JP6467683B2 - Windmill lightning protection device - Google Patents
Windmill lightning protection device Download PDFInfo
- Publication number
- JP6467683B2 JP6467683B2 JP2015011469A JP2015011469A JP6467683B2 JP 6467683 B2 JP6467683 B2 JP 6467683B2 JP 2015011469 A JP2015011469 A JP 2015011469A JP 2015011469 A JP2015011469 A JP 2015011469A JP 6467683 B2 JP6467683 B2 JP 6467683B2
- Authority
- JP
- Japan
- Prior art keywords
- receptor
- graphite powder
- plate
- composite material
- lightning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 claims description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 37
- 239000004020 conductor Substances 0.000 claims description 17
- 239000011162 core material Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000003575 carbonaceous material Substances 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 238000003892 spreading Methods 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 23
- 239000010949 copper Substances 0.000 description 23
- 229910052802 copper Inorganic materials 0.000 description 23
- 238000004458 analytical method Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000001931 thermography Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/30—Lightning protection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Elimination Of Static Electricity (AREA)
- Wind Motors (AREA)
Description
この発明は主として風力発電用の風車、その他動力源として用いられる風車の耐雷装置に関する。 The present invention mainly relates to wind turbines for wind power generation and other lightning protection devices for wind turbines used as a power source.
風力発電等に用いる風車は、風力を得るために一般に地上の高所位置に突出させて設置されるほか、そのブレードはFRP等の非導電材料で作られているが、雨水を伴う落雷時には落雷の被害を受け易い。特に、冬季の沿岸部等では、上空の寒気と海面の温度差が大きいため、強い雷が発生し、その被害が大きくなる。 In order to obtain wind power, wind turbines used for wind power generation, etc. are generally installed protruding above the ground, and their blades are made of non-conductive material such as FRP. Susceptible to damage. Particularly in winter coastal areas, etc., the temperature difference between the cold air above the sea and the sea level is large, so strong lightning is generated and the damage is increased.
この対策として、風車のブレード表面に導電体からなる受雷部(レセプター)を露出させて設け、この受雷部を、引き下げ導線(ダウンコンダクタ)に接続した特許文献1に示す風車の耐雷装置が公知である。
As a countermeasure, there is a lightning protection device for a windmill shown in
上記文献の図1,2に示す通り、ブレード内部に接地(GND接続)された金属ブロックを収容し、レセプターとなる金属ボルトを前記ブレードの表面に露出させた状態で上記金属ブロックに締着固定した場合、この露出した金属ボルトが落雷電流により溶融することがある。 As shown in FIGS. 1 and 2 of the above document, a metal block grounded (GND connection) is accommodated inside the blade, and a metal bolt serving as a receptor is exposed on the surface of the blade and fixed to the metal block. In this case, the exposed metal bolt may be melted by a lightning current.
これを防止するため、同文献では、図5に示す通り、棒状のレセプターロッドの先端をブレード表面に露出させるように、地上から操作してロッドパイプでガイドさせながら挿入・突出させてブレード面に多数箇所配置し、高所作業を伴わないで交換できるとともにブレードの多数位置で受雷できる機構としている。 In order to prevent this, in this document, as shown in FIG. 5, the tip of the rod-shaped receptor rod is exposed from the surface of the blade so that it is exposed to the blade surface, and is inserted and projected while being guided by the rod pipe. The mechanism is arranged at multiple locations and can be replaced without working at high places, and can receive lightning at multiple positions on the blade.
また、ブレードの先端部に点状にレセプターを設置し、該ブレードにおけるレセプター以外の位置に落雷した場合に、これをレセプター側に導くことを目的として、該ブレードの表面に、レセプターに向かって延びる誘導テープを貼着又は誘導溝を形成した特許文献2に示す風車の耐雷装置も公知になっている。
Also, a receptor is installed in the form of a dot at the tip of the blade, and when lightning strikes at a position other than the receptor on the blade, it extends toward the receptor on the surface of the blade in order to guide it to the receptor side. A windmill lightning protection device shown in
しかし、特許文献1のものは受雷部を点在させて広範囲での耐雷を実現し、又はレセプターの交換作業を容易にすることは可能であるが、レセプターの溶融そのものを防止するものではなく、特許文献2のものは少ないレセプターで広範囲の耐雷はできるが、レセプター自体の溶融を防止するものではなく、そのような効果も期待できない。
However, although it is possible for the thing of
本発明は上記課題に対し、落雷によるレセプター自体の溶融を防止することにより落雷被害を防止するもので、特に落雷時のレセプターの発熱に対し、この熱を効果的に分散放熱することにより、レセプター及びレセプター近傍の損傷を防止することを目的としている。 The present invention prevents lightning damage by preventing the receptor itself from melting due to a lightning strike. In particular, the present invention effectively disperses and dissipates this heat against the heat generation of the receptor during a lightning strike. And to prevent damage near the receptor.
上記課題を解決するための本発明は、第1に、風車のブレード6の表面には、受雷部の少なくとも一部を構成するレセプター7を、露出させた状態で設け、該レセプター7をダウンコンダクタ11に接続した風車の耐雷装置において、上記レセプター7として金属と炭素材料とを焼結させて得られる複合材からなるプレートを用い、該プレートの裏面を上記ブレード6の表面に沿って固着し、受雷によって生じる発熱を上記プレートの平面的な広がり方向に沿って放熱させることを特徴としている。
The present invention for solving the above-mentioned problems is as follows. First, a
第2に、前記複合材に含まれる炭素材料は、該複合材の総体積を基準として20〜80体積%含まれ、該複合材は理想密度の95%以上まで焼結されてなることを特徴としている。 Second, the carbon material contained in the composite material is contained in an amount of 20 to 80% by volume based on the total volume of the composite material, and the composite material is sintered to 95% or more of the ideal density. It is said.
第3に、前記炭素材料には鱗状黒鉛粉末が含まれ、該鱗状黒鉛粉末には、炭素原子からなるグラファイト構造と平行であって且つ熱を容易に伝導するプレートの面である熱伝導容易面の法線ベクトルに対して、傾きが20°以上となる法線ベクトルによって規定される鱗状面を有する第1鱗状黒鉛粉末と、傾きが10°以下となる法線ベクトルによって規定される鱗状面を有する第2鱗状黒鉛粉末との少なくとも2種類が含まれ、前記第1鱗状黒鉛粉末の鱗状黒鉛粉末の全体に対しての含有率は12%以下であり、前記第2鱗状黒鉛粉末の鱗状黒鉛粉末の全体に対しての含有率は55%以上であることを特徴としている。 Third, the carbon material includes scaly graphite powder, and the scaly graphite powder is parallel to a graphite structure composed of carbon atoms and has a heat conduction easy surface that is a surface of a plate that conducts heat easily. A first scaly graphite powder having a scaly surface defined by a normal vector having an inclination of 20 ° or more, and a scaly surface defined by a normal vector having an inclination of 10 ° or less. The second scaly graphite powder has at least two types, the content of the first scaly graphite powder is 12% or less of the whole scaly graphite powder, and the second scaly graphite powder is a scaly graphite powder. It is characterized by a content rate of 55% or more based on the whole.
第4に、ブレード6の内部に芯材8を収容し、該芯材8に対して受雷部を兼ね導電性材料よりなるボルト9によって、前記プレートを締着固定したことを特徴としている。
Fourth, the
第5に、プレートの外周面とブレード6の表面との間に形成される段差部のコーナーにパテを充填してレセプター7の周縁部12を形成してなることを特徴としている。
Fifth, the
本発明は以上のように構成されるので、プレートからなるレセプターに受雷させると、該プレートで発生する熱は、プレート自体の高い熱伝導性によって、プレートの面に沿って平面的に広がり、短時間で拡散放熱するので、レセプターの溶融やスパークによる損傷を防止できるとともに、ブレードに対する発熱の影響を最大限防止でき、ブレードの損傷も防止できる。
またプレートはブレード表面に沿って固着されているので、ブレード自体の発熱もプレートによって放熱され且つ受熱面積も大きく、熱を受けてもプレートによるカバーの効果もあいまって部分的な溶解や変形焼失等が防止できる利点があるほか、ブレード自体が芯材に締着固定されることによって機械的強度が高められる効果がある。
Since the present invention is configured as described above, when light is received by a receptor consisting of a plate, the heat generated in the plate spreads planarly along the surface of the plate due to the high thermal conductivity of the plate itself, Dissipating and radiating heat in a short time can prevent damage to the receptor due to melting and sparking, can prevent the blade from being affected by heat generation, and can also prevent damage to the blade.
In addition, since the plate is fixed along the blade surface, the blade itself generates heat and the heat receiving area is large, and even if it receives heat, the effect of the cover by the plate is combined, and partial melting, deformation and burning, etc. In addition, there is an advantage that the mechanical strength can be increased by fixing the blade itself to the core material.
図1及び図2は本発明を適用した耐雷装置を設置されたプロペラ型の風力発電装置の全体正面図及び部分拡大正面であり、図3は、図2のA−A拡大断面図である。風力発電に用いる風車は、地上の基礎1上に立設して内部に空洞を有するタワー2と、該タワー2の上端に設置されて前後方向(ここでは、便宜上、ナセル3の形成方向を前後方向と定義する)に延びるボックス状のナセル3と、該ナセル3の前面から前方に突出するハブ(回転軸)4を中心にして放射状に該ナセル3に取り付けられた複数のブレード6とを備えている。
1 and 2 are an overall front view and a partially enlarged front view of a propeller-type wind power generator installed with a lightning protection device to which the present invention is applied, and FIG. 3 is an AA enlarged sectional view of FIG. A wind turbine used for wind power generation is installed on the
複数のブレード6は、ナセル3の全長方向に形成されたハブ4の軸回りに所定間隔毎に並べられている。各ブレード6は、軽量な絶縁性の材料(例えばFRP等の合成樹脂)から構成され、このブレード6は、前後につぶれた凸レンズ状の断面形状を有し、内部に空洞が形成され、この空洞が各種部品を設置する設置スペース6aになる。
The plurality of
また、ブレード6の基端部から中途部に至る範囲は断面積が拡大し且つ中途部から先端部に向かって断面積が縮小した形状に成形され、この先端部は断面積が最小に設定されている。
The range from the base end portion of the
各ブレード6が、風力により、上記回転軸を中心として回転作動すると、その動力によって、ナセル3内の図示しない発電機が発電作動される。この発電機は、ナセル3内からワター2内に至る範囲に配線された図示しない電力ケーブルを介して、バッテリや、外部の送電線に接続される。
When each
このような風車及び発電機等から構成される風力発電装置には、落雷時の破損を防止するため、耐雷装置が設けられている。 In order to prevent damage at the time of lightning strike, a wind power generator composed of such a windmill and a generator is provided with a lightning protection device.
この風車の耐雷装置は、上記ブレード6の先端部の前後両面(外面)に、面状に接当させた状態でそれぞれ設置された平板状のプレートからなるレセプター7と、ブレード6内(具体的には、設置スペース6a)に収容されて導電体からなるブロック状且つ金属製の芯材8と、レセプター7を芯材8に締着固定するようにブレード6の先端部の挿入される導電性のボルト9と、前記レセプター7及びボルト9等から構成される受雷部をグランド接続(アース)する引き下げ導線(ダウンコンダクタ)11とを備えている。
This lightning protection device for a windmill includes a
引き下げ導線11は、ブレード6内からナセル3内及びタワー2内を経て地中まで配線され、受雷部6、9からの受雷電流を地中に放電させる。ちなみに、引き下げ導線は、受雷部6,9からの雷電流を安全に地方に放電できる導体で構成されている。
The down
芯材8は、設置スペース6aにおけるブレード6の先端寄り部分に嵌合状態で設置可能な直方体形状に成形され、受雷部6,9及び引き下げ導線11と電気的に接続されている。
The
レセプター7は、円盤状に形成されている。このレセプター7の材料としては、金属と、炭素材料とを焼成させて得られる複合材を用いる。具体的には、銅、アルミ又はこれらの合金等の金属と、黒鉛(具体的には黒鉛粉末、更に具体的には鱗状黒鉛粉末)とを加圧焼結させて得られる。
The
この鱗状黒鉛粉末の平均アスペクト比は、10〜100(好ましくは30〜100)であり、平均粒子サイズは、50〜1000(好ましくは80〜500)μmである。ここで、平均アスペクト比とは、粒子の厚さに対する鱗状面の代表長さの比の平均を意味し、平均粒子径とは、粒子の鱗状面の平均代表長さを意味している。 The scale-like graphite powder has an average aspect ratio of 10 to 100 (preferably 30 to 100) and an average particle size of 50 to 1000 (preferably 80 to 500) μm. Here, the average aspect ratio means the average ratio of the representative length of the scaly surface to the thickness of the particle, and the average particle diameter means the average representative length of the scaly surface of the particle.
加圧方向は、レセプター7を構成するプレートの板厚方向に設定され、これよって、鱗状黒鉛粉末が上記プレートの面方向に整列され、このプレートの面が、炭素原子からなるグラファイト構造と平行であって且つ熱を容易に伝導する熱伝導容易面となる。この熱伝導容易面の法線ベクトルに対して、鱗状黒鉛粉末の鱗状面の法線ベクトルが必要以上に傾いていると、熱伝導性が悪化するが、このような鱗状黒鉛粉末の含有率を低下させることにより、熱伝導性を良好に保持できる。
The pressurizing direction is set in the plate thickness direction of the plate constituting the
このため、前記複合材に含まれる炭素材料(具体的には、無数の鱗状黒鉛粉末)は、上記複合材の総体積を基準として20〜80体積%含まれ、該複合材は理想密度の95%以上まで焼結される。また、レセプター7(プレート)に含まれる鱗状黒鉛粉末には、上記熱伝導容易面の法線ベクトルに対して法線ベクトルが20°以上傾いた鱗状面を有する第1鱗状黒鉛粉末と、上記熱伝導容易面の法線ベクトルに対して法線ベクトルの傾きが10°以下になる鱗状面を有する第2鱗状黒鉛粉末とが存在し、前記第1鱗状黒鉛粉末の鱗状黒鉛粉末の全体に対しての含有率は12%以下であり、前記第2鱗状黒鉛粉末の鱗状黒鉛粉末の全体に対しての含有率は55%以上である。 For this reason, the carbon material (specifically, countless scaly graphite powder) contained in the composite material is contained in an amount of 20 to 80% by volume based on the total volume of the composite material, and the composite material has an ideal density of 95%. Sintered to over%. In addition, the scaly graphite powder contained in the receptor 7 (plate) includes a first scaly graphite powder having a scaly surface whose normal vector is inclined by 20 ° or more with respect to the normal vector of the above-described easy heat conduction surface, and the above heat. There is a second scaly graphite powder having a scaly surface whose normal vector has an inclination of 10 ° or less with respect to the normal vector of the easy conduction surface, and the scaly graphite powder as a whole of the first scaly graphite powder. The content of the second scaly graphite powder is 55% or more with respect to the whole scaly graphite powder.
この複合材から構成されたレセプター7は、本例では、50〜100mm径で2mm前後の板厚を有する円形のプレート状に成形されている。なお、レセプターのサイズや板厚はブレード6の寸法等により選択されるが、基本的には、直径20〜300mm、板厚0.5〜40mmの範囲内で設定される。
In this example, the
レセプター7はその中心位置に挿通される金属製等の導電材料からなるボルト9により、内臓された同じく導電性材料製の芯材8に対して締着固定されており、レセプター7とブレード6,芯材8とは締着によりできるだけ密着させることにより、レセプター7の落雷による発熱をより効率的に放熱できるほか、レセプター7の固定性が確保される。また放熱性を高めるためには芯材8やボルト9の材質も熱伝導性に優れたものを用いることが望ましい。
The
またレセプター7の外周面とブレード6の表面の段差部のコーナーはシール性の高いパテを充填してコーティングすることにより周縁部12を形成し、この周縁部12のパテを導電性を有し熱伝導性の高いものを用いること又はFRPに使用するプラスチック材の使用も可能である。
The corners of the stepped portion between the outer peripheral surface of the
次に本発明の複合材によるレセプター7の放熱特性を、プレート状の複合材と銅板に対する放電時における熱伝導特性評価実験(<実験例1>)と、熱伝導方程式を用いた数値解析によるシミュレーション(<実験例2>)とにより確認したので以下これらの評価結果を示す。ちなみに、この実験例1,2で用いたレセプター7の複合材は、上記黒鉛粉末(鱗状黒鉛粉末)は、複合材の総体積を基準として70体積%含まれ、板厚が2mmに設定され、板の面方向(上述した熱伝導容易面であり、以下「XY方向」と称する)への熱伝導率が630W/m/K、厚み方向(以下「Z方向」と称する)への熱伝導率が35W/m/Kに設定されている。
Next, the heat dissipation characteristics of the
<実験例1>
1.試料
レセプター7の試料には、先に述べた複合材(図面中では「STC」の符号で示す)と銅の2種類を用いた。複合材は銅とグラファイトの合金である。
円板状プレートの試料を、それぞれ直径10mm,30mm,50mm,100mmの4種類のサイズに同じ製法で成形した。代表的な試料を図4に示す。また、熱画像を撮る際に、熱の反射をなくしより正確な温度変化を見るため、試料表面を耐熱塗料で黒く塗装した。ここで用いる銅のXY方向への熱伝導率は約400[W/m・K]である。
<Experimental example 1>
1. Sample As the sample of the
Samples of the disk-shaped plate were molded by the same manufacturing method into four types of diameters of 10 mm, 30 mm, 50 mm, and 100 mm, respectively. A representative sample is shown in FIG. Also, when taking a thermal image, the sample surface was painted black with a heat-resistant paint in order to eliminate the reflection of heat and see a more accurate temperature change. The thermal conductivity in the XY direction of copper used here is about 400 [W / m · K].
2.実験方法
実際のプレート状の風車のレセプターでは、沿面放電によって外側から電流が流れてきて、そこから熱がレセプター全体に広がっていく。しかし今回の実験では、試料の特性を調べるために図5のように試料の中心に電圧を印加して熱の広がり方を検証する。
電極系として針―平板電極系を用い、ギャップ長は1mmとし、針電極を高電圧側,平板電極をGNDとした。
2. Experimental method In the receptor of an actual plate-shaped windmill, current flows from the outside due to creeping discharge, and heat spreads from there to the entire receptor. However, in this experiment, in order to examine the characteristics of the sample, a voltage is applied to the center of the sample as shown in FIG.
A needle-plate electrode system was used as the electrode system, the gap length was 1 mm, the needle electrode was the high voltage side, and the plate electrode was GND.
本実験では室温状態(約20℃)で交流電圧を印加させ、放電する直前から図6に示すような測定系でサーモグラフィーカメラ(TVS−8500)によって連続撮影した。カメラの時間分解能は1/120秒毎に熱画像を1枚連続撮影でき、温度分解能は−40℃〜900℃の範囲、0.025℃刻みで温度測定できる。空間分解能は10μm刻みで温度計測が可能で、撮影した熱画像は熱画像解析ソフトウェア(PE Professional)で読み込み、放電した位置の温度Toの平均と標準偏差を求めた。また、放電した位置から5mm離れた位置の温度T'とし、10mmずつ離れた位置の温度T1,T2,T3,T4の平均と標準偏差を求めた。
In this experiment, AC voltage was applied at room temperature (about 20 ° C.), and images were continuously taken with a thermography camera (TVS-8500) in a measurement system as shown in FIG. 6 immediately before discharging. The time resolution of the camera can continuously take one thermal image every 1/120 second, and the temperature resolution can be measured in the range of -40 ° C to 900 ° C in increments of 0.025 ° C. The spatial resolution can measure the temperature in increments of 10 μm, and the photographed thermal image was read by thermal image analysis software (PE Professional), and the average and standard deviation of the temperature To at the discharged position were obtained. Moreover, the temperature T ′ at a
サーモグラフィーカメラの熱画像のサンプルを図7に示す。試料の撮影方向側には針の熱が反射して試料の温度と重なり正確な温度が測れないため、図7に示す通り各点の温度は横方向に測定した。 A sample thermal image from a thermographic camera is shown in FIG. The temperature of each point was measured in the lateral direction as shown in FIG. 7 because the heat of the needle reflected on the image capturing direction side of the sample and overlapped with the temperature of the sample, making it impossible to accurately measure the temperature.
3.実験結果
3.1 熱拡散実験
図8に時間に対する温度変化特性を示し、これによれば各試料の放電直下におけるの温度Toは、時間が経過するに伴って低下した。この時温度変化は複合材の方が銅に比べ傾きが大きいことが分かる。これは複合材の方が銅に比べて熱を拡散する能力に優れているためと考えられる。また、図9に示すように複合材の直径が違う場合でも同様の結果が得られた。
3. Experimental Results 3.1 Thermal Diffusion Experiment FIG. 8 shows the temperature change characteristics with respect to time, and according to this, the temperature To immediately below the discharge of each sample decreased with time. At this time, it can be seen that the temperature change is greater in the composite material than in copper. This is presumably because the composite material is superior in ability to diffuse heat compared to copper. Further, similar results were obtained even when the diameters of the composite materials were different as shown in FIG.
3.2 熱伝導実験
図10に時間に対する温度変化特性を示す。図10に示すように各試料の温度Toから10mm離れた位置の温度T1は、放電直後複合材の方が銅に比べて高くなりその後低下している。複合材の熱伝導性が銅よりも大きいため金属内部で温度が伝導し、周辺の温度が高くなったと考えられる。また図11に示すように複合材の直径が違う場合でも同様の結果が得られた。
このことは図12に示すサーモグラフィーカメラの熱画像からも確認できる。図12は放電してから熱が冷めていく5秒間を1秒毎に時系列に並べたもので、直径100mmの銅と複合材を比較した図であり、それぞれの温度ToとT1を右上に記し、直径を分かりやすくするために試料の外径に線を引いた。
3.2 Heat conduction experiment Figure 10 shows the temperature change characteristics with respect to time. As shown in FIG. 10, the temperature T1 at a
This can also be confirmed from the thermal image of the thermographic camera shown in FIG. FIG. 12 shows a time series of 5 seconds in which the heat cools down after discharge, and is a diagram comparing copper and a composite material having a diameter of 100 mm with the temperatures To and T1 at the upper right. In order to make the diameter easy to understand, a line was drawn on the outer diameter of the sample.
3.3 複合材自体の直径の大小による比較実験
図13,図14は複合材の直径を変化させたときの温度変化特性である。図13に示すように放電直下では温度にそれほど大きな差は現れなかった。一方、図14すように5mm離れた点では直径が大きい方が周辺の温度の上昇が小さく、温度が下がりやすいことが分かった。試料が小さい場合は試料内部に熱がこもり、飽和したことが原因と考えられる。このことは図15に示すサーモグラフィーカメラの熱画像からも確認できる。図15は放電してから熱が冷めていく5秒間を1秒毎に時系列に並べたもので、複合材の直径10mmと100mmを比較した図である。それぞれの温度ToとT'を右上に記しており、直径を分かりやすくするために試料の外径に線を引いた。
3.3 Comparative experiment with the diameter of the composite material itself FIGS. 13 and 14 show temperature change characteristics when the diameter of the composite material is changed. As shown in FIG. 13, there was no significant difference in temperature immediately under the discharge. On the other hand, as shown in FIG. 14, at a
4.考察
4.1 試料の発熱
以上の結果から、放電した瞬間放電直下で雷電流によってレセプターは発熱するが、複合材や銅などのレセプターの材質の違いによる発熱効果は小さく、同じ放電電圧,放電時間,放電電流であるため、銅と複合材の違いによる発熱の差は誤差程度と考えられる。銅や複合材のどちらの場合でもレセプターはGNDにつながる導電路の一部であり、レセプターよりも導電路の影響が大きい。また落雷による放電に伴い熱が飽和しない限りレセプターが溶けることはないため、熱の拡散性や伝導性の高いものがレセプターとして適していると考えられる。
4). 4. Consideration 4.1 Sample heat generation From the above results, the receptor heats up immediately under the momentary discharge, but the lightning effect is small due to differences in the material of the receptor such as composite material and copper, and the same discharge voltage and discharge time. Because of the discharge current, the difference in heat generation due to the difference between copper and composite material is considered to be an error level. In both cases of copper and composite materials, the receptor is a part of the conductive path leading to GND, and the influence of the conductive path is larger than that of the receptor. In addition, since the receptor does not melt unless the heat is saturated due to lightning discharge, it is considered that a substance having high heat diffusivity and conductivity is suitable.
4.2 試料の放熱
直径100mmの試料では熱の広がりは飽和状態にないと考えられるため、温度Toの累乗近似を行った結果を図16に示す。この図より各試料の累乗近似式から、放電して温度上昇してから室温状態である20℃まで下がるために要する時間を求めた。銅は9.9sかかるのに対して複合材は7.5sとなった。これより気温にまで下がるために要する時間は複合材の方が銅に比べて早いということが分かった。
4.2 Heat dissipation of sample Since it is considered that the spread of heat is not in a saturated state in a sample having a diameter of 100 mm, the result of power approximation of temperature To is shown in FIG. From this figure, the time required for the temperature to rise to 20 ° C., which is a room temperature state, was obtained after the discharge and temperature increase from the power approximation formula of each sample. Copper took 9.9 s while the composite was 7.5 s. It was found that the time required for the temperature to fall to this temperature was faster for the composite material than for copper.
5.まとめ
温度Toの温度低下は複合材の方が銅に比べて大きいことから複合材の方が熱拡散能力に優れていると分かった。また放電した位置より離れた点では放電直後の温度が複合材の方が銅に比べて大きいことも分かった。これより複合材の方が熱伝導能力に優れていると考えられ、複合材の方が銅よりも温度が下がるために要する時間が早いといえる。
また複合材の直径の大きさの違いを比較した場合、直径が大きい方が周辺の温度の上昇が小さく直径が小さい方が周辺の温度の上昇が大きくなることが分かった。試料が小さいと試料内部に熱がこもり飽和したことが原因と考えられる。したがって複合材の直径は大きい方が温度が下がりやすいといえる。
これらの結果から複合材の方が銅に比べて落雷時の温度上昇を低減させることができ、温度特性の観点からはレセプターとして用いるのに適していると考えられる。またその際のレセプターには、放電した際に熱の広がりを充分に吸収できるよう表面積を広くすることが望ましい。
5. Summary Since the temperature drop of the temperature To was larger in the composite material than in the copper, it was found that the composite material was superior in heat diffusion capability. It was also found that the temperature immediately after the discharge was higher in the composite material than in the copper at a point away from the discharge position. It can be said that the composite material is more excellent in heat conduction ability than this, and the composite material requires a shorter time for the temperature to drop than copper.
Further, when the difference in the diameter of the composite material was compared, it was found that the larger the diameter, the smaller the increase in the surrounding temperature, and the smaller the diameter, the larger the surrounding temperature. If the sample is small, it is considered that heat is accumulated inside the sample and is saturated. Therefore, it can be said that the larger the diameter of the composite material, the lower the temperature is.
From these results, it is considered that the composite material can reduce the temperature rise at the time of lightning compared to copper, and is suitable for use as a receptor from the viewpoint of temperature characteristics. Further, it is desirable that the receptor has a large surface area so that the spread of heat can be sufficiently absorbed when discharged.
<実験例2>
1.シミュレーション方法
このシミュレーションでは、熱伝導方程式の数値解析により、このレセプターに銅の1.5倍の熱伝導率を持つ複合材(以下図面中では「STC」の符号で表わす)を使用した場合の有効性について検討した。数値解析には二次元場の有限要素法を用い、結果を時刻毎の温度分布で表した。
2.熱伝導方程式と有限要素法解析
二次元場の熱伝導方程式は、絶対温度関数uを用いて次式で表せる。
<Experimental example 2>
1. Simulation method This simulation is effective when a composite material having a thermal conductivity 1.5 times that of copper (hereinafter referred to as “STC” in the drawing) is used for this receptor by numerical analysis of the heat conduction equation. The sex was examined. For the numerical analysis, a two-dimensional finite element method was used, and the results were expressed as temperature distribution at each time.
2. Heat conduction equation and finite element method analysis The two-dimensional heat conduction equation can be expressed by the following equation using the absolute temperature function u.
ここで、k、cおよびρは、それぞれ熱伝導率(W/mK)、比熱(J/kg)および比重(kg/m3)である。有限要素法は、解析領域を三角形の微小領域に分割して、境界条件の下に要素内の温度を要素の頂点(節点)の温度を用いて内挿し、時間微分項は時間差分を用いる。各節点で(1)式を適用し左辺と右辺の差を残差とし、残差の総和が領域全体で零になる様にすると、各節点の温度関数に関する多元連立方程式が立てられ、これをガウスの消去法で解くと、各節点の温度が求められる。材料定数のk、cおよびρは要素毎に与えることができる。 Here, k, c, and ρ are thermal conductivity (W / mK), specific heat (J / kg), and specific gravity (kg / m 3 ), respectively. In the finite element method, an analysis region is divided into triangular microregions, and the temperature in the element is interpolated using the temperature of the vertex (node) of the element under boundary conditions, and the time differential term uses a time difference. Applying equation (1) at each node and taking the difference between the left and right sides as the residual, so that the sum of the residuals is zero for the entire region, a multiple simultaneous equation for the temperature function of each node is established. Solving with Gaussian elimination gives the temperature at each node. The material constants k, c and ρ can be given for each element.
3.解析モデルと解析結果
図17にレセプターの解析モデルを示す。直径100mmのレセプターに幅10mmの強化プラスチック(FRP)をつけている。解析は、対称性から右半分の領域で行った。FRPの熱伝導はレセプターに比べて小さいので外周は外気温度10℃一定と仮定し、レセプターの一部に1000℃(一定)を与えた。
図18,図19に、レセプターが銅と複合材の場合について、レセプターの一部を外気温10℃から1000℃を与えたときの各時刻の温度分布を示す。また解析に用いた材料定数は表1の通りである。
3. Analysis Model and Analysis Results FIG. 17 shows the receptor analysis model. Reinforced plastic (FRP) with a width of 10 mm is attached to a receptor with a diameter of 100 mm. The analysis was performed in the right half region due to symmetry. Since the heat conduction of FRP is smaller than that of the receptor, it was assumed that the outside air temperature was constant at 10 ° C., and 1000 ° C. (constant) was given to a part of the receptor.
FIG. 18 and FIG. 19 show the temperature distribution at each time when a part of the receptor is given from 10 ° C. to 1000 ° C. when the receptor is copper and a composite material. The material constants used in the analysis are as shown in Table 1.
4.むすび
レセプターの熱伝導解析を行った結果、熱伝導率の大きい複合材の方が銅よりも早く温度上昇することが確かめられた。
4). Conclusion As a result of conducting a heat conduction analysis of the receptor, it was confirmed that the temperature of the composite material having a high heat conductivity increased faster than that of copper.
6 ブレード
7 レセプター(プレート,受雷部)
8 芯材
9 ボルト(受雷部)
11 引き下げ導線(ダウンコンダクタ)
12 周縁部
6
8 Core material 9 Bolt (lightning receiving part)
11 Down conductor
12 Perimeter
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015011469A JP6467683B2 (en) | 2015-01-23 | 2015-01-23 | Windmill lightning protection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015011469A JP6467683B2 (en) | 2015-01-23 | 2015-01-23 | Windmill lightning protection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016136009A JP2016136009A (en) | 2016-07-28 |
JP6467683B2 true JP6467683B2 (en) | 2019-02-13 |
Family
ID=56512143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015011469A Active JP6467683B2 (en) | 2015-01-23 | 2015-01-23 | Windmill lightning protection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6467683B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018100492A1 (en) * | 2018-01-11 | 2019-07-11 | Wobben Properties Gmbh | A method of detecting lightning strikes in a wind turbine rotor blade and lightning strike measuring system |
US11608815B2 (en) | 2018-11-20 | 2023-03-21 | Lm Wind Power A/S | Wind turbine blade lightning protection system |
DK3884156T3 (en) * | 2018-11-20 | 2024-07-22 | Lm Wind Power As | WINDMILL BLADE WITH LIGHTNING PROTECTION SYSTEM |
CN113417809B (en) * | 2021-05-25 | 2023-07-18 | 东方电气风电股份有限公司 | Visual lightning stroke monitoring method and system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005171916A (en) * | 2003-12-12 | 2005-06-30 | Kansai Electric Power Co Inc:The | Windmill blade |
JP4355793B2 (en) * | 2004-04-08 | 2009-11-04 | 学校法人金沢工業大学 | Wind power generator |
WO2008101506A2 (en) * | 2007-02-19 | 2008-08-28 | Vestas Wind Systems A/S | Wind turbine rotor blade and method of manufacturing such rotor blade |
EP2141356B1 (en) * | 2008-07-02 | 2011-11-30 | Siemens Aktiengesellschaft | Wind turbine blade with lightning receptor and method for protecting the surface of a wind turbine blade |
CN103154507B (en) * | 2010-07-23 | 2016-08-03 | 爱瑞柯国际公司 | Lightning protected receptor for wind turbine blade |
JP2013194645A (en) * | 2012-03-21 | 2013-09-30 | Mitsubishi Plastics Inc | Blade for wind power generation apparatus |
-
2015
- 2015-01-23 JP JP2015011469A patent/JP6467683B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016136009A (en) | 2016-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6467683B2 (en) | Windmill lightning protection device | |
Emam et al. | Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: Experimental investigations | |
Kothari et al. | Experimental investigation of the effect of inclination angle on the performance of phase change material based finned heat sink | |
Kothari et al. | Thermal performance of phase change material–based heat sink for passive cooling of electronic components: An experimental study | |
Tanda | Performance of solar air heater ducts with different types of ribs on the absorber plate | |
CN111699359A (en) | System and method for power transmission line monitoring | |
CN108344521B (en) | Transient heat flow sensor | |
EP2793006A2 (en) | Improved blackbody function | |
CN103378382B (en) | Energy storage system capable of preventing self overheating and method for preventing energy storage system from overheating | |
CN203590678U (en) | Spacecraft product vacuum wave-absorbing module | |
CN108917962B (en) | A kind of thin stick narrow gap wall temperature temperature measuring equipment under moving condition | |
Hutchinson et al. | Experimental observation of the stratified electrothermal instability on aluminum with thickness greater than a skin depth | |
Degefa et al. | Comparison of air-gap thermal models for MV power cables inside unfilled conduit | |
Tsanakas et al. | Passive and active thermographic assessment as a tool for condition-based performance monitoring of photovoltaic modules | |
Rana et al. | Lithium-ion battery thermal management system using MWCNT-based nanofluid flowing through parallel distributed channels: An experimental investigation | |
Burdt et al. | Recombination effects during expansion into vacuum in laser produced Sn plasma | |
Ranjan et al. | Thermal performance of nano-enhanced phase change material and air-based lithium-ion battery thermal management system: An experimental investigation | |
US20050201519A1 (en) | Device for generating x-rays having a heat absorbing member | |
JP5299360B2 (en) | Thermal resistance measurement jig, thermal resistance measurement method, and thermal grease evaluation method | |
Blauth et al. | Influence of the electrical resistance and wire size on the current carrying capacity of connectors | |
Canale et al. | Realization and experimental characterizations by Schlieren optics of an ionic wind cooling system for high power LEDs | |
He et al. | A new method for measuring thermal characteristics of multistage depressed collectors | |
Raj et al. | Nano fluids for improving efficiency in wind turbine cooling system | |
JP2018166368A (en) | Thermoelectric generator | |
CN104391004B (en) | A kind of test device and method of lossless light fixture heat dispersion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6467683 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |