2 ] or more, more preferably 10 [mm 2 ]. The above is desirable.

なお、導電プレート12の幅方向の寸法は5[mm]以上に設定するとともに、その全長方向の寸法は5~100[mm]の範囲に設定し、取り扱いを容易にしている。 Note that the widthwise dimension of the conductive plate 12 is set to 5 [mm] or more, and the overall length dimension is set in the range of 5 to 100 [mm] to facilitate handling.

また、隣接する導電プレート12,12の対向面12a,12aの間の距離は、放電を生じ易くするため、2[mm]以下に設定することが望ましい。 Further, the distance between the facing surfaces 12a, 12a of the adjacent conductive plates 12, 12 is desirably set to 2 [mm] or less in order to facilitate the generation of discharge.

各導電プレート12は、上述した通り、その全長方向を前記ガイド方向に向け(言い換えると、その幅方向を該ガイド方向と垂直な方向に向け)、その表裏面の両面における幅が長い方の面を、前記ブレード4の表面に近い側の面である固定面12bとし、もう片側の幅が短い方向の面を、該ブレード4の表面から遠い側の面である受雷面12cとした姿勢で、絶縁部材13を介して該ブレード4に対して固定される。この結果、導電プレート12は、その全体がブレード4の表面に沿う姿勢で、該ブレード4の表面側に固定される。 As described above, each conductive plate 12 has its entire length directed toward the guide direction (in other words, its width direction is directed perpendicular to the guide direction), and the longer width of both its front and back surfaces. is the fixed surface 12b which is the surface near the surface of the blade 4, and the other side with the shorter width is the lightning receiving surface 12c which is the surface far from the surface of the blade 4. , is fixed to the blade 4 via an insulating member 13. As a result, the conductive plate 12 is fixed to the surface side of the blade 4 with the entire conductive plate 12 aligned along the surface of the blade 4.

この絶縁テープ13を構成する材料は、柔軟性、耐候性、ブレード4への接着性等を加味し、これらを満たす材料であれば、どのような材料を選んでもよく、例えば、エポキシ樹脂、シリコーン樹脂等の弾性変形可能な合成樹脂を絶縁テープ13の材料として選択してもよい。 The material constituting the insulating tape 13 may be any material that satisfies the above requirements, taking into consideration flexibility, weather resistance, adhesion to the blade 4, etc. For example, epoxy resin, silicone, etc. Elastically deformable synthetic resin such as resin may be selected as the material for the insulating tape 13.

また、絶縁テープ13は、複数の導電プレート12毎に設けられ且つ該導電プレート12を係止して収容する凹部13aを有している。この凹部13aは、前記ガイド方向断面視でアリ溝状に成形され、導電プレート12が、その受雷面12cが外部に露出された状態で、埋設される。ちなみに、絶縁テープ13の厚みは5[mm]以下に設定されている。 Further, the insulating tape 13 has a recess 13a that is provided for each of the plurality of conductive plates 12 and that locks and accommodates the conductive plate 12. This recess 13a is formed into a dovetail groove shape when viewed in cross section in the guide direction, and the conductive plate 12 is buried therein with its lightning receiving surface 12c exposed to the outside. Incidentally, the thickness of the insulating tape 13 is set to 5 [mm] or less.

ガイド部9の製造方法について簡単に説明すると、型枠の内部に複数の導電プレート12を並列させた後、該型枠内に、絶縁部材13を構成する材料を流体状態で導入させ、該材料を冷却又は乾燥等させて固体の状態にすることによって、ガイド部9を一体的に形成する。 To briefly explain the method for manufacturing the guide portion 9, a plurality of conductive plates 12 are arranged in parallel inside a mold, and then the material constituting the insulating member 13 is introduced in a fluid state into the mold. The guide portion 9 is integrally formed by cooling or drying it into a solid state.

ちなみに、この導電プレート12は、その構成材料から、ブレード4の表面に直接的に接着させ難く、また、複数の導電プレート12を並列させながら個別にブレード4の表面側に設置させる場合、手間も掛かるが、ガイド部9の上述した構成によって、これらの問題を解決している。 By the way, this conductive plate 12 is difficult to adhere directly to the surface of the blade 4 due to its constituent material, and if a plurality of conductive plates 12 are arranged in parallel and installed individually on the surface side of the blade 4, it takes much time and effort. However, the above-described configuration of the guide section 9 solves these problems.

すなわち、断面形状がアリ溝状の凹部13aは、それと同一又は略同一の断面形状を有する導電プレート12の略全てを収容することによって該導電プレート12を絶縁テープ13に確実に固定せしめ、さらに絶縁テープ13を接着剤や両面テープ等によってブレードの表面に接着等して固定することにより、並列された状態の複数の導電プレート12を、ブレード4の表面側にまとめて固定させることが可能になる。 That is, the recess 13a having a dovetail cross-sectional shape accommodates substantially all of the conductive plate 12 having the same or substantially the same cross-sectional shape as the recess 13a, thereby reliably fixing the conductive plate 12 to the insulating tape 13, and further insulating the conductive plate 12. By adhering and fixing the tape 13 to the surface of the blade with an adhesive, double-sided tape, etc., it becomes possible to collectively fix the plurality of conductive plates 12 arranged in parallel to the surface side of the blade 4. .

以上のように構成されるガイド部9によれば、高価な耐熱性材料であるモリブデンの特定を利用しつつ、安価な非耐熱性材料である銅を多く含有させることにより、十分な耐熱性が付与された安価な導電プレート12とすることができるため、落雷時に発生する熱に起因した破損を極力防止できる。また、弾性変形可能な絶縁テープ13によって、凸曲面状をなすブレード4外面にも、容易且つ迅速に設置することが可能になる。 According to the guide portion 9 configured as described above, sufficient heat resistance can be achieved by making use of specific properties of molybdenum, which is an expensive heat-resistant material, and by containing a large amount of copper, which is an inexpensive non-heat-resistant material. Since the provided conductive plate 12 can be made inexpensive, damage caused by heat generated during a lightning strike can be prevented as much as possible. Furthermore, the elastically deformable insulating tape 13 allows it to be easily and quickly installed even on the outer surface of the blade 4 having a convex curved surface.

なお、導電プレート12の受雷面12cは、帯状の絶縁材料13から露出させることが必須ではなく、その一部又は全部が絶縁材料13によって覆われている状態でもよい。 Note that the lightning receiving surface 12c of the conductive plate 12 is not necessarily exposed from the band-shaped insulating material 13, and may be partially or entirely covered by the insulating material 13.

また、ガイド部9を、複数の導電プレート12のみによって構成し、該導電プレート12を、接着剤等によってブレード4に直に取り付け固定してもよい。 Alternatively, the guide portion 9 may be configured only of a plurality of conductive plates 12, and the conductive plates 12 may be directly attached and fixed to the blade 4 using an adhesive or the like.

さらに、導電プレート12の耐熱性材料としてセラミックス、タングステン又はグラファイトを用い、その非耐熱性材料として銅等の汎用的な金属材料を用いてもよい。また、導電プレート12を、耐熱性材料であるタングステンと、酸化トリウムとから構成してもよい。 Furthermore, ceramics, tungsten, or graphite may be used as the heat-resistant material of the conductive plate 12, and a general-purpose metal material such as copper may be used as the non-heat-resistant material. Further, the conductive plate 12 may be made of tungsten, which is a heat-resistant material, and thorium oxide.

次に、図6に基づいて、ガイド部9の他の実施形態について説明する。 Next, another embodiment of the guide section 9 will be described based on FIG. 6.

図6は、ガイド部の他の実施形態の構成を示す断面図である。この実施形態では、導電プレート12及び凹部13aにおける前記ガイド方向断面視の形状を同一又は略同一に成形することは、上述した実施形態と同様であるが、その形状を、台形ではなく、長方形状に成形している。また、帯状をなす絶縁材料13のブレード4に接着する側の面の幅を、反対側の面と比べて大きく設定してもよい。 FIG. 6 is a sectional view showing the configuration of another embodiment of the guide section. In this embodiment, the shapes of the conductive plate 12 and the recess 13a in the cross-sectional view in the guide direction are formed to be the same or substantially the same as in the above-mentioned embodiment, but the shape is not a trapezoid but a rectangle. It is molded into Further, the width of the side of the strip-shaped insulating material 13 that is bonded to the blade 4 may be set larger than that of the opposite side.

ちなみに、図5及び図6に示すような形状に限定されることなく、様々な形状を適宜選択することが可能である。 Incidentally, it is possible to select various shapes as appropriate without being limited to the shapes shown in FIGS. 5 and 6.

次に、本発明を適用したガイド部9を用いる導電プレート12について行った実験の結果について説明する。 Next, the results of experiments conducted on the conductive plate 12 using the guide portion 9 to which the present invention is applied will be explained.

前記導電プレート12を構成する銅及びモリブデンの複合材として3種類の複合材を用意した。具体的には、銅の全体に示す重量比が90%であって且つモリブデンの全体に占める重量比が10%である「Cu-10Mo複合材」と、銅の全体に示す重量比が80%であって且つモリブデンの全体に占める重量比が20%である「Cu-20Mo複合材」と、銅の全体に示す重量比が70%であって且つモリブデンの全体に占める重量比が30%である「Cu-30Mo複合材」との計3種類の複合材を用意した。 Three types of composite materials of copper and molybdenum constituting the conductive plate 12 were prepared. Specifically, there is a "Cu-10Mo composite" in which the weight ratio of copper to the whole is 90% and the weight ratio of molybdenum to the whole is 10%, and a "Cu-10Mo composite material" in which the weight ratio of copper to the whole is 80%. "Cu-20Mo composite material" in which the weight ratio of molybdenum to the whole is 20%, and the "Cu-20Mo composite material" in which the weight ratio of copper to the whole is 70% and the weight ratio to the whole molybdenum is 30%. A total of three types of composite materials were prepared, including a certain "Cu-30Mo composite material."

導電プレート12の形状は、実験のし易さを考慮して円盤状に成形した。 The conductive plate 12 was formed into a disk shape in consideration of ease of experimentation.

一方、これら3種類の複合材から構成された導電プレート12との比較のため、銅のみから構成され且つ該導電プレート12と同一のサイズ及び形状に成形された比較プレートを用意した。 On the other hand, for comparison with the conductive plate 12 made of these three types of composite materials, a comparison plate made only of copper and molded to the same size and shape as the conductive plate 12 was prepared.

上述した3種類の複合材の製造方法について簡単に説明すると、まず、粉末状の銅及びモリブデンを上述した所定の割合で混合して混合粉末を得る。この混合粉末を、ステンレス製の直径(φ)10[mm]のボールと共に、ポリエチレン製ポットの中に注入されたアルコール溶液中に加え、数時間ボールミルを行った後、該ボールを除去して乾燥させることにより、粒径が小さくなった混合粉末である乾燥粉末を得る。 Briefly explaining the method for manufacturing the three types of composite materials mentioned above, first, powdered copper and molybdenum are mixed in the above-mentioned predetermined ratio to obtain a mixed powder. This mixed powder was added to an alcohol solution poured into a polyethylene pot along with a stainless steel ball with a diameter (φ) of 10 [mm], and after performing ball milling for several hours, the balls were removed and dried. By doing so, a dry powder, which is a mixed powder with a reduced particle size, is obtained.

この乾燥粉末を、内径が102[mm]の可動ポンチを有する黒鉛ダイス中に充填し、10[Pa]以下の真空又は真空に近い低圧で且つ1173[K]以上の温度を有する雰囲気下において、50[MPa]の一軸加圧によって1200秒以上保持し、SUS法によって焼成して上述した3種類の複合材を得る。 This dry powder is filled into a graphite die having a movable punch with an inner diameter of 102 [mm], and in an atmosphere having a vacuum of 10 [Pa] or less or a low pressure close to vacuum and a temperature of 1173 [K] or more. It is held for 1200 seconds or more by uniaxial pressure of 50 [MPa] and fired by the SUS method to obtain the three types of composite materials described above.

図7は、雷を模した2種類の放電の波形である。同図に「Wave form A」で示される波形Aは夏の雷を模したものであり、同図に「Wave form B」で示される波形Bは冬の雷を模したものであり、波形Aは「JIS Z 9290-1」の規格に準拠している。 FIG. 7 shows waveforms of two types of discharges simulating lightning. Waveform A, indicated by "Wave form A" in the figure, simulates summer lightning, and waveform B, indicated by "Wave form B" in the same figure, simulates winter lightning; is compliant with the "JIS Z 9290-1" standard.

3種類の導電プレート12及び比較プレートは、グランド接続されたダウンコンダクタにボルト固定され、ステンレス製の直径12mmの丸棒よりなる電極を、3種類の導電プレート12及び比較プレートの円盤形状の縁側に近接させ、波形A,Bの夫々による放電を行い、その溶損を確認した。 The three types of conductive plates 12 and the comparison plate are bolted to the ground-connected down conductor, and electrodes made of stainless steel round rods with a diameter of 12 mm are attached to the disc-shaped edges of the three types of conductive plates 12 and the comparison plate. They were brought close to each other and discharged according to waveforms A and B, respectively, and the melting damage was confirmed.

図8は、雷を模した2種類の放電時の夫々における溶損を示したグラフである。ちなみに、同図に示されたものは、比エネルギーが1680[MWΩー1]の際の溶損を、その実験の結果から計算によって求め、3種類の導電プレート12と比較プレートの計4種類の試料間での比較を可能としている。 FIG. 8 is a graph showing melting loss during two types of electric discharges simulating lightning. By the way, what is shown in the same figure was obtained by calculating the melting loss when the specific energy was 1680 [MWΩ -1 ] from the results of the experiment. This allows for comparison between samples.

夏の雷を模した波形Aによる放電では、溶損について、比較プレートと、3種類の導電プレート12の間に有意な差が認められ、しかも、モリブデンの含有率が高くなるに従い、溶損が抑制されている状態が確認できる。すなわち、モリブデンの全体に示す重量比を10%以上に設定すれば、十分な効果が望めることが確認された。 In the discharge using waveform A that simulates summer lightning, a significant difference was observed between the comparison plate and the three types of conductive plates 12 in terms of erosion, and as the molybdenum content increased, the erosion increased. You can check the suppressed state. That is, it was confirmed that a sufficient effect can be expected if the weight ratio of molybdenum to the whole is set to 10% or more.

一方、冬の雷を模した波形Bによる放電では、溶損について、比較プレート及び「Cu-10Mo複合材」の導電プレート12と、「Cu-20Mo複合材」及び「Cu-30Mo複合材」の導電プレート12との間に有意な差が認められ、しかも、モリブデンの含有率が高くなるに従い、溶損が抑制されている状態が確認できる。すなわち、モリブデンの全体に示す重量比を20%以上に設定すれば、エネルギーが大きい冬の雷に対しても十分な効果が望めることが確認された。 On the other hand, in the discharge using waveform B that simulates winter lightning, the comparison plate and the conductive plate 12 of the "Cu-10Mo composite material" and the conductive plate 12 of the "Cu-20Mo composite material" and the "Cu-30Mo composite material" were A significant difference with respect to the conductive plate 12 was observed, and it was also confirmed that as the content of molybdenum increased, the melting loss was suppressed. In other words, it has been confirmed that if the weight ratio of molybdenum to the whole is set to 20% or more, a sufficient effect can be expected even against high-energy winter lightning.

次に、本発明を適用したガイド部9について行った実験の結果について説明する。 Next, the results of experiments conducted on the guide section 9 to which the present invention is applied will be explained.

導電プレート12として、「Cu-30Mo複合材」の材料を用い、その厚みを1.5[mm]に設定し、その幅を10[mm]に設定し、その全長を30,50[mm]の2パータンで用意し、その両側のサイド面の前記傾斜角度を夫々45度に設定した。また、導電プレートとして、耐熱性材料であるモリブデンのみから構成され、前記導電プレート12と同一又は略同一の寸法及び形状に成形されたものも用意した。一方、比較プレートとして、銅のみから構成されたものと、アルミニウムのみから構成されたものとの2種類を用意し、前記導電プレート12と同一又は略同一の寸法及び形状に成形した。 As the conductive plate 12, a material of "Cu-30Mo composite material" is used, its thickness is set to 1.5 [mm], its width is set to 10 [mm], and its total length is set to 30.50 [mm]. Two patterns were prepared, and the inclination angles of the side surfaces on both sides were set to 45 degrees. Further, a conductive plate made of only molybdenum, which is a heat-resistant material, and molded to have the same or substantially the same dimensions and shape as the conductive plate 12 was also prepared. On the other hand, two types of comparison plates were prepared, one made only of copper and one made only of aluminum, and molded into the same or substantially the same size and shape as the conductive plate 12.

これらの2種類の導電プレート12又は2種類の比較プレートが埋設される凹部13aを有する絶縁テープ13は、その構成材料をシリコーン樹脂とし、その全長は900[mm]に設定し、厚みを2.0[mm]とし、隣接する凹部13a同士の間隔を1[mm]に設定した The insulating tape 13 having a concave portion 13a in which these two types of conductive plates 12 or two types of comparison plates are embedded is made of silicone resin, has a total length of 900 mm, and a thickness of 2 mm. 0 [mm], and the interval between adjacent recesses 13a was set to 1 [mm].

用いる放電は前記波形Bよりなる冬の雷を模したものを採用し、電荷が60[C]の場合と、180[C]の場合との2パータンで実験を行った。放電を生じさせる箇所は、導電プレートを用いたガイド部9と、比較プレートを用いた3つのガイド部との両方について、その中央部付近とした。 The discharge to be used simulated winter lightning having the waveform B described above, and the experiment was conducted in two patterns: when the charge was 60 [C] and when the charge was 180 [C]. The location where the discharge was generated was near the center of both the guide section 9 using the conductive plate and the three guide sections using the comparison plates.

図9は、電荷60Cの波形Bよりなる放電を生じさせた場合における各ガイド部の放電後の状態を示す写真であり、(A)が本発明を適用したモリブデン製の導電プレートを用いたガイド部の状態であり、(B)が本発明を適用した複合材製の導電プレートを用いたガイド部の状態であり、(C)がアルミニウムよりなる比較プレートを用いたガイド部の状態であり、(D)が銅よりなる比較プレートを用いたガイド部の状態である。 FIG. 9 is a photograph showing the state of each guide portion after discharge when a discharge consisting of waveform B of charge 60C is generated, and (A) is a guide using a conductive plate made of molybdenum to which the present invention is applied. (B) is the state of the guide part using a conductive plate made of a composite material to which the present invention is applied, (C) is the state of the guide part using a comparison plate made of aluminum, (D) shows the state of the guide section using a comparison plate made of copper.

同図(A)では、蒸発して消失した範囲の全長が1.9[mm]であるとともに、溶損した範囲の全長が6.8[mm]であった。同図(B)では、蒸発して消失した範囲の全長が1.9[mm]であるとともに、溶損した範囲の全長が11.9[mm]であった。同図(C)では、蒸発して消失した範囲の全長が9.1[mm]であるとともに、溶損した範囲の全長が16.9[mm]であった。同図(D)では、蒸発して消失した範囲の全長が2.9[mm]であるとともに、溶損した範囲の全長が10.2[mm]であった。 In the same figure (A), the total length of the area that evaporated and disappeared was 1.9 [mm], and the total length of the area that was eroded was 6.8 [mm]. In the same figure (B), the total length of the area that evaporated and disappeared was 1.9 [mm], and the total length of the area that was eroded was 11.9 [mm]. In the same figure (C), the total length of the area that evaporated and disappeared was 9.1 [mm], and the total length of the area that was eroded was 16.9 [mm]. In the same figure (D), the total length of the area that evaporated and disappeared was 2.9 [mm], and the total length of the area that was eroded was 10.2 [mm].

導電プレート12にモリブデンのみを用いた同図(A)の結果に対して、前記複合材を用いた同図(B)に示すものも、消失範囲は同一であり、同図(C),(D)に比べて優れた耐熱耐熱性を示す結果となった。 In contrast to the results shown in Figure (A), in which only molybdenum was used for the conductive plate 12, the disappearance range in Figure (B), in which the composite material was used, was the same; The results showed superior heat resistance compared to D).

図10は、電荷180Cの波形Bよりなる放電を生じさせた場合における各ガイド部の放電後の状態を示す写真であり、(A)が本発明を適用したモリブデン製の導電プレートを用いたガイド部の状態であり、(B)が本発明を適用した複合材製の導電プレートを用いたガイド部の状態であり、(C)がアルミニウムよりなる比較プレートを用いたガイド部の状態であり、(D)が銅よりなる比較プレートを用いたガイド部の状態である。 FIG. 10 is a photograph showing the state of each guide portion after discharge when a discharge consisting of waveform B of charge 180C is generated, and (A) is a guide using a conductive plate made of molybdenum to which the present invention is applied. (B) is the state of the guide part using a conductive plate made of a composite material to which the present invention is applied, (C) is the state of the guide part using a comparison plate made of aluminum, (D) shows the state of the guide section using a comparison plate made of copper.

同図(A)では、蒸発して消失した範囲の全長が3.3[mm]であるとともに、溶損した範囲の全長が14.6[mm]であった。同図(B)では、蒸発して消失した範囲の全長が5.8[mm]であるとともに、溶損した範囲の全長が23.5[mm]であった。同図(C)では、蒸発して消失した範囲の全長が25.2[mm]であるとともに、溶損した範囲の全長が40.0[mm]であった。同図(D)では、蒸発して消失した範囲の全長が16.0[mm]であるとともに、溶損した範囲の全長が25.4[mm]であった。 In the same figure (A), the total length of the area that evaporated and disappeared was 3.3 [mm], and the total length of the area that was eroded was 14.6 [mm]. In the same figure (B), the total length of the area that evaporated and disappeared was 5.8 [mm], and the total length of the area that was eroded was 23.5 [mm]. In the same figure (C), the total length of the area that evaporated and disappeared was 25.2 [mm], and the total length of the area that was eroded was 40.0 [mm]. In the same figure (D), the total length of the area that evaporated and disappeared was 16.0 [mm], and the total length of the area that was eroded was 25.4 [mm].

導電プレート12にモリブデンのみを用いた同図(A)の結果に対して、前記複合材を用いた同図(B)に示すものは、消失した範囲及び溶損の範囲は劣るが、アルミニウムや銅を用いた同図(C),(D)の示す結果と比較すると、その差は歴然であり、優れた耐熱性を示す結果となった。 In contrast to the results shown in Figure (A) in which only molybdenum was used for the conductive plate 12, the results shown in Figure (B) in which the above-mentioned composite material was used were inferior in the range of disappearance and melting damage, but the results were similar to aluminum and When compared with the results shown in Figures (C) and (D) using copper, the difference was clear, and the results showed excellent heat resistance.

すなわち、電荷を増すほど、本発明のガイド部9が優位な耐熱性を示す結果となった。 That is, as the electric charge was increased, the guide portion 9 of the present invention exhibited superior heat resistance.

4 ブレード
6 レセプタ
7 ダウンコンダクタ
9 ガイド部
12 導電プレート(導電性部材)
13 絶縁テープ(絶縁部材)
4 Blade 6 Receptor 7 Down conductor 9 Guide portion 12 Conductive plate (conductive member)
13 Insulating tape (insulating material)

Claims (7)

風車の耐雷装置であって、
風車のブレードの表面に少なくとも一部が露出した状態で設けられたレセプタと、
前記ブレードの表面における前記レセプタ以外の少なくとも一部の箇所で生じた雷電流を、該レセプタに導くガイド部と、
前記レセプタと電気的に接続され且つ該レセプタ側からの雷電流をアース側に導くダウンコンダクタとを備え、
前記ガイド部は導電性を有する導電性部材を複数有し、
複数の前記導電性部材は前記レセプタ側に向かって直線状又は曲線状に並べられ、
前記導電性部材は、モリブデン、タングステン、ハフニウム、タンタル、クロム又はニオブの少なくとも何か1つが含有された耐熱性材料を含み、
前記導電性部材は、方形板状に成形され且つ前記ブレードの表面に沿う姿勢で該ブレード側に固定され、
前記導電性部材の互いに平行又は略平行に対向する隣接端面同士の間の距離は2ミリメートル以下に設定され、
前記導電性部材の前記端面は、フラットな形状に成形され、その面積が3mm 以上に設定された
ことを特徴とする風車の耐雷装置。
A wind turbine lightning protection device,
a receptor provided on the surface of a windmill blade with at least a portion exposed;
a guide portion that guides lightning current generated at at least a portion of the surface of the blade other than the receptor to the receptor;
a down conductor electrically connected to the receptor and guiding lightning current from the receptor side to the ground side,
The guide portion has a plurality of conductive members having conductivity,
The plurality of conductive members are arranged in a straight line or a curved line toward the receptor side,
The conductive member includes a heat-resistant material containing at least one of molybdenum, tungsten, hafnium, tantalum, chromium, or niobium,
The conductive member is formed into a rectangular plate shape and is fixed to the blade side in a posture along the surface of the blade,
The distance between adjacent end surfaces of the conductive member facing each other parallel or substantially parallel is set to 2 mm or less,
The end surface of the conductive member is formed into a flat shape and has an area of 3 mm 2 or more.
A wind turbine lightning protection device characterized by:
前記ガイド部は、前記レセプタが並べられる方向に帯状に延設された絶縁部材を有し、
前記導電性部材は、その少なくとも一部が前記絶縁部材に埋設して固定され、
前記絶縁部材が前記ブレードの表面側に取り付けられた
請求項に記載の風車の耐雷装置。
The guide portion includes an insulating member extending in a band shape in a direction in which the receptors are arranged,
At least a portion of the conductive member is embedded and fixed in the insulating member,
The lightning protection device for a wind turbine according to claim 1 , wherein the insulating member is attached to the front surface side of the blade.
前記導電性部材の前記端面の面積が5mm以上に設定された
請求項に記載の風車の耐雷装置。
The lightning protection device for a wind turbine according to claim 1, wherein the area of the end face of the conductive member is set to 5 mm 2 or more.
前記導電性部材が、前記耐熱性材料と、該耐熱性材料以外の材料である非耐熱性材料とを含むか、或いは、一又は複数の前記耐熱性材料のみから構成された
請求項1乃至の何れかに記載の風車の耐雷装置。
Claims 1 to 3, wherein the conductive member includes the heat-resistant material and a non-heat-resistant material that is a material other than the heat-resistant material, or is composed only of one or more of the heat-resistant materials. A lightning protection device for a wind turbine according to any of the above.
前記導電性部材の20℃における体積抵抗率が20μΩcm以下に設定された
請求項に記載の風車の耐雷装置。
The lightning protection device for a wind turbine according to claim 3 , wherein the conductive member has a volume resistivity of 20 μΩcm or less at 20° C.
前記耐熱性材料がモリブデンであり、
前記非耐熱性材料が銅であり、
前記モリブデンの前記導電性部材の全体に占める重量比率が10%以上に設定された
請求項4に記載の風車の耐雷装置。
the heat resistant material is molybdenum;
the non-heat resistant material is copper;
The lightning protection device for a wind turbine according to claim 4, wherein a weight ratio of the molybdenum to the entire conductive member is set to 10% or more.
前記導電性部材が前記耐熱性材料のみから構成され、
前記耐熱性材料がモリブデンである
請求項又はの何かに記載の風車の耐雷装置。
The conductive member is composed only of the heat-resistant material,
A lightning protection device for a wind turbine according to any of claims 4 or 5 , wherein the heat-resistant material is molybdenum.
JP2019238686A 2019-12-27 2019-12-27 Wind turbine lightning protection device Active JP7391304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019238686A JP7391304B2 (en) 2019-12-27 2019-12-27 Wind turbine lightning protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019238686A JP7391304B2 (en) 2019-12-27 2019-12-27 Wind turbine lightning protection device

Publications (2)

Publication Number Publication Date
JP2021107698A JP2021107698A (en) 2021-07-29
JP7391304B2 true JP7391304B2 (en) 2023-12-05

Family

ID=76967800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019238686A Active JP7391304B2 (en) 2019-12-27 2019-12-27 Wind turbine lightning protection device

Country Status (1)

Country Link
JP (1) JP7391304B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235825A (en) 1999-02-16 2000-08-29 Hitachi Ltd Electrode member for vacuum circuit-breaker and manufacture thereof
JP2005113735A (en) 2003-10-06 2005-04-28 Jfe Engineering Kk Wind-power equipment
JP2006052719A (en) 2004-08-13 2006-02-23 Masahiro Hanai Wind power generation device and blade
JP2007100658A (en) 2005-10-06 2007-04-19 Ebara Corp Lightning conduction method and lightning conduction device for windmill blade, lightning protection method and lighting protection device for wind power generation device
JP2008231395A (en) 2006-08-07 2008-10-02 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
JP2012117447A (en) 2010-11-30 2012-06-21 Mitsubishi Heavy Ind Ltd Lightning arrester device for wind turbine rotor blades and wind turbine generator equipped with same
JP2012246815A (en) 2011-05-26 2012-12-13 Japan Steel Works Ltd:The Wind power generation blade
JP2013155330A (en) 2012-01-31 2013-08-15 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
JP2014525857A5 (en) 2012-06-27 2015-08-13
JP2019209699A (en) 2018-05-31 2019-12-12 株式会社Subaru aircraft

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234425A (en) * 1992-02-20 1993-09-10 Hitachi Cable Ltd Lighting protection type overhead earth-wire
US9090043B2 (en) * 2011-08-03 2015-07-28 The Boeing Company Molybdenum composite hybrid laminates and methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235825A (en) 1999-02-16 2000-08-29 Hitachi Ltd Electrode member for vacuum circuit-breaker and manufacture thereof
JP2005113735A (en) 2003-10-06 2005-04-28 Jfe Engineering Kk Wind-power equipment
JP2006052719A (en) 2004-08-13 2006-02-23 Masahiro Hanai Wind power generation device and blade
JP2007100658A (en) 2005-10-06 2007-04-19 Ebara Corp Lightning conduction method and lightning conduction device for windmill blade, lightning protection method and lighting protection device for wind power generation device
JP2008231395A (en) 2006-08-07 2008-10-02 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
JP2012117447A (en) 2010-11-30 2012-06-21 Mitsubishi Heavy Ind Ltd Lightning arrester device for wind turbine rotor blades and wind turbine generator equipped with same
JP2012246815A (en) 2011-05-26 2012-12-13 Japan Steel Works Ltd:The Wind power generation blade
JP2013155330A (en) 2012-01-31 2013-08-15 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
JP2014525857A5 (en) 2012-06-27 2015-08-13
JP2019209699A (en) 2018-05-31 2019-12-12 株式会社Subaru aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
上野敏之,金属系複合材料による風車用耐雷素材の開発,電気学会研究会,日本,2018年06月07日,第63-68頁

Also Published As

Publication number Publication date
JP2021107698A (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US7377750B1 (en) Lightning protection system for a wind turbine
JP5641714B2 (en) Wind turbine blade with lightning arrester and method for protecting the surface of the wind turbine blade
EP2633186B1 (en) A wind turbine lightning protection system and wind turbine blade
CN105829708B (en) The improvement of lightning protection system about wind turbine blade
CA2852598C (en) Wind turbine rotor blade having an electrical heating device and a plurality of lightning conductors
KR20160140387A (en) Wind turbine blade and wind turbine generator, and method of producing or retrofitting wind turbine blade
US9614360B2 (en) Lightning protection device and method of producing same
US20200355164A1 (en) Blade for a wind turbine and wind turbine
JP7391304B2 (en) Wind turbine lightning protection device
US20140356187A1 (en) De-icing of a wind turbine blade
JP6467683B2 (en) Windmill lightning protection device
ES2947594T3 (en) Rotor blade for a wind power plant, method for contacting an electrically conductive coating on a rotor blade of a wind power plant and wind power plant
JP2009115052A (en) Lightning damage prevention of wind powered generator device rotor blade
US20130189099A1 (en) Fluid Turbine Lightning Protection System
US20160369110A1 (en) Surface Coating For Dissipating Electrical Charge On Anti-Static Installations And Process
US9136685B2 (en) Lightning protection structure of blade for wind power generation
CN109844305B (en) Rotor blade coating
DK2708740T3 (en) Wind turbine rotor blade with an electric heater and a line conductor
Smith et al. Design of a Rotatable copper collimator for the LHC Phase II collimation upgrade
CN109798807A (en) Leadless conductive target plate
CN202914253U (en) Wind power blade with lightning-current-limiting function
Vishnyakov et al. Knitted soldered meshes and nanostructured carbon particles for lightning protection of composite wind turbine blades
CN203896084U (en) Three-phase asynchronous motor
KR20190121374A (en) Transformation material
JP2014025428A (en) Wind-power generation apparatus with lightning protection system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200131

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7391304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150