JP2007077889A - Wind power generation device and wind power generation facility - Google Patents

Wind power generation device and wind power generation facility Download PDF

Info

Publication number
JP2007077889A
JP2007077889A JP2005267386A JP2005267386A JP2007077889A JP 2007077889 A JP2007077889 A JP 2007077889A JP 2005267386 A JP2005267386 A JP 2005267386A JP 2005267386 A JP2005267386 A JP 2005267386A JP 2007077889 A JP2007077889 A JP 2007077889A
Authority
JP
Japan
Prior art keywords
wind power
power generation
shaft
lightning
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005267386A
Other languages
Japanese (ja)
Other versions
JP4598636B2 (en
Inventor
Takamasa Ichikawa
孝誠 市川
Takao Fukuda
隆男 福田
Hiroyuki Takema
宏幸 武馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005267386A priority Critical patent/JP4598636B2/en
Publication of JP2007077889A publication Critical patent/JP2007077889A/en
Application granted granted Critical
Publication of JP4598636B2 publication Critical patent/JP4598636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind power generation device capable of improving lightning resistance by surely transmitting lightning current to a discharge channel from a blade to the ground, and a wind power generation facility provided with the wind power generation device. <P>SOLUTION: In the wind power generation facility 1, a first knit base conductor 27 is arranged to cover roughly upper half of a shaft 21 under a contact condition in electrical connection of a shaft 21 and a frame 13 of the wind power generation, with considering that lightning current is high frequency current reaching several KHz and that such high frequency current has high surface effect. Consequently, contact area of a surface of the shaft 21 and a first knit base conductor 27 is sufficiently secured, and impedance against lightning current having surface effect can be greatly reduced. Consequently, lightning current transmitting to the shaft 21 from the blade 9 surely passes through the frame 13 and lightning resistance can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、風力発電装置及びこの風力発電装置を用いた風力発電設備に関する。   The present invention relates to a wind power generator and a wind power generation facility using the wind power generator.

近年、自然エネルギーを有効利用する機運が高まっており、風力によって発電を行う風力発電装置の開発が積極的に進められている。このような風力発電装置は、風力を受けて回転するブレード(回転翼)、ブレードの回転を伝達するシャフト、シャフトの回転を利用して発電する発電機、及び発電機を収容してなるナセル等を備えて構成されている。そして、風力発電装置は、強い風力をブレードで定常的に受けられるようにするため、沿岸部や山上部に立設されたタワー構造物の頂部に設置される。   In recent years, the momentum for effectively using natural energy has increased, and the development of wind power generators that generate power using wind power has been actively promoted. Such a wind power generator includes a blade (rotary blade) that rotates by receiving wind force, a shaft that transmits the rotation of the blade, a generator that generates power using the rotation of the shaft, a nacelle that houses the generator, and the like. It is configured with. And a wind power generator is installed in the top part of the tower structure standingly installed in the coastal part or the mountain top in order to receive strong wind force with a braid | blade regularly.

一方、風力発電装置が設置される沿岸部や山上部は、風力を得やすい反面、雷が頻繁に発生する場所でもあり、落雷が発生する可能性の高い場所である。また、このような場所で発生する雷は大きなエネルギーを有していることが多く、風力発電装置に大きなエネルギーを持つ雷が落雷すると、ブレードや発電機などの主要な機器が損傷するおそれがある。そのため、風力発電装置においては、発電機などの主要な機器を落雷による損傷から保護するための落雷対策が重要な課題となっている。   On the other hand, coastal areas and mountain tops where wind power generators are installed are easy to obtain wind power, but are also places where lightning frequently occurs, and places where lightning strikes are likely to occur. In addition, lightning generated in such places often has a large amount of energy, and if lightning with a large amount of lightning strikes a wind turbine generator, there is a risk of damage to major equipment such as blades and generators. . For this reason, in wind turbine generators, lightning strike countermeasures for protecting major equipment such as generators from damage due to lightning strikes are an important issue.

そこで、落雷対策を施した風力発電装置として、例えば特許文献1には、シャフトとナセルとを導電性のコロを介して接続した風力発電機用の軸受が開示されている。この従来の風力発電機用の軸受における構成では、シャフトとナセルとが電気的に接続されることにより、落雷によって発生した電流(雷電流)をブレードから地面まで放電させるための経路が形成され、風力発電装置の耐雷性能の確保が図られている。
特開2005−151749号公報
Therefore, as a wind power generation apparatus that has taken measures against lightning strike, for example, Patent Document 1 discloses a bearing for a wind power generator in which a shaft and a nacelle are connected via a conductive roller. In the configuration of this conventional bearing for a wind power generator, the shaft and the nacelle are electrically connected to form a path for discharging the current (thunder current) generated by the lightning strike from the blade to the ground, Ensuring lightning resistance performance of wind power generators.
JP 2005-151749 A

ところで、落雷によって発生した雷電流は、数MHzに達する高周波電流であり、表皮効果により導体の表面のみを流れる特性を持つため、上述した従来の風力発電装置のように、シャフトとナセルとをコロ等で接続した場合、シャフトとコロとの接触面積が小さいため、シャフトからナセルに至る部分の放電経路のインピータンスを十分に低下させることが困難であった。そのため、日本海側の冬季雷のように、大きなエネルギーを持つ雷がブレードに落雷した場合、雷電流を素早く地中に流すことができず、これらの機器が損傷してしまうおそれがあった。   By the way, the lightning current generated by the lightning strike is a high-frequency current reaching several MHz, and has a characteristic of flowing only on the surface of the conductor due to the skin effect, so that the shaft and the nacelle are collided like the conventional wind power generator described above. In the case of connecting with the like, since the contact area between the shaft and the roller is small, it is difficult to sufficiently reduce the impedance of the discharge path from the shaft to the nacelle. For this reason, when a lightning with a large energy strikes the blade, such as a winter thunder on the Sea of Japan side, the lightning current could not flow quickly into the ground, possibly damaging these devices.

本発明は上記課題の解決のためになされたものであり、ブレードから地中に至る放電経路に雷電流を確実に伝達することにより、耐雷性能を向上させることができる風力発電装置、及びこの風力発電装置を備えた風力発電設備を提供することを目的とする。   The present invention has been made to solve the above-described problems. A wind power generator capable of improving lightning resistance performance by reliably transmitting a lightning current to a discharge path from a blade to the ground, and the wind power generator. It aims at providing the wind power generation equipment provided with the electric power generating apparatus.

上記課題の解決のため、本発明に係る風力発電装置は、風力を受けて回転するブレードと、導電性の外郭体の内部に発電機が収容されたナセルと、ブレードと発電機との間に接続され、ブレードの回転力を発電機に伝達するシャフトと、接触した状態でシャフトを覆い、シャフトと外郭体とを電気的に接続する第1の編素導体とを備えることを特徴としている。   In order to solve the above problems, a wind turbine generator according to the present invention includes a blade that rotates by receiving wind force, a nacelle in which a generator is accommodated in a conductive outer body, and a blade and the generator. A shaft that is connected and transmits the rotational force of the blade to the generator, and a first braided conductor that covers the shaft in contact with the shaft and electrically connects the shaft and the outer body are provided.

この風力発電装置では、第1の編素導体によってシャフトとナセルの外郭体とが電気的に接続されている。この編素導体は、細い導線をメッシュ状に編み込むことによって形成されており、可撓性の高い部材である。そして、この風力発電装置では、雷電流が高い表皮効果を有していることに着目し、接触した状態でシャフトを覆うように第1の編素導体を配置している。このように、可撓性の高い第1の編素導体でシャフトを覆うようにした結果、シャフトの表面と第1の編素導体との接触面積が十分に確保され、表皮効果を持つ雷電流に対するインピータンスを十分に低下させることができる。したがって、ブレードに落雷があった場合に、ブレードからシャフトに伝わる雷電流をナセルの外郭体を通じて確実に地中に流すことができ、発電機などの主要な機器への雷電流の伝達を抑止できる。これにより、風力発電装置の耐雷性能を向上させることができる。   In this wind power generator, the shaft and the outer shell of the nacelle are electrically connected by the first braided conductor. This braided conductor is formed by weaving thin conductive wires into a mesh shape, and is a highly flexible member. And in this wind power generator, paying attention to having a skin effect with high lightning current, the 1st braid conductor is arranged so that a shaft may be covered in contact. In this way, as a result of covering the shaft with the highly flexible first braided conductor, a sufficient contact area between the surface of the shaft and the first braided conductor is secured, and a lightning current having a skin effect The impedance with respect to can be sufficiently reduced. Therefore, when there is a lightning strike on the blade, the lightning current transmitted from the blade to the shaft can be reliably passed through the ground through the outer shell of the nacelle, and transmission of the lightning current to the main equipment such as the generator can be suppressed. . Thereby, the lightning resistance performance of a wind power generator can be improved.

また、本発明に係る風力発電設備は、タワー構造物の頂部に上記の風力発電装置が載置され、地中からタワー構造物の頂部まで延在する導電部を備え、外郭体と導電部とが電気的に接続されていることを特徴としている。   Moreover, the wind power generation facility according to the present invention includes the above-described wind power generation device mounted on the top of the tower structure, and includes a conductive portion that extends from the ground to the top of the tower structure. Are electrically connected.

この風力発電設備では、上記風力発電装置の採用により、ブレードからシャフトに伝わる雷電流がナセルの外郭体に対して確実に流れるようになっている。さらに、この風力発電設備では、地中からタワー構造物の頂部まで延在する導電部が設けられており、ナセルの外郭体とタワー構造物に設けられた導電部とが電気的に接続されている。これにより、導電部に伝わった雷電流は地中に確実に放電される。   In this wind power generation facility, the adoption of the wind power generation apparatus ensures that the lightning current transmitted from the blade to the shaft flows to the outer shell of the nacelle. Further, in this wind power generation facility, a conductive portion extending from the ground to the top of the tower structure is provided, and the outer body of the nacelle and the conductive portion provided in the tower structure are electrically connected. Yes. Thereby, the lightning current transmitted to the conductive portion is surely discharged into the ground.

また、ナセルは、タワー構造物の頂部において、鉛直軸周りに回転可能なステージ上に設けられており、導電部と外郭体とは、第2の編素導体によって電気的に接続され、第2の編素導体は、綱状に形成されると共に、外郭体と導電部との間で撓みを有していることが好ましい。   The nacelle is provided on a stage that can rotate around the vertical axis at the top of the tower structure, and the conductive portion and the outer body are electrically connected by the second braided conductor, The braided conductor is preferably formed in a rope shape and has a bend between the outer body and the conductive portion.

この構成によれば、ナセルの外郭体に伝わった雷電流は、第2の編素導体によって導電部に確実に流れ、耐雷性能を向上させることができる。また、ナセルは、風向に合わせてブレードの向きを変えられるように、タワー構造物の頂部において、鉛直軸周りに回転可能なステージ上に載置される場合がある。この場合、第2の編素導体を綱状に形成し、かつ撓みを持たせることにより、ナセルの外郭体とタワー構造物の導電部との接続の確実性を保持しつつ、ナセルの回転による第2の編素導体への負荷を抑止できる。   According to this configuration, the lightning current transmitted to the outer body of the nacelle can surely flow to the conductive portion by the second braided conductor, and the lightning resistance can be improved. Further, the nacelle may be placed on a stage that can rotate around the vertical axis at the top of the tower structure so that the direction of the blade can be changed in accordance with the wind direction. In this case, the second braided conductor is formed in a rope shape and is bent, thereby maintaining the reliability of the connection between the outer body of the nacelle and the conductive portion of the tower structure, and by rotating the nacelle. The load on the second braid conductor can be suppressed.

以上説明したように、本発明に係る風力発電装置及び風力発電施設によれば、ブレードから地中に至る放電経路に雷電流を確実に伝達することにより、耐雷性能を向上させることができる。   As described above, according to the wind power generator and the wind power generation facility according to the present invention, the lightning resistance can be improved by reliably transmitting the lightning current to the discharge path from the blade to the ground.

以下、図面を参照しながら、本発明に係る風力発電装置及び風力発電施設の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of a wind turbine generator and a wind turbine facility according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る風力発電設備の一実施形態を示す側面図である。図1に示すように、風力発電設備1は、沿岸部や山上部といった風の強い地域に設置される設備であり、地上面G上に設けられた基台2上に立設されたコンクリート製のタワー構造物3を有している。   FIG. 1 is a side view showing an embodiment of a wind power generation facility according to the present invention. As shown in FIG. 1, the wind power generation facility 1 is a facility installed in a windy region such as a coastal area or a mountain top, and is made of concrete erected on a base 2 provided on the ground surface G. The tower structure 3 is provided.

このタワー構造物3は、高度が増すに従って小径化する円柱形状をなしており、タワー構造物3の内部には、鉛直方向に延びる複数(例えば4本)のタワー壁配筋4が配置されている。タワー壁配筋4は、タワー構造物3の強度を高めると共に、地中からタワー構造物3の頂部6まで延在する導電部7としての機能を有している。そして、タワー壁配筋4の下端部は、基台2のスラブ配筋(図示しない)と接続され、この基台2を接地極として接地されている。また、タワー構造物3の頂部6には、風力を利用して発電を行う風力発電装置8が設置されている。この風力発電装置8は、図2にも示すように、ブレード9と、ナセル10とを備えている。   The tower structure 3 has a cylindrical shape that is reduced in diameter as the altitude increases, and a plurality of (for example, four) tower wall reinforcements 4 extending in the vertical direction are arranged inside the tower structure 3. Yes. The tower wall reinforcement 4 increases the strength of the tower structure 3 and has a function as a conductive part 7 extending from the ground to the top 6 of the tower structure 3. And the lower end part of the tower wall reinforcement 4 is connected to the slab reinforcement (not shown) of the base 2, and is grounded by using the base 2 as a ground electrode. A wind power generator 8 that generates power using wind power is installed at the top 6 of the tower structure 3. As shown in FIG. 2, the wind power generator 8 includes a blade 9 and a nacelle 10.

ブレード9は、金属製のロータリーヘッド11と3枚の羽根12とを有している。羽根12は、例えばFRP(Fiber Reinforced Plastic)などの絶縁性樹脂によって形成され、ロータリーヘッド11の周りに等間隔に取り付けられている。このブレード9は、各羽根12が受ける風速が毎秒3m程度以上になると、ロータリーヘッド11を中心に回転するようになっている。また、風速が毎秒20m程度以上になると、図示しないブレーキ機構によって回転が停止するように制御され、過剰な回転による羽根12の損傷防止が図られている。   The blade 9 has a metal rotary head 11 and three blades 12. The blades 12 are formed of an insulating resin such as FRP (Fiber Reinforced Plastic), for example, and are attached around the rotary head 11 at equal intervals. The blade 9 rotates about the rotary head 11 when the wind speed received by each blade 12 is about 3 m or more per second. Further, when the wind speed is about 20 m or more per second, control is performed so that the rotation is stopped by a brake mechanism (not shown), and damage to the blades 12 due to excessive rotation is prevented.

ナセル10は、架台13上に流線型のケーシング14を載置してなる金属製の外郭体16を有し、ケーシング14の内部奥側に発電機17を収容して構成されている。この発電機17とブレード9のロータリーヘッド11との間には、例えばブレード9側から順に、金属製のシャフト21、低速軸カップリング18、接続シャフト25A、増速機19、接続シャフト25B、高速軸カップリング20、接続シャフト25Cが接続されている。このような構成により、風力で回転するブレード9の回転力が毎分1000回転程度に増速されて発電機17に伝達され、発電機17はこの回転力を利用して発電を行う。   The nacelle 10 has a metal outer body 16 in which a streamlined casing 14 is placed on a gantry 13, and a generator 17 is accommodated inside the casing 14. Between the generator 17 and the rotary head 11 of the blade 9, for example, in order from the blade 9 side, a metal shaft 21, a low-speed shaft coupling 18, a connection shaft 25 A, a speed increasing device 19, a connection shaft 25 B, a high speed The shaft coupling 20 and the connection shaft 25C are connected. With such a configuration, the rotational force of the blade 9 rotated by wind power is increased to about 1000 revolutions per minute and transmitted to the generator 17, and the generator 17 generates power using this rotational force.

また、このようなナセル10は、タワー構造物3の頂部において、鉛直軸周りに両方向180°の範囲で回転可能なステージ22上に設けられている。ステージ22の回転は、ナセル10の後方上部に設けられた風向観測計(図示しない)によって観測される風向きに基づいて調整される。すなわち、ステージ22の回転は、風向観測計によって観測された風向きに、ナセル10の向きが一致するように調整される。これにより、風力発電設備1の周囲の風向きが刻々と変化するような場合であっても、ブレード9で定常的に風力を受けることが可能となっている。   Further, such a nacelle 10 is provided on a stage 22 that is rotatable around the vertical axis in a range of 180 ° in both directions at the top of the tower structure 3. The rotation of the stage 22 is adjusted based on the wind direction observed by a wind direction observation meter (not shown) provided in the upper rear part of the nacelle 10. That is, the rotation of the stage 22 is adjusted so that the direction of the nacelle 10 matches the wind direction observed by the wind direction observation meter. Thereby, even if the wind direction around the wind power generation facility 1 changes every moment, the blade 9 can receive wind force constantly.

ところで、上述したような風力発電設備は、電力を定常的に供給可能にするという目的上、風の強い沿岸部や山上部に設置されることが多い。しかしながら、このような沿岸部や山上部は、風力を得やすい反面、雷が頻繁に発生する場所でもあり、落雷が発生する可能性の高い場所である。また、このような場所で発生する雷は大きなエネルギーを有していることが多く、風力発電装置に大きなエネルギーを持つ雷が落雷すると、ブレードや発電機などの主要な機器が損傷するおそれがある。そのため、風力発電設備では、落雷によって発生した電流(雷電流)を確実に地中に放電させるための放電経路を形成し、耐雷性能を向上させることが重要な課題となっている。   By the way, wind power generation facilities such as those described above are often installed on windy coastal areas or mountain tops for the purpose of enabling the steady supply of electric power. However, such coastal areas and mountain tops are easy to obtain wind power, but are also places where lightning frequently occurs, and places where lightning strikes are likely to occur. In addition, lightning generated in such places often has large energy, and when lightning with large energy strikes a wind power generator, there is a risk of damage to major equipment such as blades and generators. . For this reason, in wind power generation facilities, it is an important issue to improve the lightning resistance by forming a discharge path for reliably discharging the current (lightning current) generated by lightning strikes into the ground.

この放電経路の形成に関し、本実施形態における風力発電設備1では、図1及び図2に示すように、まず、ブレード9における各羽根12の先端に、銅製の避雷針24が設けられている。また、各羽根12の本体部分には、避雷針24と電気的に接続された金属メッシュ26が設けられている。そして、各羽根12の金属メッシュ26は、金属製のロータリーヘッド11に電気的に接続されている。   Regarding the formation of this discharge path, in the wind power generation facility 1 in this embodiment, as shown in FIGS. 1 and 2, first, a lightning rod 24 made of copper is provided at the tip of each blade 12 in the blade 9. In addition, a metal mesh 26 electrically connected to the lightning rod 24 is provided on the main body portion of each blade 12. The metal mesh 26 of each blade 12 is electrically connected to the metal rotary head 11.

また、シャフト21と架台13とは、第1の編素導体27によって電気的に接続されている。この第1の編素導体27は、図3に示すように、0.1mm径程度の細い導線をメッシュ状に編み込むことにより、約50mm〜約100mm幅の帯状に形成され、高い可撓性及び導電性を有している。この第1の編素導体27における長手方向の両端には、金属製の取付板28がそれぞれ設けられている。そして、第1の編素導体27は、図4に示すように、低速軸カップリング18の前方側において、接触した状態でシャフト21の略上半分を覆うように配置され、各取付板28は、シャフト21の両側でそれぞれ架台13にボルト固定されている。なお、低速軸カップリング18、増速機19、及び高速軸カップリング20についても、それぞれ等電位ボンディングによって架台13に接続されている(図2参照)。   The shaft 21 and the gantry 13 are electrically connected by a first braid conductor 27. As shown in FIG. 3, the first braided conductor 27 is formed into a strip shape having a width of about 50 mm to about 100 mm by knitting a thin conductive wire having a diameter of about 0.1 mm into a mesh shape. It has conductivity. At both ends in the longitudinal direction of the first braid conductor 27, metal attachment plates 28 are respectively provided. Then, as shown in FIG. 4, the first braid conductor 27 is disposed on the front side of the low-speed shaft coupling 18 so as to cover the substantially upper half of the shaft 21 in a contact state, and each mounting plate 28 is The bolts are fixed to the gantry 13 on both sides of the shaft 21. Note that the low-speed shaft coupling 18, the speed increaser 19, and the high-speed shaft coupling 20 are also connected to the gantry 13 by equipotential bonding (see FIG. 2).

さらに、架台13とタワー構造物3の導電部7とは、図2及び図5に示すように、2本の第2の編素導体29によって、ナセル10の前後で電気的に接続されている。第2の編素導体29は、第1の編素導体27と同様のメッシュ状導線によって綱状に形成されている。この第2の編素導体29は、中間部分に十分な撓みを持たせた状態で、架台13の下面側とステージ22の基部とにそれぞれボルト固定され、ステージ22を介して導電部7に電気的に接続されている。   Further, the gantry 13 and the conductive portion 7 of the tower structure 3 are electrically connected before and after the nacelle 10 by two second braided conductors 29 as shown in FIGS. 2 and 5. . The second braided conductor 29 is formed in a rope shape with the same mesh-like conductive wire as the first braided conductor 27. The second braided conductor 29 is bolted to the lower surface side of the gantry 13 and the base of the stage 22 in a state where the intermediate portion is sufficiently bent, and is electrically connected to the conductive portion 7 via the stage 22. Connected.

このような放電経路の形成により、風力発電設備1では、ブレード9の避雷針24や金属メッシュ26に落雷が発生すると、落雷による雷電流が避雷針24又は羽根12の金属メッシュ26からロータリーヘッド11を通ってシャフト21に流れる。次に、シャフト21に流れた雷電流は、第1の編素導体27を通って架台13に流れる。このとき、第1の編素導体27に流れきらなかった雷電流は、低速軸カップリング18、増速機19、及び高速軸カップリング20のそれぞれのボンディングを通って順次架台13に流れる。そして、架台13に流れた雷電流は、第2の編素導体29を通ってタワー壁配筋4に流れ、タワー壁配筋4の下端から地中へと放電される。   By forming such a discharge path, in the wind power generation facility 1, when a lightning strike occurs on the lightning rod 24 or the metal mesh 26 of the blade 9, a lightning current due to the lightning strikes from the lightning rod 24 or the metal mesh 26 of the blade 12 through the rotary head 11. And flows to the shaft 21. Next, the lightning current that has flowed to the shaft 21 flows to the gantry 13 through the first braided conductor 27. At this time, the lightning current that has not been able to flow through the first braided conductor 27 flows to the gantry 13 sequentially through the bonding of the low-speed shaft coupling 18, the speed increaser 19, and the high-speed shaft coupling 20. Then, the lightning current that has flowed to the gantry 13 flows to the tower wall reinforcement 4 through the second braided conductor 29 and is discharged from the lower end of the tower wall reinforcement 4 to the ground.

この風力発電設備1の放電経路では、雷電流が数MHzに達する高周波の電流であり、このような高周波の電流が高い表皮効果を有していることに着目し、上述したように、シャフト21と架台13との電気的な接続にあたって、接触した状態でシャフト21の略上半分を覆うように第1の編素導体27を配置している。このように、可撓性を有する第1の編素導体でシャフトを覆うようにした結果、シャフト21の表面と第1の編素導体27との接触面積が十分に確保され、表皮効果の高い雷電流に対するインピータンスを大幅に低下させることができる。この結果、ブレード9からシャフト21に伝わる雷電流が架台13に確実に流れ、雷電流を素早く地中に放電させることが可能となる。したがって、風力発電設備1では、日本海側の冬季雷のように、大きなエネルギーを持つ雷がブレード9又は金属メッシュ26に落雷した場合であっても、シャフト21と架台13との接続部分が放電経路のボトルネックとなることが抑止され、ブレード9や発電機17などの主要な機器を確実に保護することができる。   In the discharge path of the wind power generation facility 1, paying attention to the fact that the lightning current is a high-frequency current reaching several MHz, and such a high-frequency current has a high skin effect, as described above, the shaft 21 The first braided conductor 27 is disposed so as to cover substantially the upper half of the shaft 21 in the state of contact with each other in electrical connection with the gantry 13. As described above, as a result of covering the shaft with the flexible first braided conductor, the contact area between the surface of the shaft 21 and the first braided conductor 27 is sufficiently secured, and the skin effect is high. Impedance against lightning current can be greatly reduced. As a result, the lightning current transmitted from the blade 9 to the shaft 21 surely flows to the gantry 13, and the lightning current can be quickly discharged into the ground. Therefore, in the wind power generation facility 1, even when a lightning having a large energy strikes the blade 9 or the metal mesh 26 as in the winter lightning on the Sea of Japan side, the connection portion between the shaft 21 and the gantry 13 is discharged. The bottleneck of the path is suppressed, and main devices such as the blade 9 and the generator 17 can be reliably protected.

さらに、風力発電設備1の放電経路では、架台13とタワー壁配筋4とが綱状の第2の編素導体29によって電気的に接続されている。この第2の編素導体29により、架台13に伝わった雷電流がタワー壁配筋4に確実に流れるので、耐雷性能の一層の向上が図られる。また、この第2の編素導体29は、架台13とタワー壁配筋4との間で撓みを有している。このような構成により、ナセル10の向きがステージ22上で調整された場合であっても、架台13とタワー壁配筋4との接続の確実性を保持しつつ、ナセル10の回転による第2の編素導体29への過剰な負荷の発生を抑止できる。   Further, in the discharge path of the wind power generation facility 1, the gantry 13 and the tower wall reinforcement 4 are electrically connected by a rope-like second braid conductor 29. The lightning current transmitted to the gantry 13 surely flows to the tower wall reinforcement 4 by the second braid conductor 29, so that the lightning resistance can be further improved. In addition, the second braided conductor 29 is bent between the gantry 13 and the tower wall reinforcement 4. With such a configuration, even when the direction of the nacelle 10 is adjusted on the stage 22, the second due to the rotation of the nacelle 10 while maintaining the reliability of the connection between the gantry 13 and the tower wall reinforcement 4. Generation of an excessive load on the braided conductor 29 can be suppressed.

なお、本発明は上記実施形態に限られるものではない。例えば、上記実施形態では、避雷針24からロータリーヘッド11までの放電経路として、各羽根12に金属メッシュ26を形成しているが、この金属メッシュ26に代えて、金属網を各羽根12に被せてもよく、導電性塗料や導電性シールをメッシュ状或いはライン状に施してもよい。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the metal mesh 26 is formed on each blade 12 as a discharge path from the lightning rod 24 to the rotary head 11, but instead of this metal mesh 26, a metal net is put on each blade 12. Alternatively, a conductive paint or a conductive seal may be applied in a mesh shape or a line shape.

また、シャフト21と第1の編素導体27との接触部分には、導電性のグリースを塗布しておくことが好ましい。これにより、シャフト21と第1の編素導体27との摩擦を低減させることが可能となる。また、同様の観点から、雷雲の電界を検出する手段、及びシャフト21に対する第1の編素導体27の接触/非接触を切り替える切替手段を設け、例えば雷雲の接近が検出された場合にのみ第1の編素導体27をシャフト21に被せるようにしてもよい。   Further, it is preferable to apply conductive grease to the contact portion between the shaft 21 and the first braid conductor 27. Thereby, the friction between the shaft 21 and the first braid conductor 27 can be reduced. Further, from the same viewpoint, a means for detecting the electric field of the thundercloud and a switching means for switching contact / non-contact of the first braid conductor 27 with respect to the shaft 21 are provided, for example, only when the approach of the thundercloud is detected. One braided conductor 27 may be placed on the shaft 21.

導電部7としてのタワー壁配筋4は、雷電流の表皮効果を考慮して、円状に配置することが好ましい。タワー壁配筋4に代えて、タワー構造物3を金属製の柱で組み上げ、タワー構造物3全体を導電部7としてもよい。さらに、導電部7の接地極は、スラブ配筋を用いたいわゆるベタ基礎に代えて、杭基礎(図示しない)を用いてもよい。一般的に、杭基礎を接地極とした場合、ベタ基礎を接地極とした場合に比べて接地抵抗が小さく、雷電流をより確実に地中に放電させることができる。   The tower wall reinforcement 4 as the conductive portion 7 is preferably arranged in a circular shape in consideration of the skin effect of lightning current. Instead of the tower wall reinforcement 4, the tower structure 3 may be assembled with metal columns, and the entire tower structure 3 may be used as the conductive portion 7. Furthermore, a pile foundation (not shown) may be used for the grounding electrode of the conductive portion 7 instead of a so-called solid foundation using slab reinforcement. Generally, when a pile foundation is used as a ground electrode, the ground resistance is smaller than when a solid foundation is used as a ground electrode, and lightning current can be discharged more reliably into the ground.

本発明に係る風力発電設備の一実施形態を示す側面図である。It is a side view which shows one Embodiment of the wind power generation equipment which concerns on this invention. 図1に示す風力発電設備に搭載される風力発電装置を示す側面図である。It is a side view which shows the wind power generator mounted in the wind power generation equipment shown in FIG. 第1の編素導体を示す平面図である。It is a top view showing the 1st braid conductor. 図2におけるIV−IV線断面図である。It is the IV-IV sectional view taken on the line in FIG. 第2の編素導体の取り付け状態を示す図である。It is a figure which shows the attachment state of a 2nd braided conductor.

符号の説明Explanation of symbols

1…風力発電設備、3…タワー構造物、4…タワー壁配筋(導電部)、6…頂部、7…導電部、8…風力発電装置、9…ブレード、10…ナセル、13…架台(外郭体)、14…ケーシング(外郭体)、16…外郭体、17…発電機、22…ステージ、27…第1の編素導体、29…第2の編素導体、G…地上面。
DESCRIPTION OF SYMBOLS 1 ... Wind power generation equipment, 3 ... Tower structure, 4 ... Tower wall reinforcement (conductive part), 6 ... Top part, 7 ... Conductive part, 8 ... Wind power generator, 9 ... Blade, 10 ... Nacelle, 13 ... Mount ( (Outer body), 14 ... casing (outer body), 16 ... outer body, 17 ... generator, 22 ... stage, 27 ... first braid conductor, 29 ... second braid conductor, G ... ground surface.

Claims (3)

風力を受けて回転するブレードと、
導電性の外郭体の内部に発電機が収容されたナセルと、
前記ブレードと前記発電機との間に接続され、前記ブレードの回転力を前記発電機に伝達するシャフトと、
接触した状態で前記シャフトを覆い、前記シャフトと前記外郭体とを電気的に接続する第1の編素導体とを備えることを特徴とする風力発電装置。
A blade that rotates in response to wind,
A nacelle in which a generator is housed inside a conductive enclosure;
A shaft connected between the blade and the generator and transmitting the rotational force of the blade to the generator;
A wind turbine generator comprising: a first braided conductor that covers the shaft in contact with the shaft and electrically connects the shaft and the outer body.
タワー構造物の頂部に請求項1記載の風力発電装置が載置され、
地中から前記タワー構造物の前記頂部まで延在する導電部を備え、
前記外郭体と前記導電部とが電気的に接続されていることを特徴とする風力発電設備。
The wind turbine generator according to claim 1 is placed on the top of the tower structure.
A conductive portion extending from the ground to the top of the tower structure;
The wind power generation facility, wherein the outer body and the conductive portion are electrically connected.
前記ナセルは、前記タワー構造物の頂部において、鉛直軸周りに回転可能なステージ上に設けられており、
前記導電部と前記外郭体とは、第2の編素導体によって電気的に接続され、
前記第2の編素導体は、綱状に形成されると共に、前記外郭体と前記導電部との間で撓みを有していることを特徴とする請求項2記載の風力発電設備。
The nacelle is provided on a stage rotatable around a vertical axis at the top of the tower structure,
The conductive portion and the outer body are electrically connected by a second braided conductor,
3. The wind power generation facility according to claim 2, wherein the second braided conductor is formed in a rope shape and has a bend between the outer body and the conductive portion.
JP2005267386A 2005-09-14 2005-09-14 Wind power generation apparatus and wind power generation equipment Expired - Fee Related JP4598636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267386A JP4598636B2 (en) 2005-09-14 2005-09-14 Wind power generation apparatus and wind power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267386A JP4598636B2 (en) 2005-09-14 2005-09-14 Wind power generation apparatus and wind power generation equipment

Publications (2)

Publication Number Publication Date
JP2007077889A true JP2007077889A (en) 2007-03-29
JP4598636B2 JP4598636B2 (en) 2010-12-15

Family

ID=37938468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267386A Expired - Fee Related JP4598636B2 (en) 2005-09-14 2005-09-14 Wind power generation apparatus and wind power generation equipment

Country Status (1)

Country Link
JP (1) JP4598636B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100658A (en) * 2005-10-06 2007-04-19 Ebara Corp Lightning conduction method and lightning conduction device for windmill blade, lightning protection method and lighting protection device for wind power generation device
WO2010013889A2 (en) * 2008-07-30 2010-02-04 Hankuk Relay Co., Ltd. Power transmission apparatus for wind power generation and wind power generator using the same
JP2010071287A (en) * 2008-09-18 2010-04-02 Siemens Ag Lightning protection device for wind power generator turbine
US8734110B2 (en) 2011-12-09 2014-05-27 Mitsubishi Heavy Industries, Ltd. Wind turbine blade

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560053A (en) * 1991-08-26 1993-03-09 Mitsubishi Heavy Ind Ltd Windmill
JP2000265938A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Thunder protection system of wind power generation
JP2003532836A (en) * 2000-05-06 2003-11-05 アロイス・ヴォベン Wind power equipment
WO2005050008A1 (en) * 2003-11-20 2005-06-02 Vestas Wind Systems A/S Wind turbine lightning connection means method and use hereof
JP2006070879A (en) * 2004-09-06 2006-03-16 Univ Kansai Wind power generation plant having lightning rod system for windmill blade

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560053A (en) * 1991-08-26 1993-03-09 Mitsubishi Heavy Ind Ltd Windmill
JP2000265938A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Thunder protection system of wind power generation
JP2003532836A (en) * 2000-05-06 2003-11-05 アロイス・ヴォベン Wind power equipment
WO2005050008A1 (en) * 2003-11-20 2005-06-02 Vestas Wind Systems A/S Wind turbine lightning connection means method and use hereof
JP2006070879A (en) * 2004-09-06 2006-03-16 Univ Kansai Wind power generation plant having lightning rod system for windmill blade

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100658A (en) * 2005-10-06 2007-04-19 Ebara Corp Lightning conduction method and lightning conduction device for windmill blade, lightning protection method and lighting protection device for wind power generation device
JP4695482B2 (en) * 2005-10-06 2011-06-08 株式会社荏原製作所 Windmill blade lightning protection method and lightning protection device, wind power generation device lightning protection method and lightning protection device
WO2010013889A2 (en) * 2008-07-30 2010-02-04 Hankuk Relay Co., Ltd. Power transmission apparatus for wind power generation and wind power generator using the same
WO2010013889A3 (en) * 2008-07-30 2010-03-25 Hankuk Relay Co., Ltd. Power transmission apparatus for wind power generation and wind power generator using the same
JP2010071287A (en) * 2008-09-18 2010-04-02 Siemens Ag Lightning protection device for wind power generator turbine
US8734110B2 (en) 2011-12-09 2014-05-27 Mitsubishi Heavy Industries, Ltd. Wind turbine blade

Also Published As

Publication number Publication date
JP4598636B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
US9157419B2 (en) Lightning protection system for a wind turbine and wind turbine with a lightning protection system
KR101895879B1 (en) Lightning protection system for a wind turbine, wind turbine and method for protecting components of a wind turbine against lightning strikes
JP4695482B2 (en) Windmill blade lightning protection method and lightning protection device, wind power generation device lightning protection method and lightning protection device
EP2499359B1 (en) Lightning protection for a nacelle of a wind turbine
EP2518312A1 (en) Wind wheel blade and wind-driven electricity generation device with same
CA2742420A1 (en) Lightning protection system for a wind turbine
US20120321468A1 (en) Wind turbine blade with lightning protection system
US8939726B2 (en) Wind turbine blade
JP4598636B2 (en) Wind power generation apparatus and wind power generation equipment
KR20100115139A (en) Lightning preventing apparatus of a wind turbine
JP2010223148A (en) Structure for preventing lightning damage to rotor blade of wind power generation device
WO2012153717A1 (en) Windmill
JP4595086B2 (en) Wind turbine generator having a lightning protection system for windmill blades
JP4890555B2 (en) Wind power generation equipment with lightning arrester
JP2016519245A (en) Wind power generator and lightning protection unit for wind power generator
JP2007138765A (en) Wind turbine generator
US20220228571A1 (en) Large inductors for lightning protection of power systems
CN102900630A (en) Lightning protection method and device for wind generating set
JP4931142B2 (en) Wind power generator
JP6168852B2 (en) Floating structure and grounding electrode
JP2004342518A (en) Method and device for lightning conduction, lightning protection method in wind power generator, and wind power generator
JP5448690B2 (en) Wind power generator
JP2016065500A (en) Lightning damage restriction device for wind turbine for wind power generation and wind power generator
JP2006037938A (en) Lightning rod type wind power generator
JP2020007958A (en) Blade for windmill and wind power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees