JP2007100658A - Lightning conduction method and lightning conduction device for windmill blade, lightning protection method and lighting protection device for wind power generation device - Google Patents

Lightning conduction method and lightning conduction device for windmill blade, lightning protection method and lighting protection device for wind power generation device Download PDF

Info

Publication number
JP2007100658A
JP2007100658A JP2005294071A JP2005294071A JP2007100658A JP 2007100658 A JP2007100658 A JP 2007100658A JP 2005294071 A JP2005294071 A JP 2005294071A JP 2005294071 A JP2005294071 A JP 2005294071A JP 2007100658 A JP2007100658 A JP 2007100658A
Authority
JP
Japan
Prior art keywords
lightning
blade
receiving portion
conductive
windmill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005294071A
Other languages
Japanese (ja)
Other versions
JP4695482B2 (en
Inventor
Hiroshi Ishii
宏志 石居
Jiro Kinoshita
治郎 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2005294071A priority Critical patent/JP4695482B2/en
Publication of JP2007100658A publication Critical patent/JP2007100658A/en
Application granted granted Critical
Publication of JP4695482B2 publication Critical patent/JP4695482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly guide current of lightning striking a part other than a lightning receiving part of a windmill blade to the lightning receiving part. <P>SOLUTION: In this lightning conduction method for a windmill blade providing the lightning receiving part 12 made of conductive material (metal material) on a predetermined position of the windmill blade 11 and guiding lightning current striking the windmill blade 11 to the lightning receiving part, one or more of dielectric devices 21-24 having a plurality of conductive segments 25 composed of conductive material with a predetermined interval and putting dielectric layer therebetween are arranged on a surface of the windmill blade 11 between the lightning receiving part 12 and a predetermined section or a plurality of sections separate from the lightning receiving part 12, electric discharge is induced between the conductive segments 25 by an electric field applied by electric charge of thunder cloud, and lightening current striking the windmill blade 11 is guided to the lightning receiving part 12 through ionized layer of atmospheric air generated near the arranged conductive segments by the electric discharge. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば風力発電装置の風車ブレードの雷撃した雷の雷電流を速やかに該風車ブレードの所定位置に設けられた受雷部に誘導する風車ブレードの誘雷方法、誘雷装置、該風車ブレードの誘雷方法、誘雷装置を用いた風力発電装置の避雷方法、避雷装置に関するものである。   The present invention relates to a lightning strike method for a windmill blade, a lightning striker, and the windmill for quickly guiding a lightning current of a lightning strike of a windmill blade of a wind turbine generator to a lightning receiving portion provided at a predetermined position of the windmill blade. The present invention relates to a lightning arresting method for a blade, a lightning arresting method for a wind turbine generator using a lightning arresting device, and a lightning arresting device.

地球温暖化が問題となり、自然エネルギーの活用が注目さるようになってから、風力発電装置の設置が活発となり、その総発電量も年々増加の傾向にある。それに伴い、風車、発電機構造、制御装置等各種の技術分野の開発、改良が行なわれている。そのなかで避雷技術の開発、改良も重要である。   Since global warming has become a problem and the use of natural energy has attracted attention, the installation of wind power generators has become active, and the total amount of power generation tends to increase year by year. Along with this, various technical fields such as wind turbines, generator structures, and control devices have been developed and improved. Among them, the development and improvement of lightning protection technology is also important.

一般に、大地落雷密度Ng(回/km2/年)と、その地点の年間雷雨日数Tdの間には、次の関係がある。
Ng=0.1Td
In general, there is the following relationship between the ground lightning density Ng (times / km 2 / year) and the annual thunderstorm days Td at that point.
Ng = 0.1Td

例えば、年間雷雨日数30日の地点では、1km×1kmの面積内に年間平均3回の落雷が予想される。従って、地上高さHmの高層建造物の場合、等価受雷面積=9πH2
とされる。
For example, at a point of thirty days of annual thunderstorms, an average of three lightning strikes per year is expected within an area of 1 km × 1 km. Therefore, in the case of a high-rise building with a ground height of Hm, the equivalent lightning area = 9πH 2
It is said.

例えば、地上高さH=200mの建造物が年間雷雨日数30日の地点にあれば、等価受雷面積は1.13km2となり、この建造物に対する年間落雷数は、約3.4回と想定される。 For example, if a building with a ground height of H = 200 m is located at a point where the number of thunderstorm days is 30 days, the equivalent lightning strike area is 1.13 km 2 , and the annual number of lightning strikes for this building is assumed to be about 3.4 times. Is done.

一般に風力発電設備は、高層建造物に相当するタワーの頂上にナセルと称する筐体を配置し、この筐体内に発電機を設置し、発電機シャフトに直結、又はギア等で連結したシャフトに翼車を配置し、風力により翼車を回転し翼車の回転に比例する回転力を発電機に伝達し発電する設備である。ここで単位面積A(m2)あたりに通過する風速V(m/s)の風のエネルギーP(w)は空気密度をρ(kg/m3)とすると次式で表せる。
P=1/2mV2=1/2(ρAV)V2=1/2ρAV3
In general, wind power generation equipment has a casing called a nacelle placed on the top of a tower corresponding to a high-rise building, a generator is installed in the casing, and a blade is attached to a shaft directly connected to a generator shaft or connected by a gear or the like. It is a facility that arranges a car, rotates the impeller by wind power, and transmits the rotational force proportional to the rotation of the impeller to the generator to generate electricity. Here, the wind energy P (w) of the wind speed V (m / s) passing per unit area A (m 2 ) can be expressed by the following equation when the air density is ρ (kg / m 3 ).
P = 1/2 mV 2 = 1/2 (ρAV) V 2 = 1 / 2ρAV 3

即ち、風力エネルギーPは受風面積に比例、風速の3乗に比例する。従って、風力エネルギーを有効活用するため、できるだけ風の強い場所を選び、更に受風面積を大きくする必要がある。このことは風車が大きくなることを意味し、更にはタワー自体が高層になることを意味している。   That is, the wind energy P is proportional to the wind receiving area and proportional to the third power of the wind speed. Therefore, in order to effectively use wind energy, it is necessary to select a place where the wind is as strong as possible and further increase the wind receiving area. This means that the windmill will be larger, and that the tower itself will be higher.

近年、風力発電機の容量も大きくなりタワー自体も高層化が進んでいる。従って雷撃を受け易く、この雷撃によって発電設備に関わる発電機及びこれらを制御する電気品にも損傷する機会が一段と増えている。   In recent years, the capacity of wind power generators has increased, and the tower itself has become higher. Therefore, it is easy to receive a lightning strike, and the opportunity of damaging the generator related to the power generation facility and the electrical equipment that controls them is further increased.

風車は山の上など風況が良好な場所に建設されることが多く、風車自体の高さが約100mと非常に高い事から落雷の被害が多い。特に風車のブレードは絶縁物(GFRP)で作られているのにも関わらず、その形状から落雷を受ける。落雷対策として従来から色々な方法があるが、以下に示す方法が一般的である。   Windmills are often built in places with good wind conditions, such as on the top of a mountain, and the height of the windmill itself is about 100m, which is very high, causing lightning damage. In particular, windmill blades are subjected to lightning due to their shape despite being made of an insulator (GFRP). Conventionally, there are various methods for preventing lightning strikes, but the following methods are common.

図1(a)、(b)に示すように、風車10の風車ブレード11の先端部に受雷部(金属製レセプターや金属導体端部)12を設け、ここで積極的に落雷を受けるようにする。受雷部12で受けた雷の電流は風車ブレード11内部に設けた避雷導線13、図1(b)に示すハブ14、ナセル15、タワー16、及びアース導体17を経由して地中に逃がす。なお、18はナセル15に設けた避雷針である。なお、図1(a)は風力発電装置の全体構成を示す図、図1(b)は風車の一部を示す図である。   As shown in FIGS. 1A and 1B, a lightning receiving portion (metal receptor or metal conductor end portion) 12 is provided at the tip of a windmill blade 11 of the windmill 10 so that lightning strikes are positively received here. To. The lightning current received by the lightning receiver 12 is released into the ground via the lightning conductor 13 provided inside the windmill blade 11, the hub 14, the nacelle 15, the tower 16 and the ground conductor 17 shown in FIG. . Reference numeral 18 denotes a lightning rod provided on the nacelle 15. FIG. 1A is a diagram showing the overall configuration of the wind turbine generator, and FIG. 1B is a diagram showing a part of the windmill.

ここで雷放電には多くのタイプがあり、夫々のタイプで落雷点決定様式が異なる。平地の夏季雷で最も多い雲−大地雷では、先ず雷雲底部の負の電荷中心から、雷雲電荷によって満たされた円柱形の管と、その中心部にあるイオン化されたプラズマ核が間欠的に地上に向かって進展する。   Here, there are many types of lightning discharges, and the type of lightning point determination is different for each type. In the cloud-ground mine, which is the most common summer lightning in the flatland, the cylindrical tube filled with thundercloud charges and the ionized plasma nucleus at the center are intermittently grounded from the negative charge center at the bottom of the thundercloud. Progress towards

リーダと呼ばれるこの放電の先端が地上に近づくと、その先端付近にある樹木や建物の先端(金属か非金属かは問題にならない)でも電界強度が強くなり、リーダ雷先端に最も近い突起物先端で、空気の絶縁耐圧(約2300kV/m)を越えると、ここからリーダ雷に似た捕捉放電が伸長し、最終的にリーダ雷先端と会合する。これによって雷道が完成し、リーダ雷の電荷管に蓄積された電荷が地上電荷と中和する。この時に流れる電流が主放電電流である。上記避雷方法によれば雷撃があった場合、その電流を大地まで導き発電設備には雷撃による電流を流さないということではその効果が期待できる。   When the tip of this discharge, called a leader, approaches the ground, the field strength increases even at the tip of a tree or building near the tip (whether it is metal or nonmetal), and the tip of the projection closest to the leader lightning tip Then, when the insulation withstand voltage of air (about 2300 kV / m) is exceeded, a trapped discharge similar to the leader lightning extends from here, and finally associates with the tip of the leader lightning. This completes the lightning path and neutralizes the charge accumulated in the charge tube of the leader lightning with the ground charge. The current flowing at this time is the main discharge current. According to the above lightning protection method, if there is a lightning strike, the effect can be expected by guiding the current to the ground and not causing the current to flow through the power generation equipment.

上記のように風車ブレード11の先端部に雷受部12を設け、ここで積極的に雷撃を受けるようにしても、受雷部12以外の風車ブレード11を雷撃する場合がある。特に冬季に発生する冬季雷は雷雲が低く垂れ込めることから、風車の横方向から風車ブレード11を雷撃することがあり、その異常に高いエネルギーも相まって風車ブレード11が折損する場合もある。   Even if the lightning receiving portion 12 is provided at the tip of the windmill blade 11 as described above and the lightning is actively received here, the windmill blades 11 other than the lightning receiving portion 12 may be lightened. In particular, winter thunder generated in the winter season causes lightning clouds to sag low, so that the windmill blade 11 may be struck from the side of the windmill, and the windmill blade 11 may be broken due to its abnormally high energy.

また、風車のブレードの最高点よりも高い避雷針を建設することも考慮されるが、風力発電設備の風況に影響を与えない高層の避雷針を建設することは容易ではない。また、特許文献1に示すように、設置された誘雷鎖に接続した誘雷針と、該誘雷針を水圧による放水流によって飛翔させる誘雷針飛翔手段を備えると共に、該誘雷針飛翔手段は固定の導水管及び伸縮導水管を備え、該導水管に高圧水を導入し、該導水管から放出される放水流により誘雷針を飛翔させるものもある。   It is also considered to construct a lightning rod higher than the highest point of the windmill blade, but it is not easy to construct a high-rise lightning rod that does not affect the wind conditions of the wind power generation facility. In addition, as shown in Patent Document 1, a lightning rod connected to an installed lightning chain, and a lightning rod flying means for flying the lightning rod with a water discharge by water pressure, the lightning rod flight The means includes a fixed water conduit and a telescopic water conduit, high pressure water is introduced into the water conduit, and a lightning rod is caused to fly by a water discharge flow discharged from the water conduit.

しかしながら、上記のように放水流により誘雷針を風車のブレードの最高点よりも高い位置に飛翔される方法も、風車の横方向からブレードを雷撃する雷には効果がない。
特開2004−342518号公報
However, the method of flying the lightning rod to the position higher than the highest point of the blade of the windmill by the water discharge as described above is not effective for lightning that strikes the blade from the side of the windmill.
JP 2004-342518 A

本発明は上述の点に鑑みてなされたもので、風車ブレードの受雷部以外に雷撃した雷の電流を速やかに該受雷部に誘導する風車ブレードの誘雷方法、誘雷装置、該風車ブレードの誘雷方法、誘雷装置を用いた風力発電装置の避雷方法、避雷装置を提供することを目的とする。   The present invention has been made in view of the above points, and a lightning strike method for a windmill blade, a lightning strike device, and the windmill for quickly guiding a lightning strike to a lightning strike portion other than the lightning strike portion of the windmill blade. It aims at providing the lightning arresting method of a braid | blade, the lightning arresting method of the wind power generator using a lightning arrester, and a lightning arrester.

上記課題を解決するため請求項1に記載の発明は、風車のブレードの所定位置に導電材からなる受雷部を設け、該ブレードを雷撃した雷電流を前記受雷部に誘導する風車ブレードの誘雷方法であって、前記受雷部と該受雷部から離れた所定の一個所又は複数個所との間の該ブレード表面に複数の導電材からなる導電セグメントを所定の間隔で且つ間に誘電体層を介在させて配列設置し、雷雲の電荷により印加される電界により前記導電セグメント間に放電を発生させ、該放電により前記配列した導電セグメント近傍に発生した大気のイオン化層を通して前記風車ブレードを雷撃する雷電流を前記受雷部に誘導することを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is a wind turbine blade for providing a lightning receiving portion made of a conductive material at a predetermined position of a blade of the windmill, and for guiding a lightning current that strikes the blade to the lightning receiving portion. A lightning induction method, wherein a conductive segment made of a plurality of conductive materials is provided at a predetermined interval and between the blade surface between the lightning receiving portion and a predetermined one or a plurality of locations apart from the lightning receiving portion. The windmill blade is arranged through a dielectric layer, generates a discharge between the conductive segments by an electric field applied by thundercloud charges, and passes through an ionization layer in the atmosphere generated in the vicinity of the arranged conductive segments. A lightning current that strikes the lightning is guided to the lightning receiving portion.

請求項2に記載の発明は、風車、及び該風車で駆動する発電機を備え、該風車のブレードの所定位置に導電材からなる受雷部を設け、該受雷部で雷撃した雷電流を受け避雷電線を通して地中に導くようにした風力発電装置の避雷方法において、前記受雷部と該受雷部から離れた所定の一個所又は複数個所との間の該ブレード表面に複数の導電材からなる導電セグメントを所定の間隔で且つ間に誘電体層を介在させて配列設置し、雷雲の電荷により印加される電界により前記導電セグメント間に放電を発生させ、該放電により前記配列した導電セグメント近傍に発生した大気のイオン化層を通して前記風車ブレードを雷撃する雷電流を前記受雷部に誘導することを特徴とする。   The invention according to claim 2 includes a windmill and a generator driven by the windmill, and a lightning receiving portion made of a conductive material is provided at a predetermined position of the blade of the windmill, and a lightning current struck by the lightning receiving portion is detected. In a lightning arresting method for a wind turbine generator that is guided to the ground through a lightning arresting electric wire, a plurality of conductive materials are provided on the blade surface between the lightning sensing part and a predetermined place or a plurality of places apart from the lightning sensing part. The conductive segments are arranged at predetermined intervals with a dielectric layer interposed therebetween, and a discharge is generated between the conductive segments by an electric field applied by a charge of thundercloud, and the arranged conductive segments are formed by the discharge. A lightning current that strikes the windmill blade through the ionized layer of the atmosphere generated in the vicinity is induced to the lightning receiving portion.

請求項3に記載の発明は、風車のブレードの所定位置に導電材からなる受雷部を設け、該ブレードに雷撃した雷電流を前記受雷部に誘導する風車ブレードの誘雷装置であって、 前記受雷部と該受雷部から離れた所定の一個所又は複数個所との間の該ブレード表面に複数の導電材からなる導電セグメントを所定の間隔で且つ間に誘電体層を介在させて配列設置した構成の導電装置を設けたことを特徴とする。   The invention according to claim 3 is a lightning strike device for a windmill blade that is provided with a lightning receiving portion made of a conductive material at a predetermined position of the blade of the windmill, and guides a lightning current struck to the blade to the lightning receiving portion. A conductive segment made of a plurality of conductive materials is interposed between the light receiving portion and a predetermined one or a plurality of locations apart from the light receiving portion at a predetermined interval and a dielectric layer therebetween. And a conductive device having a configuration in which the arrangement is arranged.

請求項4に記載の発明は、風車、及び該風車で駆動する発電機を備え、風車のブレードの所定位置に導電材からなる受雷部を設け、該受雷部で受けた雷電流を避雷電線を通して地中に導く風力発電装置の避雷装置において、前記受雷部と該受雷部から離れた所定個所との間の前記ブレード表面に複数の導電材からなる導電セグメントを所定の間隔で且つ間に誘電体層を介在させて配列設置した構成の導電装置を設けたことを特徴とする。   According to a fourth aspect of the present invention, a windmill and a generator driven by the windmill are provided, a lightning receiving portion made of a conductive material is provided at a predetermined position of the blade of the windmill, and the lightning current received by the lightning receiving portion is protected from lightning. In a lightning arrester of a wind turbine generator that leads to the ground through an electric wire, a conductive segment made of a plurality of conductive materials is provided at a predetermined interval on the blade surface between the lightning receiving part and a predetermined part away from the lightning receiving part. A conductive device having a configuration in which a dielectric layer is interposed between the conductive devices is provided.

請求項5に記載の発明は、請求項4に記載の風力発電装置の避雷装置において、前記導電装置は下記(a)〜(d)のいずれか1つの又は2つ以上を設けたことを特徴とする。
(a)前記導電セグメントが前記ブレード表面の前記受雷部が該ブレードの回転により移動する円周上に配列されている導電装置
(b)前記導電セグメントが前記ブレード表面の前記受雷部から該ブレード先端まで配列されている導電装置
(c)前記導電セグメントが前記ブレード表面の上流側で且つ前記受雷部から所定距離離れた位置まで配列されている導電装置
(d)前記導電セグメントが前記ブレード表面の下流側で且つ前記受雷部から所定距離離れた位置まで配列されている導電装置
The invention according to claim 5 is the lightning arrester of the wind turbine generator according to claim 4, wherein the conductive device is provided with any one or more of the following (a) to (d). And
(A) a conductive device in which the lightning receiving portion on the blade surface is arranged on a circumference where the lightning receiving portion is moved by rotation of the blade; and (b) the conductive segment is moved from the lightning receiving portion on the blade surface. Conductive device arranged to the blade tip (c) Conductive device in which the conductive segment is arranged on the upstream side of the blade surface and at a predetermined distance from the lightning receiving portion (d) The conductive segment is the blade Conductive device arranged on the downstream side of the surface and at a position away from the lightning receiving portion by a predetermined distance

請求項1に記載の発明によれば、雷雲の電荷により印加される電界により導電セグメント間に放電を発生させ、該放電により配列した導電セグメント近傍に大気をイオン化したイオン化層を形成するから、受雷部以外の風車ブレードを雷撃する雷電流はこのイオン化層と通って受雷部に誘導され、ブレード自体が雷撃により折損する等で破壊を起こすことがない風車ブレードの誘雷方法を提供できる。特に雷雲が低く垂れ込め、横方向から雷撃する冬季雷の雷電流の誘導に効果的である。   According to the first aspect of the present invention, a discharge is generated between the conductive segments by the electric field applied by the electric charge of the thundercloud, and an ionized layer in which the atmosphere is ionized is formed in the vicinity of the conductive segments arranged by the discharge. A lightning current for lightning a windmill blade other than the lightning part is guided to the lightning receiving part through this ionization layer, and a lightning strike method for the windmill blade that does not cause destruction due to breakage of the blade by lightning strike or the like can be provided. In particular, thunderclouds sag low and are effective in inducing lightning currents in winter lightnings that strike from the side.

請求項2に記載の発明によれば、雷雲の電荷により印加される電界で導電セグメント間に放電を発生させ、該放電により配列した導電セグメント近傍に大気をイオン化したイオン化層を形成するから、受雷部以外の風車ブレードを雷撃する雷電流はこのイオン化層を通って受雷部に誘導され、更に避雷電線を通して地中に導かれるので、ブレード自体が折損する等の破壊を起こすことがない風力発電装置の避雷方法を提供できる。特に雷雲が低く垂れ込め、横方向から雷撃する冬季雷の雷電流の誘導に効果的である。   According to the second aspect of the present invention, the discharge is generated between the conductive segments by the electric field applied by the electric charge of the thundercloud, and the ionized layer in which the atmosphere is ionized is formed in the vicinity of the conductive segments arranged by the discharge. Lightning current that strikes windmill blades other than the lightning part is induced to the lightning receiving part through this ionization layer, and further guided to the ground through the lightning arrester, so that the blade itself will not break or break A lightning protection method for a power generation device can be provided. In particular, thunderclouds sag low and are effective in inducing lightning currents in winter lightnings that strike from the side.

請求項3に記載の発明によれば、受雷部と該受雷部から離れた所定の一個所又は複数個所との間の該ブレード表面に導電装置を配置するので、風車近傍に発生した雷雲の電荷により印加される電界により、該導電装置の導電セグメント間の間隙に放電が発生し、該放電により大気がイオン化され配列したセグメント近傍にイオン化層を形成するから、受雷部以外のブレードを雷撃した雷電流は該イオン化層を通して受雷部に誘導され、ブレードが折損する等の破壊を起こすことがない風車ブレードの誘雷装置を提供できる。特に雷雲が低く垂れ込め、横方向から雷撃する冬季雷の雷電流の誘導に効果的である。   According to the third aspect of the present invention, since the conductive device is arranged on the blade surface between the lightning receiving portion and the predetermined one or a plurality of locations apart from the lightning receiving portion, the thundercloud generated in the vicinity of the windmill Due to the electric field applied by the electric charge, a discharge is generated in the gap between the conductive segments of the conductive device, and the atmosphere is ionized by the discharge to form an ionized layer in the vicinity of the arranged segments. The lightning current struck by lightning is guided to the lightning receiving portion through the ionization layer, and a lightning device for a windmill blade that does not cause destruction such as breakage of the blade can be provided. In particular, thunderclouds sag low and are effective in inducing lightning currents in winter lightnings that strike from the side.

請求項4に記載の発明によれば、受雷部と該受雷部から離れた所定個所との間のブレード表面に導電装置を設けたので、風車近傍に発生した雷雲の電荷により印加される電界により、該導電装置の導電セグメント間の間隙に放電が発生し、該放電により導電セグメント近傍の大気がイオン化され配列したセグメント近傍にイオン化層を形成するから、受雷部以外のブレードを雷撃した雷電流は該イオン化層を通して受雷部に誘導され、ブレード自体が折損する等の破壊を起こすことがない風力発電装置の避雷装置を提供できる。特に雷雲が低く垂れ込め、横方向から雷撃する冬季雷の雷電流の誘導に効果的である。   According to the fourth aspect of the present invention, since the conductive device is provided on the blade surface between the lightning receiving portion and the predetermined portion away from the lightning receiving portion, the electric device is applied by the electric charge of the thundercloud generated in the vicinity of the windmill. The electric field generates a discharge in the gap between the conductive segments of the conductive device, and the discharge ionizes the atmosphere in the vicinity of the conductive segment to form an ionized layer in the vicinity of the arranged segments. The lightning current is induced to the lightning receiving portion through the ionized layer, and a lightning protection device for a wind power generator that does not cause destruction such as breakage of the blade itself can be provided. In particular, thunderclouds sag low and are effective in inducing lightning currents in winter lightnings that strike from the side.

請求項5に記載の発明によれば、(a)〜(d)のいずれか1つ又は2つ以上設けるので、2つ以上設けることにより、風車近傍に発生した雷雲の電荷により印加される電界により導電セグメント間の間隙に放電が発生し、該放電により導電セグメント近傍の大気がイオン化層を2つ以上を形成することになり、受雷部以外のブレードを広範囲に雷撃した雷電流をスムーズに受雷部に誘導でき、ブレードの折損防止に更に効果が期待できる風力発電装置の避雷装置を提供できる。特に雷雲が低く垂れ込め、横方向から雷撃する冬季雷の雷電流の誘導に効果的である。   According to the invention described in claim 5, since any one or two or more of (a) to (d) are provided, the electric field applied by the electric charge of the thundercloud generated in the vicinity of the windmill by providing two or more. As a result, a discharge is generated in the gap between the conductive segments, and the atmosphere in the vicinity of the conductive segments forms two or more ionized layers. It is possible to provide a lightning arrester for a wind turbine generator that can be guided to a lightning receiving portion and can be expected to be further effective in preventing blade breakage. In particular, thunderclouds sag low and are effective in inducing lightning currents in winter lightnings that strike from the side.

上記のように請求項1乃至5に記載の発明によれば、風車のブレード先端が到達する最高位置より高い避雷針やレーザビーム等の設備を用いることなく、従来の避雷設備を使用しながら、風車ブレードを雷撃する雷電流を効果的に地中に誘導できる風車ブレードの誘雷方法及び誘雷装置、風力発電装置の避雷方法及び避雷装置を提供できる。   As described above, according to the first to fifth aspects of the present invention, the wind turbine can be used while using a conventional lightning arrester without using a lightning rod or a laser beam higher than the highest position where the blade tip of the wind turbine reaches. It is possible to provide a lightning strike method and a lightning protection device for a windmill blade, a lightning arresting method and a lightning protection device for a wind turbine generator that can effectively induce a lightning current that strikes the blade into the ground.

以下、本発明の実施の形態例を図面に基づいて説明する。図2は本発明に係わる風車ブレードの誘雷装置の構成例を示す図である。図示するように、風車ブレード11の先端部には受雷部(金属製レセプターや金属導体端部)12を設けており、該受雷部12は図1に示す受雷部12と同様、該受雷部12で受けた雷電流をブレード11内部に設けた避雷導線13、ハブ14、ナセル15、タワー16、及びアース導体17を経由して地中に逃がすようになっている。図2(a)は風車ブレードの一部を示す平面図、図2(a)はその断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a configuration example of a lightning striker device for windmill blades according to the present invention. As shown in the drawing, a lightning-receiving portion (metal receptor or metal conductor end) 12 is provided at the tip of the windmill blade 11, and the lightning-receiving portion 12 is similar to the lightning-receiving portion 12 shown in FIG. Lightning current received by the lightning receiver 12 is released to the ground via a lightning conductor 13, a hub 14, a nacelle 15, a tower 16, and a ground conductor 17 provided inside the blade 11. Fig.2 (a) is a top view which shows a part of windmill blade, FIG.2 (a) is the sectional drawing.

風車ブレード11の表面には後に詳述するように、受雷部12以外の風車ブレード11の表面を雷撃した雷電流を該受雷部12に導く導電装置21〜24を設けている。これにより、受雷部12から離れた風車ブレード11の表面を雷撃した雷電流は、後に詳述するように、導電装置21〜24の表面近傍に形成された大気のイオン化層の何れかを通って、受雷部12に導かれ、受雷部12から避雷導線13を通って地中に流れる。導電装置21〜24の其々には後に詳述するように、導電性(主に金属製、ここでは母材が銅で表面をニッケルで覆ったものを用いる)のセグメント25が所定間隔で直列に配列された構成である。   As will be described in detail later, conductive devices 21 to 24 are provided on the surface of the windmill blade 11 to guide the lightning current that strikes the surface of the windmill blade 11 other than the lightning receiver 12 to the lightning receiver 12. As a result, the lightning current that strikes the surface of the windmill blade 11 away from the lightning receiver 12 passes through one of the atmospheric ionization layers formed in the vicinity of the surfaces of the conductive devices 21 to 24, as will be described in detail later. Then, it is guided to the lightning receiving part 12 and flows from the lightning receiving part 12 through the lightning conductor 13 into the ground. As will be described later in detail, each of the conductive devices 21 to 24 is made of conductive (mainly metal, here, the base material is copper and the surface is covered with nickel) segments 25 arranged in series at a predetermined interval. It is the arrangement arranged in.

導電装置21は風車ブレード11が矢印A方向に回転した場合、受雷部12が移動する円周(軌跡)上の風車ブレード11の表面にその多数のセグメント25が位置するように配置されている。また、導電装置22はその多数のセグメント25が受雷部12からブレードの先端まで風車ブレード11の表面に直線状に位置するように配置されている。また、導電装置23はその多数のセグメント25が風車ブレード11の表面上流側で且つ受雷部12から所定距離離れた位置まで配列するように配置されている。導電装置24は多数のセグメント25が風車ブレード11の表面下流側で且つ受雷部12から所定距離離れた位置まで配列するように配置されている。   When the windmill blade 11 rotates in the direction of arrow A, the conductive device 21 is arranged such that a large number of segments 25 are positioned on the surface of the windmill blade 11 on the circumference (trajectory) on which the lightning receiver 12 moves. . In addition, the conductive device 22 is arranged such that a large number of segments 25 are linearly located on the surface of the wind turbine blade 11 from the lightning receiving portion 12 to the tip of the blade. In addition, the conductive device 23 is arranged such that a large number of segments 25 are arranged on the upstream side of the surface of the wind turbine blade 11 and up to a position away from the lightning receiver 12 by a predetermined distance. The conductive device 24 is arranged such that a large number of segments 25 are arranged on the downstream side of the surface of the wind turbine blade 11 and up to a position away from the lightning receiver 12 by a predetermined distance.

図3は導電装置21の構成を示す図であり、図3(a)は導電装置21の一部平面図、図3(b)は(a)のA−A断面図、図3(c)は(a)のB−B断面図である。なお、導電装置22、23、24も同じ構成なのでその説明を省略する。導電装置21は帯状の誘電体層26に導電性のセグメント25が所定の間隙Gを設けて直列に配列され、更に該導電性のセグメント25と誘電体層26の下面を絶縁層27で覆った構成である。セグメント25は、例えば母材が銅(Cu)からなり、その表面をニッケル(Ni)で覆った構成であり、その径DはD=1mm〜10mmで、厚さLはL=0.01〜2mmとする。また、間隙GはG=0.1mm〜10mmとする。誘電体層26は、例えばエポキシ樹脂材で形成する。上記構成の導電装置21の絶縁層27を風車ブレード11の表面に接着材等で接着して装着する。導電装置22、23、24も同様にして風車ブレード11の表面に接着材等で接着して装着する。   FIG. 3 is a diagram showing the configuration of the conductive device 21, FIG. 3A is a partial plan view of the conductive device 21, FIG. 3B is a cross-sectional view taken along line AA of FIG. 3A, and FIG. FIG. 4 is a sectional view taken along line BB in FIG. Since the conductive devices 22, 23, and 24 have the same configuration, the description thereof is omitted. In the conductive device 21, conductive segments 25 are arranged in series on a strip-shaped dielectric layer 26 with a predetermined gap G, and the lower surfaces of the conductive segments 25 and the dielectric layer 26 are covered with an insulating layer 27. It is a configuration. The segment 25 has a configuration in which, for example, the base material is made of copper (Cu) and the surface thereof is covered with nickel (Ni), the diameter D is D = 1 mm to 10 mm, and the thickness L is L = 0.01 to 2 mm. The gap G is set to G = 0.1 mm to 10 mm. The dielectric layer 26 is formed of, for example, an epoxy resin material. The insulating layer 27 of the conductive device 21 having the above configuration is attached to the surface of the wind turbine blade 11 by bonding with an adhesive or the like. Similarly, the conductive devices 22, 23, and 24 are attached to the surface of the wind turbine blade 11 with an adhesive or the like.

次に、上記構成の導電装置21が受雷部12に雷電流を誘導する動作を説明する。図4は導電装置21の動作を示す図で、図4(a)に示す導電装置21を装着された風車ブレードを備えた風車の近辺に雷雲が発生し、該雷雲に発生するマイナス電荷が次第に大きくなり、該マイナス電荷により導電装置21に印加される電界が所定以上の強さになると、セグメント25とセグメント25の間隙Gに放電28が発生する。該放電28により大気がイオン化され、図4(b)に示すように、導電装置21の配列されたセグメント25の表面近傍に受雷部12まで連続したイオン化層29が形成される。この状態で風車ブレード11に雷撃30があると、その雷電流はこのイオン化層29を通って受雷部12へと誘導されるから、風車ブレード11が折損する等の損傷が発生しない。   Next, an operation in which the conductive device 21 having the above configuration induces a lightning current in the lightning receiver 12 will be described. FIG. 4 is a diagram showing the operation of the conductive device 21. Thunderclouds are generated in the vicinity of the wind turbine equipped with the wind turbine blades mounted with the conductive devices 21 shown in FIG. 4A, and the negative charge generated in the thundercloud gradually increases. When the electric field applied to the conductive device 21 becomes greater than a predetermined level due to the negative charge, a discharge 28 is generated in the gap G between the segment 25 and the segment 25. The atmosphere is ionized by the discharge 28, and as shown in FIG. 4B, an ionized layer 29 that continues to the lightning receiving portion 12 is formed near the surface of the segment 25 in which the conductive device 21 is arranged. If there is a lightning strike 30 on the windmill blade 11 in this state, the lightning current is guided to the lightning receiving portion 12 through the ionization layer 29, so that damage such as breakage of the windmill blade 11 does not occur.

導電装置21は図2に示すように、そのセグメント25の配列が受雷部12が風車ブレード11の回転による移動する円周(軌跡)上に位置するように配置することにより、雷雲のマイナス電荷により所定以上の強さの電界が導電装置21に印加されると、円周上に配列されたセグメント25間の間隙Gに放電が発生し、該放電により近傍の大気がイオン化され、該円周上に配列されたセグメント25の表面近傍に受雷部12まで続く連続したイオン化層が形成される。この状態で受雷部12以外の風車ブレード11に雷撃があった場合、その雷電流はこのイオン化層を通って受雷部12に誘導されることになる。また、導電装置21は風車ブレード11の表面に接着材等で接着して装着するので、導電装置21が表面から突起した状態になるが、セグメント25が受雷部12が移動する円周上に配置されているので、導電装置21の風力抵抗が最小となり、騒音等も小さくなる。   As shown in FIG. 2, the conductive device 21 is arranged such that the arrangement of the segments 25 is positioned on the circumference (trajectory) in which the lightning receiving portion 12 is moved by the rotation of the windmill blade 11, so that the minus charge of the thundercloud is obtained. When an electric field having a predetermined strength or more is applied to the conductive device 21 by the above, a discharge is generated in the gap G between the segments 25 arranged on the circumference, and the nearby atmosphere is ionized by the discharge. A continuous ionization layer extending to the lightning receiving portion 12 is formed in the vicinity of the surface of the segment 25 arranged above. In this state, if there is a lightning strike on the windmill blade 11 other than the lightning receiving portion 12, the lightning current is induced to the lightning receiving portion 12 through this ionization layer. Further, since the conductive device 21 is attached to the surface of the windmill blade 11 with an adhesive or the like, the conductive device 21 protrudes from the surface, but the segment 25 is on the circumference where the lightning striker 12 moves. Since they are arranged, the wind resistance of the conductive device 21 is minimized, and noise and the like are reduced.

導電装置22は図2に示すように、その多数のセグメント25が風車ブレード11の表面に受雷部12から風車ブレード11の先端まで直線状に配置している。これにより風車ブレード11の長さが比較的長い風車ブレード11に好適となる。つまり、長さが短い風車ブレードでは、受雷部12と風車ブレード先端との間隔が狭く、雷撃をカバーする範囲が狭いため、あまり効果がない。この場合も雷雲のマイナス電荷により導電装置21に印加される電界の強さが所定以上なると、配列されたセグメント25間の間隙Gに放電が発生し、該放電により近傍の大気がイオン化され、セグメント25の表面近傍に風車ブレード11の先端から受雷部12まで続く連続したイオン化層が形成される。この状態で受雷部12以外の風車ブレード11に雷撃があった場合、その雷電流はこのイオン化層を通って受雷部12に誘導されることになる。   As shown in FIG. 2, the conductive device 22 has a large number of segments 25 arranged linearly on the surface of the windmill blade 11 from the lightning receiving portion 12 to the tip of the windmill blade 11. Thereby, it becomes suitable for the windmill blade 11 whose length of the windmill blade 11 is comparatively long. That is, a windmill blade having a short length is not very effective because the distance between the lightning receiving portion 12 and the tip of the windmill blade is narrow and the range of lightning strike is narrow. Also in this case, when the intensity of the electric field applied to the conductive device 21 is more than a predetermined value due to the negative charge of the thundercloud, a discharge is generated in the gap G between the arranged segments 25, and the nearby atmosphere is ionized by the discharge, and the segment A continuous ionization layer is formed in the vicinity of the surface of 25 from the tip of the windmill blade 11 to the lightning receiving portion 12. In this state, if there is a lightning strike on the windmill blade 11 other than the lightning receiving portion 12, the lightning current is induced to the lightning receiving portion 12 through this ionization layer.

導電装置23は図2に示すように、その多数のセグメント25が受雷部12から上流側で且つ風車ブレード11の長手方向に沿って受雷部12から所定距離離れた位置(1〜4m離れた位置)まで配列している。このようにすることにより、風車ブレード11の長手方向に配列した、セグメント25の表面近傍に受雷部12まで続く連続したイオン化層が形成されるから、風車ブレード11の比較的広い範囲の雷撃に対処できる。但し、風車ブレード11の上流側はその表面を流れる大気の流速が高く、騒音発生及び空気抵抗による損失が大きくなる。また、高い流速により空気抵抗が大きいことから、導電装置23が風車ブレード11から外れ易いという問題もある。   As shown in FIG. 2, the conductive device 23 has a large number of segments 25 on the upstream side of the lightning receiving portion 12 and at a predetermined distance from the lightning receiving portion 12 along the longitudinal direction of the windmill blade 11 (1 to 4 m away). To the position). By doing so, a continuous ionization layer extending to the lightning receiving portion 12 is formed in the vicinity of the surface of the segment 25 arranged in the longitudinal direction of the windmill blade 11. I can deal with it. However, the upstream side of the wind turbine blade 11 has a high flow velocity of the air flowing on the surface thereof, and loss due to noise generation and air resistance increases. Further, since the air resistance is large due to the high flow velocity, there is a problem that the conductive device 23 is easily detached from the windmill blade 11.

導電装置24は図2に示すように、その多数のセグメント25が受雷部12から下流側で且つ風車ブレード11の長手方向に沿って受雷部12から所定距離離れた位置(1〜4m離れた位置)まで配列する。このようにすることにより、風車ブレード11の長手方向に配列した、セグメント25の表面近傍に受雷部12まで続く連続したイオン化層が形成されるから、風車ブレード11の比較的広い範囲の雷撃に対処できる。ここでは、風車ブレード11の下流側はその表面を流れる大気の流速が低く、騒音及び空気抵抗による損失は小さい。   As shown in FIG. 2, the conductive device 24 has a large number of segments 25 on the downstream side of the lightning striker 12 and at a predetermined distance from the lightning striker 12 along the longitudinal direction of the windmill blade 11 (1 to 4 m apart). Array). By doing so, a continuous ionization layer extending to the lightning receiving portion 12 is formed in the vicinity of the surface of the segment 25 arranged in the longitudinal direction of the windmill blade 11. I can deal with it. Here, on the downstream side of the wind turbine blade 11, the flow velocity of the air flowing on the surface thereof is low, and the loss due to noise and air resistance is small.

上記のように導電装置21〜24の風車ブレード11上への配置は異なるが、このうち1つ又は2つ以上を配置することにより、各風車ブレード11の寸法等に適した誘雷方法及び誘雷装置を構築できる。また、図2(b)に示す各導電装置の受雷部12に隣接するセグメント25と受雷部12に間隙HはH≒5mm以下とするのが好適である。なお、導電装置の配置例も上記導電装置21〜24に限定されるものではない。   As described above, the arrangement of the conductive devices 21 to 24 on the wind turbine blades 11 is different. However, by arranging one or more of them, the lightning strike method and induction suitable for the dimensions of each wind turbine blade 11 and the like. A lightning device can be constructed. Also, it is preferable that the gap H between the lightning receiving portion 12 and the segment 25 adjacent to the lightning receiving portion 12 of each conductive device shown in FIG. In addition, the example of arrangement | positioning of an electroconductive apparatus is not limited to the said electroconductive apparatuses 21-24.

風車ブレード11の本体はガラス繊維強化プラスチック(GFRP)で形成されており、上記例ではこのGFRP製風車ブレード11の表面に導電性のセグメント25を配列した導電装置21〜24を接着剤等で接着して、装着する例を示したが、GFRP製風車ブレード11の表面に多数の導電性セグメント25をその間に誘電体を介在させて配置してもよい。このようにしても雷雲のマイナス電荷により風車ブレード11に印加される電界の強さが所定以上になるとセグメント25間の間隙に放電が発生し、配列されたセグメント25の表面に連続したイオン化層が形成されるから、受雷部12以外の風車ブレードを雷撃する雷電流を該受雷部に誘導する。   The main body of the windmill blade 11 is formed of glass fiber reinforced plastic (GFRP). In the above example, the conductive devices 21 to 24 having the conductive segments 25 arranged on the surface of the GFRP windmill blade 11 are bonded with an adhesive or the like. Although an example of mounting is shown, a large number of conductive segments 25 may be disposed on the surface of the GFRP wind turbine blade 11 with a dielectric interposed therebetween. Even in this case, when the strength of the electric field applied to the wind turbine blade 11 exceeds a predetermined level due to the negative charge of the thundercloud, a discharge is generated in the gap between the segments 25, and a continuous ionized layer is formed on the surface of the arranged segments 25. Therefore, a lightning current that strikes a windmill blade other than the lightning receiving portion 12 is induced to the lightning receiving portion.

導電装置のセグメント25の形状は、図3に示すように円形に限定されるものではなく、例えば図5に示すように、長い円形(長辺3〜10mm程度×0.1〜5mm程度の楕円)でもよく、十字形など他の形状でもよい、要は雷雲の電荷による電界により、セグメント25間に放電が発生し、該放電により大気がイオン化され配列したセグメント25の表面に連続したイオン化層が形成される構成であれば、どのような形状でもよい。   The shape of the segment 25 of the conductive device is not limited to a circle as shown in FIG. 3, and for example, as shown in FIG. 5, a long circle (long side 3-10 mm × 0.1-5 mm ellipse) ) Or other shapes such as a cross shape. In short, a discharge is generated between the segments 25 due to the electric field caused by thundercloud charges, and the atmosphere is ionized by the discharge, and a continuous ionized layer is formed on the surface of the segments 25 arranged. Any shape may be used as long as it is formed.

なお、セグメント25の大きさ寸法、セグメント25間の間隙寸法等に関する上記記載は一例であり、雷雲の電荷により導電装置に印加される電界の所定の強さになった場合に放電が発生するのに好適な大きさであればよい。   In addition, the above description regarding the size of the segment 25, the gap between the segments 25, etc. is an example, and discharge occurs when the electric field applied to the conductive device becomes a predetermined strength due to thundercloud charges. Any suitable size may be used.

また、上記実施例は、風力発電設備の風車を例に説明したが、誘雷方法及び誘雷装置は風力発電設備の風車に限定されるものではない。   Moreover, although the said Example demonstrated the windmill of the wind power generation equipment as an example, the lightning strike method and the lightning strike device are not limited to the windmill of a wind power generation equipment.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.

風力発電装置とその避雷装置の構成例を示す図で、図1(a)装置全体を示す図、図1(b)は風車の一部を示す正面図である。It is a figure which shows the structural example of a wind power generator and its lightning arrester, FIG. 1 (a) is a figure which shows the whole apparatus, FIG.1 (b) is a front view which shows a part of windmill. 本発明に係る風車ブレードの誘雷装置の構成例を示す図で、図2(a)は風車ブレードの先端部を示す平面図、図2(b)はその断面図である。It is a figure which shows the structural example of the lightning striker apparatus of the windmill blade which concerns on this invention, FIG. 2 (a) is a top view which shows the front-end | tip part of a windmill blade, FIG.2 (b) is the sectional drawing. 本発明に係る風車ブレードの誘雷装置の導電装置の構成を示す図で、図3(a)は導電装置21の一部平面図、図3(b)は(a)のA−A断面図、図3(c)は(a)のB−B断面図である。It is a figure which shows the structure of the electrically conductive apparatus of the lightning arrester of the windmill blade which concerns on this invention, FIG.3 (a) is a partial top view of the electrically conductive apparatus 21, FIG.3 (b) is AA sectional drawing of (a). FIG. 3C is a cross-sectional view taken along the line BB in FIG. 本発明に係る風車ブレードの誘雷装置の導電装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the electrically-conductive apparatus of the lightning striker apparatus of the windmill blade which concerns on this invention. 本発明に係る風車ブレードの誘雷装置の導電装置の構成を示す図で、図5(a)は導電装置21の一部平面図、図5(b)は(a)のA−A断面図である。It is a figure which shows the structure of the electrically conductive apparatus of the lightning arrester of the windmill blade which concerns on this invention, FIG.5 (a) is a partial top view of the electrically conductive apparatus 21, FIG.5 (b) is AA sectional drawing of (a). It is.

符号の説明Explanation of symbols

10 風車
11 風車ブレード
12 受雷部
13 避雷導線
14 ハブ
15 ナセル
16 タワー
17 アース導体
18 避雷針
21 導電装置
22 導電装置
23 導電装置
24 導電装置
25 セグメント
26 誘電体層
27 絶縁層
28 放電
29 イオン化層
DESCRIPTION OF SYMBOLS 10 Windmill 11 Windmill blade 12 Light-receiving part 13 Lightning conductor 14 Hub 15 Nacelle 16 Tower 17 Ground conductor 18 Lightning rod 21 Conductive device 22 Conductive device 23 Conductive device 24 Conductive device 25 Segment 26 Dielectric layer 27 Insulating layer 28 Discharge 29 Ionization layer

Claims (5)

風車のブレードの所定位置に導電材からなる受雷部を設け、該ブレードを雷撃した雷電流を前記受雷部に誘導する風車ブレードの誘雷方法であって、
前記受雷部と該受雷部から離れた所定の一個所又は複数個所との間の該ブレード表面に複数の導電材からなる導電セグメントを所定の間隔で且つ間に誘電体層を介在させて配列設置し、雷雲の電荷により印加される電界により前記導電セグメント間に放電を発生させ、該放電により前記配列した導電セグメント近傍に発生した大気のイオン化層を通して前記風車ブレードを雷撃する雷電流を前記受雷部に誘導することを特徴とする風車ブレードの誘雷方法。
A lightning strike method for a windmill blade that provides a lightning receiving portion made of a conductive material at a predetermined position of a blade of the windmill, and induces a lightning current that strikes the blade to the lightning receiving portion,
Conductive segments made of a plurality of conductive materials are disposed at predetermined intervals and between the dielectric layers on the blade surface between the lightning receiving portion and a predetermined one or a plurality of locations apart from the lightning receiving portion. A lightning current that strikes the windmill blades through an ionization layer of the atmosphere generated near the arrayed conductive segments by the discharge is generated by the electric field applied by the electric charges of thunderclouds. A method of attracting lightning of a windmill blade, characterized by being guided to a lightning receiver.
風車、及び該風車で駆動する発電機を備え、該風車のブレードの所定位置に導電材からなる受雷部を設け、該受雷部で雷撃した雷電流を受け避雷電線を通して地中に導くようにした風力発電装置の避雷方法において、
前記受雷部と該受雷部から離れた所定の一個所又は複数個所との間の該ブレード表面に複数の導電材からなる導電セグメントを所定の間隔で且つ間に誘電体層を介在させて配列設置し、雷雲の電荷により印加される電界により前記導電セグメント間に放電を発生させ、該放電により前記配列した導電セグメント近傍に発生した大気のイオン化層を通して前記風車ブレードを雷撃する雷電流を前記受雷部に誘導することを特徴とする風力発電装置の避雷方法。
A windmill and a generator driven by the windmill are provided, a lightning receiving portion made of a conductive material is provided at a predetermined position of the blade of the windmill, and a lightning current struck by the lightning receiving portion is received and led to the ground through a lightning arrester. In the lightning protection method of the wind power generator
Conductive segments made of a plurality of conductive materials are disposed at predetermined intervals and between the dielectric layers on the blade surface between the lightning receiving portion and a predetermined one or a plurality of locations apart from the lightning receiving portion. A lightning current that strikes the windmill blades through an ionization layer of the atmosphere generated near the arrayed conductive segments by the discharge is generated by the electric field applied by the electric charges of thunderclouds. A lightning arresting method for a wind turbine generator, characterized by being guided to a lightning receiver.
風車のブレードの所定位置に導電材からなる受雷部を設け、該ブレードに雷撃した雷電流を前記受雷部に誘導する風車ブレードの誘雷装置であって、
前記受雷部と該受雷部から離れた所定の一個所又は複数個所との間の該ブレード表面に複数の導電材からなる導電セグメントを所定の間隔で且つ間に誘電体層を介在させて配列設置した構成の導電装置を設けたことを特徴とする風車ブレードの誘雷装置。
A lightning strike device for a windmill blade that provides a lightning receiving portion made of a conductive material at a predetermined position of the blade of the windmill, and guides a lightning current struck to the blade to the lightning receiving portion,
Conductive segments made of a plurality of conductive materials are disposed at predetermined intervals and between the dielectric layers on the blade surface between the lightning receiving portion and a predetermined one or a plurality of locations apart from the lightning receiving portion. A lightning strike device for a windmill blade, characterized in that a conductive device having a configuration in which it is arranged is provided.
風車、及び該風車で駆動する発電機を備え、風車のブレードの所定位置に導電材からなる受雷部を設け、該受雷部で受けた雷電流を避雷電線を通して地中に導く風力発電装置の避雷装置において、
前記受雷部と該受雷部から離れた所定個所との間の前記ブレード表面に複数の導電材からなる導電セグメントを所定の間隔で且つ間に誘電体層を介在させて配列設置した構成の導電装置を設けたことを特徴とする風力発電装置の避雷装置。
A wind turbine generator including a windmill and a generator driven by the windmill, provided with a lightning receiving portion made of a conductive material at a predetermined position of a blade of the windmill, and guiding a lightning current received at the lightning receiving portion to the ground through a lightning arrester In the lightning arrester of
A configuration in which conductive segments made of a plurality of conductive materials are arranged at predetermined intervals with a dielectric layer interposed between the blade surface between the lightning receiving portion and a predetermined location away from the lightning receiving portion. A lightning arrester for a wind turbine generator comprising a conductive device.
請求項4に記載の風力発電装置の避雷装置において、
前記導電装置は下記(a)〜(d)のいずれか1つ又は2つ以上を設けたことを特徴とする風力発電装置の避雷装置。
(a)前記導電セグメントが前記ブレード表面の前記受雷部が該ブレードの回転により移動する円周上に配列されている導電装置
(b)前記導電セグメントが前記ブレード表面の前記受雷部から該ブレード先端まで配列されている導電装置
(c)前記導電セグメントが前記ブレード表面の上流側で且つ前記受雷部から所定距離離れた位置まで配列されている導電装置
(d)前記導電セグメントが前記ブレード表面の下流側で且つ前記受雷部から所定距離離れた位置まで配列されている導電装置
In the lightning arrester of the wind power generator according to claim 4,
A lightning arrester for a wind power generator, wherein the conductive device is provided with any one or more of the following (a) to (d).
(A) The conductive device is arranged on a circumference in which the lightning receiving portion on the blade surface moves by rotation of the blade. (B) The conductive segment is moved from the lightning receiving portion on the blade surface. Conductive device arranged to the blade tip (c) Conductive device in which the conductive segment is arranged on the upstream side of the blade surface and at a predetermined distance from the lightning receiving portion (d) The conductive segment is the blade Conductive device arranged on the downstream side of the surface and at a position away from the lightning receiving portion by a predetermined distance
JP2005294071A 2005-10-06 2005-10-06 Windmill blade lightning protection method and lightning protection device, wind power generation device lightning protection method and lightning protection device Expired - Fee Related JP4695482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294071A JP4695482B2 (en) 2005-10-06 2005-10-06 Windmill blade lightning protection method and lightning protection device, wind power generation device lightning protection method and lightning protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294071A JP4695482B2 (en) 2005-10-06 2005-10-06 Windmill blade lightning protection method and lightning protection device, wind power generation device lightning protection method and lightning protection device

Publications (2)

Publication Number Publication Date
JP2007100658A true JP2007100658A (en) 2007-04-19
JP4695482B2 JP4695482B2 (en) 2011-06-08

Family

ID=38027840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294071A Expired - Fee Related JP4695482B2 (en) 2005-10-06 2005-10-06 Windmill blade lightning protection method and lightning protection device, wind power generation device lightning protection method and lightning protection device

Country Status (1)

Country Link
JP (1) JP4695482B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019204A1 (en) 2007-07-24 2009-01-28 General Electric Company Wind turbine protection
JP2011116147A (en) * 2009-11-30 2011-06-16 Nabtesco Corp Reaction link
WO2011077970A1 (en) * 2009-12-24 2011-06-30 三菱重工業株式会社 Wind wheel blade and wind-driven electricity generation device with same
WO2011096500A1 (en) 2010-02-04 2011-08-11 株式会社日本製鋼所 Lightning protection structure for blade for wind power generation
KR101143515B1 (en) * 2010-06-30 2012-05-09 한국전력공사 Lightning Protection System
JP2012117447A (en) * 2010-11-30 2012-06-21 Mitsubishi Heavy Ind Ltd Lightning arrester device for wind turbine rotor blades and wind turbine generator equipped with same
JP2012149569A (en) * 2011-01-19 2012-08-09 Institute Of National Colleges Of Technology Japan Lightning protection method and device for windmill
KR101215507B1 (en) 2010-10-15 2012-12-26 삼성중공업 주식회사 Lightning Protection System for Wind Turbine
WO2013097855A3 (en) * 2011-12-29 2013-11-07 Vestas Wind Systems A/S A wind turbine blade and method of manufacturing a wind turbine blade
US8632306B2 (en) * 2008-07-02 2014-01-21 Siemens Aktiengesellschaft Wind turbine blade with lightning receptor and method for protecting the surface of a wind turbine blade
US9022740B2 (en) 2012-01-26 2015-05-05 Mitsubishi Heavy Industries, Ltd. Wind turbine rotor blade lightning discharger and wind turbine generator equipped with the same
JP2015535053A (en) * 2012-11-15 2015-12-07 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Rotor blade tip
JP2015222016A (en) * 2014-05-22 2015-12-10 三菱重工業株式会社 Wind power generator
CN107288829A (en) * 2017-08-05 2017-10-24 中国科学院工程热物理研究所 A kind of pneumatic equipment bladess lightning receptor design method
US20200291926A1 (en) * 2019-03-14 2020-09-17 Siemens Gamesa Renewable Energy A/S Method for providing a wind turbine blade with lightning protection and a wind turbine blade
JP2021107698A (en) * 2019-12-27 2021-07-29 島根県 Lightning resistance device for wind turbine, and guide part thereof
JP7061327B1 (en) 2021-03-19 2022-04-28 国立大学法人東海国立大学機構 Wind power generation equipment and its rotary blades and control method for wind power generation equipment
JP7449185B2 (en) 2020-07-13 2024-03-13 東芝エネルギーシステムズ株式会社 Lightning arrester for wind turbine blades and wind power generation equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227757A (en) * 2001-02-02 2002-08-14 Chuo Bourai Kk Lightning arrester equipment for gfrp type wind turbine
JP2003532836A (en) * 2000-05-06 2003-11-05 アロイス・ヴォベン Wind power equipment
JP2004515712A (en) * 2000-12-13 2004-05-27 エルエム・グラスファイバー・アクティーゼルスカブ Wind turbine rotor with combination lightning arrester and drain passage, and lightning arrester with drain passage
JP2005113735A (en) * 2003-10-06 2005-04-28 Jfe Engineering Kk Wind-power equipment
JP2005171916A (en) * 2003-12-12 2005-06-30 Kansai Electric Power Co Inc:The Windmill blade
JP2005220805A (en) * 2004-02-05 2005-08-18 Fuji Heavy Ind Ltd Split type blade for windmill and lightning arrester for windmill
JP2007077889A (en) * 2005-09-14 2007-03-29 Kajima Corp Wind power generation device and wind power generation facility

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532836A (en) * 2000-05-06 2003-11-05 アロイス・ヴォベン Wind power equipment
JP2004515712A (en) * 2000-12-13 2004-05-27 エルエム・グラスファイバー・アクティーゼルスカブ Wind turbine rotor with combination lightning arrester and drain passage, and lightning arrester with drain passage
JP2002227757A (en) * 2001-02-02 2002-08-14 Chuo Bourai Kk Lightning arrester equipment for gfrp type wind turbine
JP2005113735A (en) * 2003-10-06 2005-04-28 Jfe Engineering Kk Wind-power equipment
JP2005171916A (en) * 2003-12-12 2005-06-30 Kansai Electric Power Co Inc:The Windmill blade
JP2005220805A (en) * 2004-02-05 2005-08-18 Fuji Heavy Ind Ltd Split type blade for windmill and lightning arrester for windmill
JP2007077889A (en) * 2005-09-14 2007-03-29 Kajima Corp Wind power generation device and wind power generation facility

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019204A1 (en) 2007-07-24 2009-01-28 General Electric Company Wind turbine protection
US8632306B2 (en) * 2008-07-02 2014-01-21 Siemens Aktiengesellschaft Wind turbine blade with lightning receptor and method for protecting the surface of a wind turbine blade
JP2011116147A (en) * 2009-11-30 2011-06-16 Nabtesco Corp Reaction link
WO2011077970A1 (en) * 2009-12-24 2011-06-30 三菱重工業株式会社 Wind wheel blade and wind-driven electricity generation device with same
US8517681B2 (en) 2009-12-24 2013-08-27 Mitsubishi Heavy Industries, Ltd. Wind turbine blade and wind turbine generator having the same
JP5308538B2 (en) * 2009-12-24 2013-10-09 三菱重工業株式会社 Wind turbine blade and wind power generator equipped with the same
WO2011096500A1 (en) 2010-02-04 2011-08-11 株式会社日本製鋼所 Lightning protection structure for blade for wind power generation
KR20120139729A (en) 2010-02-04 2012-12-27 더 재팬 스틸 워크스 엘티디 Lightning protection structure for blade for wind power generation
US9169826B2 (en) 2010-02-04 2015-10-27 The Japan Steel Works Ltd. Lightning protection structure of blade for wind power generation
KR101143515B1 (en) * 2010-06-30 2012-05-09 한국전력공사 Lightning Protection System
KR101215507B1 (en) 2010-10-15 2012-12-26 삼성중공업 주식회사 Lightning Protection System for Wind Turbine
JP2012117447A (en) * 2010-11-30 2012-06-21 Mitsubishi Heavy Ind Ltd Lightning arrester device for wind turbine rotor blades and wind turbine generator equipped with same
JP2012149569A (en) * 2011-01-19 2012-08-09 Institute Of National Colleges Of Technology Japan Lightning protection method and device for windmill
US10156226B2 (en) 2011-12-29 2018-12-18 Vestas Wind Systems A/S Wind turbine blade and method of manufacturing a wind turbine blade
WO2013097855A3 (en) * 2011-12-29 2013-11-07 Vestas Wind Systems A/S A wind turbine blade and method of manufacturing a wind turbine blade
EP2944809A1 (en) * 2011-12-29 2015-11-18 Vestas Wind Systems A/S A wind turbine blade and method of manufacturing a wind turbine blade
US9022740B2 (en) 2012-01-26 2015-05-05 Mitsubishi Heavy Industries, Ltd. Wind turbine rotor blade lightning discharger and wind turbine generator equipped with the same
JP2015535053A (en) * 2012-11-15 2015-12-07 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Rotor blade tip
JP2015222016A (en) * 2014-05-22 2015-12-10 三菱重工業株式会社 Wind power generator
CN107288829A (en) * 2017-08-05 2017-10-24 中国科学院工程热物理研究所 A kind of pneumatic equipment bladess lightning receptor design method
US20200291926A1 (en) * 2019-03-14 2020-09-17 Siemens Gamesa Renewable Energy A/S Method for providing a wind turbine blade with lightning protection and a wind turbine blade
US11867155B2 (en) * 2019-03-14 2024-01-09 Siemens Gamesa Renewable Energy A/S Method for providing a wind turbine blade with lightning protection and a wind turbine blade
JP2021107698A (en) * 2019-12-27 2021-07-29 島根県 Lightning resistance device for wind turbine, and guide part thereof
JP7391304B2 (en) 2019-12-27 2023-12-05 島根県 Wind turbine lightning protection device
JP7449185B2 (en) 2020-07-13 2024-03-13 東芝エネルギーシステムズ株式会社 Lightning arrester for wind turbine blades and wind power generation equipment
JP7061327B1 (en) 2021-03-19 2022-04-28 国立大学法人東海国立大学機構 Wind power generation equipment and its rotary blades and control method for wind power generation equipment
JP2022145396A (en) * 2021-03-19 2022-10-04 国立大学法人東海国立大学機構 Wind power generation device, rotary blade thereof, and control method for wind power generation device

Also Published As

Publication number Publication date
JP4695482B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4695482B2 (en) Windmill blade lightning protection method and lightning protection device, wind power generation device lightning protection method and lightning protection device
ES2743101T3 (en) Lightning protection system for wind turbines
WO2013084361A1 (en) Wind turbine blade
EP2545277B1 (en) Wind turbine blade with lightning protection system
US20090246025A1 (en) Wind turbine protection
CN102691630B (en) A wind turbine blade
EP2633186A1 (en) A wind turbine lightning protection system and wind turbine blade
JP5246506B2 (en) Wind power generator rotor blade lightning damage prevention structure
WO2013041742A1 (en) Lightning conductor deionising electrostatic charge, for protecting blades of wind generators
JP2013506792A5 (en)
JP2013506792A (en) Wind generator protection system against atmospheric discharge
JP2019138261A (en) Lightning protection performance inspection method of wind power generating set
JP7440840B2 (en) wind power generation equipment
JP4595086B2 (en) Wind turbine generator having a lightning protection system for windmill blades
WO2019214280A1 (en) Anti-lightning array and passive plasma lightning protection system complementary to aerodynamics of wind turbine blade
CN108223305B (en) Electrode lightning receiving device for wind turbine generator blade
JP2013092072A (en) Wind power generating device with lightning protection system
JP2004342518A (en) Method and device for lightning conduction, lightning protection method in wind power generator, and wind power generator
JP5789826B2 (en) Windmill lightning protection method and apparatus
JP2007077889A (en) Wind power generation device and wind power generation facility
JP2007046575A (en) Blade structure and wind power generator
JP6443996B2 (en) Wind turbine blade
JP4931142B2 (en) Wind power generator
CN105604810A (en) Guiding a lightning to a lightning receptor
JP2007100571A (en) Thunderbolt protective device of wind power generator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees