JPS61121218A - Vacuum breaker - Google Patents

Vacuum breaker

Info

Publication number
JPS61121218A
JPS61121218A JP24232784A JP24232784A JPS61121218A JP S61121218 A JPS61121218 A JP S61121218A JP 24232784 A JP24232784 A JP 24232784A JP 24232784 A JP24232784 A JP 24232784A JP S61121218 A JPS61121218 A JP S61121218A
Authority
JP
Japan
Prior art keywords
electrode
weight
electrodes
vacuum
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24232784A
Other languages
Japanese (ja)
Inventor
隆二 渡辺
和田 昭
寿 安藤
清水 誠喜
黒沢 幸夫
岩下 喜代次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24232784A priority Critical patent/JPS61121218A/en
Publication of JPS61121218A publication Critical patent/JPS61121218A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は真空しゃ断器に係り、特に高耐電圧及び耐溶着
性を有する真空しゃ断器用電極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a vacuum breaker, and more particularly to an electrode material for a vacuum breaker having high withstand voltage and welding resistance.

〔発明の背景〕[Background of the invention]

従来から、真空しゃ断器用電極として具備すべき電気的
あるいは物理的な特性としては、(1)耐電圧特性が高
いこと、(2)耐溶着特注がすぐれていること、(3)
大電流しゃ断能力が大きいこと、(4)さい断電流の発
生が少ないこと、(5)ガス放出量の少ないこと、等が
挙げられてきた。特に(1)〜(8)の特性は真空しゃ
断器を大容量化する上で非常に重要な因子である。
Traditionally, the electrical or physical properties that vacuum breaker electrodes should have are (1) high withstand voltage characteristics, (2) excellent custom welding resistance, and (3)
The following have been mentioned: (4) low generation of cutting current, (5) low amount of gas released, etc. In particular, the characteristics (1) to (8) are very important factors in increasing the capacity of a vacuum breaker.

従来からCuをベースとした各種合金が上記電極として
多く用いられてきている。(1)の耐電圧特性を向上さ
せるためにはCu中にpe、Coなどを含有したものが
代表的である。又、耐溶着特性を向上させるためには1
3i、pbなどCuにあまり固溶しない低融点・高蒸気
圧元素を微量添加したものが実用化されており、Cu−
Co−13i。
Conventionally, various alloys based on Cu have been widely used as the above-mentioned electrodes. In order to improve the withstand voltage characteristics of (1), it is typical to use Cu containing pe, Co, etc. In addition, in order to improve the welding resistance characteristics, 1.
Products with trace amounts of low melting point, high vapor pressure elements such as 3i, pb, etc. that do not dissolve in solid form in Cu have been put into practical use, and Cu-
Co-13i.

pb系が良く知られている。一方、近年になり各1受変
電設備の大容量化が進むにつれ、特に高電圧のもとで犬
′r!L流をしゃ断しなければならない要望が高まって
きた。ところが上記したCuをベースとした合金電極で
は、10kV以上の高電圧下で40〜100kAの大電
流をしゃ断することは非常に困類となってきている。そ
の理由としては、Cuをベースとしたものでは上記した
耐電圧特性に限界があり、耐溶着特性にも問題があるか
らである。
The pb series is well known. On the other hand, in recent years, as the capacity of each single power receiving and substation equipment has increased, especially at high voltages, dog'r! There has been a growing demand to cut off the L-style. However, with the above-mentioned Cu-based alloy electrode, it has become very difficult to cut off a large current of 40 to 100 kA under a high voltage of 10 kV or higher. The reason for this is that Cu-based materials have a limit in the above-mentioned withstand voltage characteristics and also have problems in welding resistance.

最近、上記大容量用真空しゃ断器の電極材料として、C
uをベースとしたものの他に、複合金属による電極を開
示した特許は非常に多くあり、例えば特公昭57−21
22号では1600C以上の融点を有する焼結金属体中
にCut Ag等を溶浸した複合金属が挙げられている
。この複合金属は、例えば、Cr焼結体の如き硬く、か
つ脆い性質を有するスケルトン中にCu、Cu合金を浸
透させたものであることから、短絡電流をしゃ断した後
でも接触部は簡単に剥離し、耐溶着特性がすぐれている
。この点で大電流しゃ断向きの材料であると言える。し
かしながら、この材料は高電圧下において、大電流しゃ
断すると、所定のしゃ断性能が得られにくいという欠点
がある。一般的にW。
Recently, C
In addition to those based on U, there are many patents disclosing electrodes made of composite metals.
No. 22 mentions a composite metal in which Cut Ag or the like is infiltrated into a sintered metal body having a melting point of 1600C or higher. Since this composite metal is made by infiltrating Cu and Cu alloy into a skeleton that is hard and brittle, such as a Cr sintered body, the contact part easily peels off even after cutting off the short circuit current. It has excellent welding resistance. In this respect, it can be said that it is a material suitable for interrupting large currents. However, this material has a drawback in that it is difficult to obtain a predetermined cutoff performance when a large current is cut off under high voltage. Generally W.

’l’a、Moのような高融点金属は熱電子放射率が高
く、そのため電極間の耐・1圧特性が悪い。またC’r
、Zr、Tiの如き活性な元素は、真空中において高温
下にさらされると蒸発しやすく、このため電極間の耐電
圧特性はあまり良くない。
High melting point metals such as 'l'a and Mo have high thermionic emissivity and therefore have poor inter-electrode resistance and single pressure characteristics. Also C'r
Active elements such as , Zr, and Ti tend to evaporate when exposed to high temperatures in a vacuum, and therefore the withstand voltage characteristics between the electrodes are not very good.

以上のような従来材料の欠点を補なうべく新しい材料と
して、すでにFe族元素の焼結体中にAgもしくはAg
合金を溶浸した複合金属による電極があシ、特開昭57
−9019号公報で知られている。この発明は、例えば
COの如き高耐電圧特性を有するpe族元素をスケルト
ンとし、その間隙に低サージ性の優れたkg+ Ag 
 Te+Ag−Se系合金を真空溶浸した複合金属によ
る電極であり、非常にさい断電流が低く、かつ高いしゃ
断性能を有する。
In order to compensate for the drawbacks of conventional materials, a new material has already been developed that contains Ag or Ag in a sintered body of Fe group elements.
Electrode made of composite metal infiltrated with alloy, JP-A-57
It is known from the publication No.-9019. This invention uses a PE group element such as CO, which has high withstand voltage characteristics, as a skeleton, and a kg+ Ag with excellent low surge properties is placed in the gap between the skeletons.
It is an electrode made of a composite metal in which a Te+Ag-Se alloy is vacuum infiltrated, and has an extremely low cutting current and high breaking performance.

しかし、この電極は耐電圧特性の低いAgを主成分とす
ることから、さらに高い電圧階級を有する真空しゃ断器
に適用することには無理があることが判った。以上のよ
うな従来技術に対し、今後、耐電圧特性及び大電流しゃ
断能力とも同時に高く、耐溶着特性に優れ、望ましくは
低サージ性を備えた大容量用の新しい電極を開発する必
要があった。
However, since this electrode mainly contains Ag, which has low withstand voltage characteristics, it has been found that it is unreasonable to apply it to a vacuum breaker having a higher voltage class. In contrast to the conventional technology described above, it was necessary to develop a new electrode for large capacity use that has high withstand voltage characteristics and high current breaking ability, excellent welding resistance, and preferably low surge characteristics. .

本発明者は、このような背景のもとて特開昭59−16
3726号公報に示す電極を開発した。後述する本発明
は、これ全頁に改良したものでおる。
Against this background, the inventors of the present invention
We have developed an electrode shown in Publication No. 3726. The present invention, which will be described later, is an improvement on all pages.

〔発明の目的〕[Purpose of the invention]

本発明の目的は耐電圧及び耐溶着特性が優れ、大電流し
ゃ断能力が大きい電極を有する大容量真空しゃ断器を提
供することにある。
An object of the present invention is to provide a large-capacity vacuum breaker having electrodes with excellent withstand voltage and anti-welding properties and large current interrupting ability.

〔発明の概要〕[Summary of the invention]

本発明は、真空容器とその真空容器内に配置された一対
の接点電極を有する真空しゃ断器において、前記電極の
少なくとも一方は、COを主成分とした多孔質体の空隙
に、Cut主成分とし、AgとCO及び更にCuに対し
て室温で、実質的に固溶量を持たない低融点・高蒸気圧
元来を含む合金が溶浸された部材で得成されていること
を特徴とする真空しゃ断器にある。
The present invention provides a vacuum breaker having a vacuum container and a pair of contact electrodes disposed in the vacuum container, in which at least one of the electrodes has CO as a main component in a void of a porous body containing CO as a main component. , is characterized in that it is obtained from a member infiltrated with an alloy containing low melting point and high vapor pressure elements with substantially no solid solution amount at room temperature for Ag, CO, and further Cu. It's in the vacuum breaker.

発明者らは、Fe族元素の中で導電性が良く、耐電圧特
性が優れ、しかも大電流しゃ断能力の大きいCo粉末を
スケルトンとして、このスケルトン原形に各徨導電性金
属を溶浸させた。導電性金属としてはCu及び各復Cu
合金をとりめげた。
The inventors used Co powder, which has good conductivity among Fe group elements, excellent withstand voltage characteristics, and high current cutting ability, as a skeleton, and infiltrated each extra-conductive metal into this skeleton prototype. As conductive metals, Cu and various Cu
I was able to get the alloy.

ここで単純にCoスケルトン中に純Cut溶浸すること
は、融点差が少ない、おるいは部分的に溶解するなどの
理由から非常に難かしいことが判った。すなわち、Co
スケルトンの間隙にCuの溶湯が浸入すると同時に互い
に溶解、浸食が進み、このためスケルトン原形が失なわ
れてしまう。そこで本発明者らは、上記スケルトンに溶
浸する溶浸部材を各種検討した。溶浸合金としてAgあ
るいはAg合金は低サージ性は優れるが高耐圧用として
は不適当であるため、主として各種Cu合金による溶浸
部材をとりあげた。Cu合金中の添加元素としてはCu
の融点を下げることができ、それ自身が真空しゃ断器用
パルプ内において内圧を異常に劣化させることのないよ
うなものを選んだ。
Here, it has been found that it is extremely difficult to simply infiltrate pure Cut into the Co skeleton due to the small difference in melting point, or partial melting. That is, Co
As the molten Cu enters the gaps between the skeletons, they simultaneously dissolve and erode each other, causing the original shape of the skeleton to be lost. Therefore, the present inventors investigated various infiltration members that infiltrate the above-mentioned skeleton. As an infiltration alloy, Ag or an Ag alloy has excellent low surge properties, but is not suitable for high pressure applications, so we mainly focused on infiltration members made of various Cu alloys. Cu as an additive element in Cu alloy
We selected a material that can lower the melting point of the pulp and that itself will not abnormally deteriorate the internal pressure within the vacuum breaker pulp.

これらの元素としては、kt、Ag量 La+ Mg+
Mn、Ni、soなどをとシあげてみた。これらの元素
を配合した各種Cu合金を真空中で溶解し、この溶湯中
にCoスケルトンを浸漬し、各;f!icu合金をCo
スケルトンに溶浸させた。溶浸時間は3〜5分とし、C
oスケルトンの一部を銅合金中に溶解させた。実験の結
果、溶浸しや丁く、又、耐電圧特性、及び大電流しゃ断
性能が大きい材料としては、CoスケルトンにCu−A
g合金を溶浸させた材料が優れていた。この材料は25
IAC8%以上の導電性を有し、定格tiも大きくとれ
ることが判った。このCo−(Cu−八g)系溶浸合金
のCoスケルトンの気孔率は10〜60体積%(Cu−
Ag合金の溶浸量で10〜60重量%)までの製作が容
易でちゃ、60%を越えるスケルトンの製造が困難とな
る。好ましくは30〜60重量%である。Cu−Ag溶
浸部材のAg量はCuに対し5′i量%以上で溶浸性を
向上させるが、溶浸性が不十分である。従って、10%
以上が好ましく、耐圧性の点から50重量%が好ましい
These elements include kt, Ag amount La+ Mg+
I tried to list Mn, Ni, so, etc. Various Cu alloys containing these elements are melted in vacuum, a Co skeleton is immersed in the molten metal, and each; f! Co ICU alloy
Infiltrated into the skeleton. The infiltration time is 3 to 5 minutes, and C
o Part of the skeleton was dissolved in copper alloy. As a result of the experiment, Co skeleton and Cu-A were found to be materials with high infiltration, dielectric strength, and high current breaking performance.
The material infiltrated with g-alloy was superior. This material is 25
It was found that it has a conductivity of IAC 8% or more and can have a large rated ti. The porosity of the Co skeleton of this Co-(Cu-8g) based infiltration alloy is 10 to 60% by volume (Cu-
If it is easy to manufacture a skeleton with an Ag alloy infiltration amount of 10 to 60% by weight, it becomes difficult to manufacture a skeleton with an infiltration amount of over 60%. Preferably it is 30 to 60% by weight. When the amount of Ag in the Cu-Ag infiltrated member is 5'i% or more relative to Cu, the infiltration property is improved, but the infiltration property is insufficient. Therefore, 10%
The above is preferable, and from the viewpoint of pressure resistance, 50% by weight is preferable.

10〜50重量%の範囲が溶浸しやすく、又各種電気的
特性を満足することが判った。特に、Agが15%以上
では製造歩留シがよく、高い耐圧性を有する点から15
〜20%が好ましく、最も17%が良い。λg15%で
は歩留りが若干劣シ、20%では十分過ぎる。
It was found that a content in the range of 10 to 50% by weight facilitates infiltration and satisfies various electrical properties. In particular, when the Ag content is 15% or more, the production yield is good and the pressure resistance is high.
~20% is preferred, most preferably 17%. When λg is 15%, the yield is slightly inferior, and when λg is 20%, it is more than sufficient.

又、Agの量が50%を越えると耐電圧特性があまり良
くなくなる。接点電極全体に対し、Agは2〜20重量
%特に4〜12λ量%が好ましい。
Furthermore, if the amount of Ag exceeds 50%, the withstand voltage characteristics will not be very good. The amount of Ag is preferably 2 to 20% by weight, particularly 4 to 12% by weight, based on the entire contact electrode.

COを主成分とするスケルトンは、実質的にC0からな
るものが好ましい。
The skeleton containing CO as a main component is preferably composed essentially of CO.

更に本発明はco −(Cu−Ag )系の溶浸合金に
Cuに対し固体状態で実質的に固溶量を持たないBi、
Pb、Te、Seのいずれか一種およびコバルトを含有
し、優れた耐溶着特性及び耐圧特性が得られるものであ
る。これらのBi、pb等は、あらかじめCu −A 
g合金を溶解製作するさいに添加しておけばよい。Bi
、−pb等の含有量はCu−Ag溶浸部材に対し、Cu
の固溶限以上、最大3重量%で優れた耐溶着特性を示す
。これよりも多く含有すると、耐電圧特性が下がシ、従
来材と同程度になってしまう。望ましくはBi。
Furthermore, the present invention provides a co-(Cu-Ag) based infiltration alloy containing Bi, which has substantially no solid solution amount in solid state with respect to Cu.
It contains one of Pb, Te, and Se and cobalt, and provides excellent welding resistance and pressure resistance. These Bi, pb, etc. are prepared in advance by Cu-A
It is sufficient to add it when melting and manufacturing g-alloy. Bi
, -pb, etc. for the Cu-Ag infiltrated member.
It exhibits excellent welding resistance at a maximum of 3% by weight above the solid solubility limit of . If it is contained in an amount larger than this, the voltage resistance properties will deteriorate to the same level as conventional materials. Preferably Bi.

pb量は0.1重量%以上、1重食%以下という微量で
ある。特に、電極全体ではO,OS〜1%が好ましく、
更に0.05〜0.3重量%が好ましい。
The amount of Pb is very small, 0.1% by weight or more and less than 1% by weight. In particular, O,OS~1% is preferable for the entire electrode,
Further, 0.05 to 0.3% by weight is preferable.

CO童は5重重%以下、特に0.5〜3重量%が好まし
い。このCOはCOスケルトンの一部を溶浸合金中へ溶
は込ますことによって含有させてもよい。勿論、溶浸合
金中に最初から含有させておくのにこしたことはない。
For CO children, the content is preferably 5% by weight or less, particularly 0.5 to 3% by weight. The CO may be incorporated by infiltrating a portion of the CO skeleton into the infiltrated alloy. Of course, it is better to include it in the infiltrated alloy from the beginning.

このような材料は耐電正射 特性が後れる他に高い大電流しゃ断性能及び高戸着特性
を備えている。又、一般のCu1 あるいは3重量%以
下のBi、pbを含有した従来電極では、小電流しゃ断
時のさい断電流はおおよそ8〜16Aという大きな値で
あるが、本発明材は3〜6Aという低いさい断電流特性
を示すことが判り、低サージ特性も兼備させることがで
きる。なお、本発明においてpb、 Bi、Te、 S
eのうちではBiが最も好ましくその量は0.05〜0
.3重量%が好ましい。
Such materials have not only poor electric radiation resistance but also high large current interruption performance and high contact characteristics. In addition, conventional electrodes containing ordinary Cu1 or 3% by weight or less of Bi or PB have a large cutting current of approximately 8 to 16 A when a small current is cut off, but the present invention has a low cutting current of 3 to 6 A. It has been found that it exhibits cutting current characteristics, and can also have low surge characteristics. In addition, in the present invention, pb, Bi, Te, S
Among e, Bi is most preferable and its amount is 0.05 to 0.
.. 3% by weight is preferred.

本発明材は接点電極のみ、又は電極全体に適用すること
かでさる。本発明材は接点′電極のみに適用するのが好
ましい。
The material of the present invention can be applied only to the contact electrode or to the entire electrode. Preferably, the material of the present invention is applied only to the contact electrode.

本発明は、真空容器と、その容器内に配置されれ一対の
電極含有するものにおいて、該電極は接点電極と〈該接
点電極を保持するアーク、嚇励蒐極と、該アーク扇sb
電極全保持するコイル′!!極とを有し、前記接点電極
間の空隙に平行磁界を発生させるように前記アーク駆動
用電極及びコイル電極が配置され、前記接点電極はコバ
ルトを主成分とするスケルトンの空隙に、銅を主成分と
し、銀、コバルト及び銅に対して室温で実質的に固溶量
を持たない低融点・高蒸気圧元素を含む銅合金が溶浸さ
れていることを特徴とする真空しゃ断器におる。
The present invention includes a vacuum container and a pair of electrodes disposed in the container, the electrodes including a contact electrode, an arc holding the contact electrode, a threat/excitation electrode, and an arc fan sb.
Coil that holds all the electrodes! ! The arc driving electrode and the coil electrode are arranged so as to generate a parallel magnetic field in the gap between the contact electrodes, and the contact electrode has a cobalt-based skeleton and a cobalt-based skeleton. The vacuum breaker is characterized in that it is infiltrated with a copper alloy containing a low melting point, high vapor pressure element that has no substantial solid solution amount at room temperature with respect to silver, cobalt and copper at room temperature.

アーク駆動用電極に等間隔に複数本の溝を左右対称に設
けることにより電極中での渦11流を低減することがで
きる。この電極は接点電極よりもアーク発生電圧が低い
ものが使用される。通電中は接点電極によって通電され
るが、・電流しゃ断時に発生するアークをアーク駆動用
電極と接点電極で発生するように接点電極間の空隙に平
行磁界が形成される。平行磁界は、アーク駆動用電極に
形成される溝と、コイル電極の形状によって得られる。
By symmetrically providing a plurality of grooves at equal intervals on the arc driving electrode, the vortex 11 flow in the electrode can be reduced. This electrode has a lower arc generation voltage than the contact electrode. During energization, current is passed through the contact electrode, but a parallel magnetic field is formed in the gap between the contact electrodes so that the arc that occurs when the current is cut off is generated between the arc driving electrode and the contact electrode. A parallel magnetic field is obtained by the groove formed in the arc driving electrode and the shape of the coil electrode.

アーク駆動用電極は重量で、C010〜30%、Agl
O%以下及び残部が実質的にCuからなる溶製合金が好
ましい。
The arc driving electrode has a weight of C010-30%, Agl
It is preferable to use an ingot alloy in which the content of Cu is 0% or less and the balance is substantially made of Cu.

コイル電極は、リング状のリング部と、該リング部の円
の軸中心部を通る一本のアーム部と、前記リング部に設
けられた前記アーク駆動用電極とコイル電極とを接続す
る凸部とを有する接続部とからなり、銅からなるものが
好ましい。これにより電極に流れる電流の方向が電極の
左右で互いに反対の方向に流れ、平行磁界を形成する。
The coil electrode includes a ring-shaped ring part, an arm part passing through the axial center of a circle of the ring part, and a convex part connecting the arc driving electrode and the coil electrode provided on the ring part. and a connection portion having a connection portion, preferably made of copper. As a result, the current flowing through the electrodes flows in opposite directions on the left and right sides of the electrode, forming parallel magnetic fields.

更に、アーム部の軸中心部はリング状になるのが好まし
い。
Further, it is preferable that the axial center portion of the arm portion is ring-shaped.

本発明の真空しゃ断器は、10Aでのさい断電流が最大
で6A以下、平均で4.5A以下;2−5mギャップで
の平均耐圧が55kV以上及び直径20調、半径10+
mの球面によるしゃ断電流が9kA以上である金属部材
によって構成した電極が用いられる。本発明の電極はC
u−1重量%pb溶製合金よりなる電極と比較して、上
述の形状でのしゃ断電流が130%以上である。しゃ断
電流は電極の直径によって増加するが、その直径の約1
.3乗で高くなる。金属部材は金属をスケルトンとする
空隙に溶湯を溶浸させた合金が好ましい。
The vacuum breaker of the present invention has a maximum breaking current of 6 A or less at 10 A, and an average of 4.5 A or less; an average withstand voltage of 55 kV or more in a 2-5 m gap; a diameter of 20 mm, and a radius of 10 +
An electrode made of a metal member having a breaking current of 9 kA or more due to the spherical surface of m is used. The electrode of the present invention is C
Compared to an electrode made of a u-1 wt % PB alloy, the cut-off current in the above shape is 130% or more. The cut-off current increases with the diameter of the electrode, but approximately 1 of the diameter
.. It increases to the third power. The metal member is preferably an alloy in which molten metal is infiltrated into the voids of which the metal skeleton is used.

コバルトを主成分とするスケルトンは、機械的に搗砕さ
れた粉末を容器に充填し、加圧成形又はこの粉末を容器
に充填し、加圧成形せずに振動を与えて密着させた後、
焼結する方法等によシ製造することができる。スケルト
ンの気孔率は10〜60体積%が好ましく、それにより
銅合金溶浸量は10〜60重量%となる。焼結温度は9
00〜1000Cが好ましい。
The skeleton, whose main component is cobalt, is produced by filling a container with mechanically crushed powder and press-molding it, or by filling the powder into a container and applying vibrations to make them adhere without pressure-molding.
It can be manufactured by a method such as sintering. The porosity of the skeleton is preferably 10 to 60% by volume, so that the amount of copper alloy infiltration is 10 to 60% by weight. The sintering temperature is 9
00-1000C is preferable.

銅合金を溶浸させるには、溶浸段階に先だち目標の組成
の銅合金を予め溶製して得た合金を用いるのが最良であ
る。一般に、低融点・高蒸気圧元素は銅−銀合金の溶製
に際して合金化させにくいので、母合金としておくのが
良い。この溶浸には溶湯の温度及び浸漬時間が重要な要
因である。スケルトンのコバルトが溶浸合金中に5重量
%以下となるようにコントロールするのが好ましい。よ
り好ましくは3重量%以下である。電極中に含有される
ガスは使用中に出て、真空容器の真空度を低め、しゃ断
能力を低下させるので、十分なガス抜き処理をすること
が望ましい。
For infiltration of copper alloys, it is best to use an alloy obtained by pre-melting a copper alloy of the target composition prior to the infiltration step. In general, elements with low melting points and high vapor pressures are difficult to alloy when melting a copper-silver alloy, so it is better to use them as a mother alloy. The temperature of the molten metal and the immersion time are important factors in this infiltration. It is preferable to control the amount of cobalt in the skeleton to be 5% by weight or less in the infiltrated alloy. More preferably, it is 3% by weight or less. The gas contained in the electrode comes out during use, lowering the degree of vacuum in the vacuum container and reducing the shutoff ability, so it is desirable to carry out sufficient degassing treatment.

コバルトを主成分とするスケルトンは、実質的にコバル
トからなるものが好ましい。コバルトはlAC325〜
30%であシ、電流しゃ断率が最も高い。コバルト粉末
は直葎30〜70μmが好ましく、特に40〜50μm
の同じ直径を有する粉末が好ましい。銅合金浴没後のコ
バルトの粒径は直径10〜50μmが好ましい。このよ
うな粒径の粉末を使用することにより溶浸が容易である
とともに耐圧及び電流しゃ断特性の高いものが得られる
The skeleton containing cobalt as a main component is preferably composed essentially of cobalt. Cobalt is lAC325~
At 30%, the current interruption rate is the highest. Cobalt powder preferably has a diameter of 30 to 70 μm, particularly 40 to 50 μm.
Powders having the same diameter are preferred. The particle size of cobalt after being immersed in the copper alloy bath is preferably 10 to 50 μm in diameter. By using a powder having such a particle size, it is possible to easily infiltrate the powder and to obtain a powder having high withstand voltage and current cutoff characteristics.

〔発明の実施例〕[Embodiments of the invention]

実施例1 マトリックスとなるCoスケルトンの製作方法としては
、機械的に搗砕された一250〜+325meshのC
O粉末を水素雰囲気中で約500〜700Cの温度で焼
鈍し、その後、油圧プレスを用いて所定の気孔率を有す
るように仮成形した。
Example 1 As a method for producing a Co skeleton serving as a matrix, mechanically crushed -250 to +325 mesh C
The O powder was annealed at a temperature of about 500 to 700 C in a hydrogen atmosphere, and then preformed using a hydraulic press to have a predetermined porosity.

これらを更に、900〜1000Cの高い温度で水素雰
囲気中で仮焼結した。焼結後、更に1000〜1100
Cの高温で真空脱ガスを施し、吸蔵ガスを徹底的に除去
した。Cu−Ag−Co−低融点・高蒸気圧元素溶浸合
金は以下のようにして製造した。無酸素銅(OFC)及
び99.99重量%純Agショットを内径60rrrr
xカーボンるつぼ中にセットし、これを1〜5×110
−5IIIIIIHの真空中で高周波溶解し、Cu−A
gが溶融したことを確認後、高純度Arガスを1気圧分
封入してから低融点・高蒸気圧元素を所定量添加した。
These were further pre-sintered at a high temperature of 900 to 1000C in a hydrogen atmosphere. After sintering, further 1000~1100
Vacuum degassing was performed at a high temperature of C to thoroughly remove the occluded gas. A Cu-Ag-Co-low melting point, high vapor pressure elemental infiltration alloy was manufactured as follows. Oxygen-free copper (OFC) and 99.99 wt% pure Ag shot with an inner diameter of 60rrrr
x Set it in a carbon crucible, and set it in a 1 to 5 x 110
-5IIIIIIH high frequency melting in vacuum, Cu-A
After confirming that g was melted, 1 atm of high-purity Ar gas was sealed, and then a predetermined amount of a low-melting-point, high-vapor-pressure element was added.

このようにすれば13i等の蒸発損を防ぎ、かつ、かな
りガスフリーな溶浸合金が得られる。
In this way, evaporation loss of 13i etc. can be prevented and an infiltrated alloy that is considerably gas-free can be obtained.

次に上記したCoスケルトン及び溶浸合金を用いて電&
ヲ得る方法について述べる。Coスケルトンをカーボン
製のホルダに載せ、高周波加熱により予熱しておく。同
時に下部に母合金溶解るつぼ中に前記した溶浸合金を入
れておき、これを高岡′M、A、空溶解する。Coスケ
ルトンを約1000Cに予熱し、さらに母合金が完全に
溶解した事を確認したら、スケルトンを溶浸合金溶湯中
に浸漬させる。所定直置で3〜5分間浸漬しCoスケル
トンの一部を溶浸合金中に溶解させた後、スケルトン?
上部に引上げ、そのまま炉冷する。以上の操作によって
充てん密度が97〜99%の優れた溶浸合金が得られる
。こうして得られた本発明に係る合金の一例として70
%Co−30%(84%Cu−15%Ag−3%C0−
1%13i)の組成を有する溶浸合金の顕微鏡組織(1
00倍)を観察した結果、灰色の大きな粒子と、基地の
白色部分のCu −A g −Co −B i合金から
なっていた。
Next, using the Co skeleton and infiltrated alloy described above,
I will explain how to obtain it. The Co skeleton is placed on a carbon holder and preheated by high frequency heating. At the same time, the above-mentioned infiltrated alloy is placed in a master alloy melting crucible in the lower part, and is empty-melted. After preheating the Co skeleton to about 1000C and confirming that the master alloy has completely melted, the skeleton is immersed in the molten infiltrated alloy. After soaking for 3 to 5 minutes in a predetermined direct position to dissolve a part of the Co skeleton into the infiltrated alloy, the skeleton?
Raise it to the top and let it cool in the furnace. By the above operations, an excellent infiltrated alloy with a filling density of 97 to 99% can be obtained. As an example of the alloy according to the present invention obtained in this way, 70
%Co-30% (84%Cu-15%Ag-3%C0-
Microstructure of an infiltrated alloy with a composition of 1% (13i)
00 times), it was found that it consisted of large gray particles and a Cu-Ag-Co-Bi alloy in the white part of the base.

以上の製造法によ、i>、Coをペースとした各種溶浸
合金を作製し、それらの合金から直径20閣及び各電極
接触面半径Lowの球面に仕上げた電極を採取し、組立
式排気セットによる真空パルプしゃ断器験機を用いて各
種電気的性能を調べた。
By the above manufacturing method, various infiltration alloys with i>, Co as a base were produced, and electrodes finished with a spherical surface with a diameter of 20 mm and a radius of each electrode contact surface of Low were collected from these alloys, and an assembled type exhaust gas was used. Various electrical performances were investigated using a set of vacuum pulp breaker test equipment.

電極材料の成分組成を第1表に示す。Table 1 shows the composition of the electrode materials.

第    1    表 耐電圧しゃ断試験は、まずAC300Aを1゜回しゃ断
させて電極をクリーニングした後、インパルス電圧を5
kVステツプで印加して放電電圧を測定した。この時の
電極間隙は2.5mである。さい断電流測定はACIO
Aの電流をしゃ断した場合に発生するさい断電流を10
0回測定し、その最大と平均値を求めた。電流しゃ断性
能はso。
Table 1: For the withstand voltage cutoff test, first cut off AC300A for 1° to clean the electrodes, then reduce the impulse voltage to 5°.
The discharge voltage was measured by applying it in kV steps. The electrode gap at this time was 2.5 m. ACIO for cutting current measurement
The cutting current that occurs when the current of A is cut off is 10
Measurement was performed 0 times, and the maximum and average values were determined. Current breaking performance is so.

Aステップでしゃ断を繰返してそのしゃ断が不能になっ
たときの電流として、汎用的に用いられているCu−1
重量%pb合金の最大しゃ断電流を100%とし、それ
との比較値(%)で示した。
Cu-1, which is commonly used as the current when the A step is repeatedly cut off and becomes impossible to cut off.
The maximum breaking current of the weight% PB alloy is assumed to be 100%, and the comparison value (%) is shown.

又、本発明材及び従来材とも、いずれも最大しゃ断電流
でしゃ断したときの電極表面状態が良好であシ、耐溶着
特性が良く、特にCoに30〜60重量%のCu −A
 g−Co−B i合金を溶浸した材料が優れている。
In addition, both the inventive material and the conventional material have good electrode surface conditions when cut off at the maximum cutoff current, and have good welding resistance, especially when Co contains 30 to 60% by weight of Cu-A.
Materials infiltrated with g-Co-Bi alloy are superior.

なお、Cu−lPb合金のしゃ断電流は約7kAであシ
、その合金は粒界に。
Note that the cutoff current of the Cu-lPb alloy is approximately 7 kA, and the alloy is located at grain boundaries.

Pb・がある溶解合金である。It is a molten alloy with Pb.

第4図はAg30重量%の溶浸合金の溶浸量と平均耐圧
との関係を示す線図である。図中の数字は合金の墓であ
る。図に示す如く、Coスケルトン中の溶浸合金量が増
すにつれて平均耐圧が急激に低下する。耐圧特性の点か
ら、溶浸合金は40重量%以下が好ましい。ノに8.9
の従来合金は同じ溶浸量でも耐圧が低いことが明らかで
ある。
FIG. 4 is a diagram showing the relationship between the amount of infiltration of an infiltrated alloy containing 30% by weight of Ag and the average withstand pressure. The numbers in the diagram are alloy tombs. As shown in the figure, as the amount of infiltrated alloy in the Co skeleton increases, the average withstand pressure decreases rapidly. From the viewpoint of pressure resistance characteristics, the content of the infiltrated alloy is preferably 40% by weight or less. 8.9 to no
It is clear that the conventional alloy has a lower pressure resistance even with the same amount of infiltration.

第5図は同じ<Ag30重量%の溶浸合金の溶浸量と電
流しゃ断性能との関係を示す線図である。
FIG. 5 is a diagram showing the relationship between the amount of infiltration and the current interrupting performance of the same infiltrated alloy with <30% Ag by weight.

図に示す如く、本発明合金は電流しゃ断性能が従来合金
の48.9と同じ溶浸量でも顕著にすぐれていることが
分る。特に、溶浸量が10〜60重量%で、130%以
上の電流しゃ断性能が得られる。
As shown in the figure, it can be seen that the current interrupting performance of the alloy of the present invention is significantly superior to that of the conventional alloy, which is 48.9, even with the same infiltration amount. In particular, when the amount of infiltration is 10 to 60% by weight, a current interrupting performance of 130% or more can be obtained.

第6図はAg30重量%の溶浸合金の溶浸量とさい断電
流との関係を示す線図である。本発明材は溶浸量が10
%程度でも明らかに最大さい断電流が6A以下であり、
平均さい断電流が4.5A以下である。
FIG. 6 is a diagram showing the relationship between the amount of infiltration of an infiltrated alloy containing 30% by weight of Ag and the cutting current. The infiltration amount of the present invention material is 10
%, the maximum breaking current is clearly less than 6A,
The average cutting current is 4.5A or less.

第7図は溶浸量30〜60重量%の溶浸合金中のAg量
と平均耐圧、電流しゃ断性能及びさい断電流との関係を
示す線図である。これらの特性に対し、Agはその含有
量によって大きな影響を受ける。図に示す如く、Agは
耐圧特性を顕著に低下させる。特に、耐圧55kV以上
にするには、Ag量は12%以下である。更に、電流し
ゃ断性能はAg量によって顕著に低下する。130%以
上の電流しゃ断性能を得るには、12%以下である。さ
い断電流はAg量の増加によって急激に低くなり、低さ
い断電流となる。
FIG. 7 is a diagram showing the relationship between the amount of Ag in an infiltrated alloy with an infiltrated amount of 30 to 60% by weight, average withstand voltage, current breaking performance, and cutting current. These properties are greatly influenced by the content of Ag. As shown in the figure, Ag significantly lowers the breakdown voltage characteristics. In particular, in order to achieve a breakdown voltage of 55 kV or more, the Ag amount should be 12% or less. Furthermore, the current interrupting performance is significantly reduced depending on the amount of Ag. In order to obtain a current interrupting performance of 130% or more, it is 12% or less. The cutting current decreases rapidly as the amount of Ag increases, resulting in a low cutting current.

実施例2 本発明材を用いた電極を第1図に示す真空しゃ断器用真
空パルプに内蔵させた。かかる真空パルプは、セラミッ
クスもしくは結晶化ガラスで作られた絶縁筒11を有し
、その両端は金属製の端子板12.12’によって封じ
られている。その内部は10″”mHg以下の圧力を保
つ構造となっている。その中に一対の電極として固定電
極10と、ベローズ16を介し開閉できるようにした可
動電極10″が組み込まれている。端子板12には排気
管15が設けられ、真空ポンプに接続され、所定の圧力
まで排気後この排気管部においてチップオフされる。電
極をとり囲むように設けられた円筒状のシールド17は
電極構成物質がしゃ断時に蒸発、飛散した場合、それら
を他に耐着させないように受けとめる役目を果たす。固
定電極10及び可動電極10′には各々接点電極13.
14が設けられ、いずれもCu及びCu合金製の補助電
極部材18.18’に接合されている。補助電極に本発
明材の一例として70%又は40重景%c。
Example 2 An electrode using the material of the present invention was built into a vacuum pulp for a vacuum breaker shown in FIG. Such a vacuum pulp has an insulating cylinder 11 made of ceramics or crystallized glass, both ends of which are sealed by metal terminal plates 12, 12'. Its interior is designed to maintain a pressure of 10''mHg or less. A fixed electrode 10 and a movable electrode 10'', which can be opened and closed via a bellows 16, are incorporated in the terminal board 12 as a pair of electrodes. After evacuation to a pressure of The fixed electrode 10 and the movable electrode 10' each have a contact electrode 13.
14 are provided, both of which are joined to auxiliary electrode members 18, 18' made of Cu and Cu alloy. An example of the material of the present invention for the auxiliary electrode is 70% or 40%c.

−30又は60重量%(84,5重量%Cu−17重量
%Ag−0.25重量%Bi)合金よりなる接点電極が
ろう付され、更に補助電極はCu製のホ〉。
A contact electrode made of -30 or 60% by weight (84.5% by weight Cu - 17% by weight Ag - 0.25% by weight Bi) alloy is brazed, and an auxiliary electrode is made of Cu.

ル、ダ19.19’に取付けられている。これらの1点
電極は実施例1と同様にCoスケルトンにー′Cu−A
 g−Bi金合金約4分間溶浸させたものである。溶浸
後の溶浸合金にはスケルトンのCOが一部溶解し、約3
重量%含有されていた。Bi量は電極全体では各々0.
075重量%及び0.15重量%である。第2図は電極
10.10’の詳細な構成図であシ、第3図はその組立
て斜視図である。いずれの電極も同じ構造を有する。接
点電極13.14はアーク駆動用電極21.21’に接
合され、接点電極13.14よシアーク電圧の低い材料
が用いられる。アーク駆動用電極21゜21′には第3
図に示すように電流23が流れるように渦電流低減溝2
2.22’が設けられる。
19.19'. As in Example 1, these one-point electrodes are made of Co skeleton-'Cu-A.
g-Bi gold alloy was infiltrated for about 4 minutes. Part of the skeleton CO is dissolved in the infiltrated alloy after infiltration, and approximately 3
It contained % by weight. The amount of Bi in the entire electrode is 0.
075% by weight and 0.15% by weight. FIG. 2 is a detailed structural diagram of the electrode 10, 10', and FIG. 3 is an assembled perspective view thereof. Both electrodes have the same structure. The contact electrodes 13.14 are joined to the arc driving electrodes 21.21', and are made of a material with a lower shear arc voltage than the contact electrodes 13.14. The arc driving electrode 21°21' has a third
As shown in the figure, the eddy current reduction groove 2 is
2.22' is provided.

アーク駆動用電極21.21’には銅−20重量%コバ
ルト−3電量%鉄合金が用いられる一アーク駆動用電極
21.21’は更にコイル電極20゜20′に接合され
る。コイル電極20.20’はリング部26.26’、
アーム部24.24’、軸中央部27.27及びり/グ
部26.26’上に対称に設けられたアーク駆動用電極
21.21’との接続部25.25’からなる。このコ
イル電極20.20’は導電性の高い純銅が用いられる
The arc driving electrode 21.21' is made of a copper-20 weight % cobalt-3 coulometric % iron alloy.The arc driving electrode 21.21' is further joined to the coil electrode 20.20'. The coil electrode 20.20' has a ring portion 26.26',
It consists of an arm part 24.24', a shaft center part 27.27, and a connecting part 25.25' with an arc driving electrode 21.21' provided symmetrically on the shaft part 26.26'. The coil electrodes 20 and 20' are made of highly conductive pure copper.

ホルダ19.19’は同様に純銅が用いられる。Similarly, pure copper is used for the holders 19 and 19'.

第2図に示すように、接点電極13.14はアーク駆動
用電極21.21’に埋込まれた状態で接合される。各
電流は電流しゃ断時に発生するアークを接点電極13.
14及びアーク駆動用電極21.21’の両表面の全体
に発生するように、電極間の空隙に平行磁界が発生させ
るように配置されている。第3図に示すように各電極は
互いに90度対称に配置されている。アーク駆動用電極
21と21′とは渦電流低減溝22と22′とは90度
方向がずれており、同様にコイル電極20と20′のア
ーム部24と24′とは互いに直交して配置される。こ
のような配置により、o〜90’及び180〜270°
の磁界方向と、90〜180°及び270〜360°の
磁界方向とは全く反対に生じ、平行磁界となる。このよ
うな磁界の発生によシ、シゃ断時に発生するアークは、
接点電極及びアーク駆動電極の全体から発生するように
コントロールされる。
As shown in FIG. 2, the contact electrode 13.14 is embedded and joined to the arc driving electrode 21.21'. Each current is connected to an arc generated when the current is cut off to the contact electrode 13.
14 and the arc drive electrodes 21, 21', so that a parallel magnetic field is generated in the gap between the electrodes. As shown in FIG. 3, the electrodes are arranged 90 degrees symmetrically to each other. The directions of the arc drive electrodes 21 and 21' are shifted by 90 degrees from the eddy current reduction grooves 22 and 22', and similarly, the arm parts 24 and 24' of the coil electrodes 20 and 20' are arranged orthogonally to each other. be done. With this arrangement, o~90' and 180~270°
The magnetic field direction of 90° to 180° and 270° to 360° are completely opposite to each other, resulting in parallel magnetic fields. Due to the generation of such a magnetic field, the arc that occurs when it is cut off is
It is controlled so that it is generated from the entire contact electrode and arc drive electrode.

以上のような構造を有する真空パルプを用いて定格12
kV・50kAの短絡電流をしゃ断したところ、良好な
しゃ断時性が得られ、しかも耐電圧特性及び耐溶着特性
も優れていることが確認できた。なお、12kV回路に
おいて2〜6Aの小電流をしゃ断したさいに発生するさ
い断電流は約3〜5人と低く、従来の低サージ性も備え
ている。
Rated 12 using vacuum pulp with the above structure.
When a short circuit current of kV/50 kA was cut off, it was confirmed that good cut-off properties were obtained, and the withstand voltage characteristics and welding resistance were also excellent. In addition, the cutting current generated when cutting off a small current of 2 to 6 A in a 12 kV circuit is as low as about 3 to 5 people, and it also has conventional low surge properties.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば耐電圧及び耐溶着性がすぐ
れた大容量真空しゃ断器が得られる。
As described above, according to the present invention, a large capacity vacuum breaker with excellent voltage resistance and welding resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による真空しゃ断器の1例を示す断面構
成図、第2図は本発明の真空しゃ断器用電極の一例を示
す正面図、第3図は本発明の真空しゃ断器用電極の一例
を示す組立て斜視図、第4図は平均耐圧と溶浸合金の溶
浸量との関係を示す線図、第5図は電流しゃ断性能と溶
浸合金の溶浸量との関係を示す線図、第6図はさい断を
流と溶浸合金の溶浸量との関係を示す線図、第7図は平
均耐圧及びさい断電流と全電極中でのAg量との第3図 方6図 千′1図
FIG. 1 is a cross-sectional configuration diagram showing an example of a vacuum breaker according to the present invention, FIG. 2 is a front view showing an example of a vacuum breaker electrode according to the present invention, and FIG. 3 is an example of a vacuum breaker electrode according to the present invention. Figure 4 is a diagram showing the relationship between the average withstand pressure and the amount of infiltration alloy, and Figure 5 is a diagram showing the relationship between current interrupting performance and the amount of infiltration alloy. , Figure 6 is a diagram showing the relationship between the cutting flow and the amount of infiltrated alloy, and Figure 7 is a diagram showing the relationship between the average withstand voltage and cutting current and the amount of Ag in all electrodes. Figure 1,000'1

Claims (1)

【特許請求の範囲】 1、真空容器と、その容器内に配置された一対の接点電
極を有するものにおいて、前記一対の電極の少なくとも
一方は、実質的にコバルトからなるスケルトンの空隙に
、銀10〜50重量%、ビスマス、鉛、テルル及びセレ
ンの1種又は2種以上を0.1〜3重量%、コバルト5
重量%以下及び残部が実質的に銅からなる銅合金が前記
電極の全重量当り10〜50重量%溶浸された部材によ
つて構成されていることを特徴とする真空しや断器。 2、真空容器と、その容器内に配置された一対の電極を
有するものにおいて、前記電極は接点電極と、該接点電
極を保持するアーク駆動電極と、該アーク駆動電極を保
持するコイル電極とを有し、前記接点電極間の空隙に平
行磁界が発生するように前記アーク駆動用電極及びコイ
ル電極が配置され、前記接点電極の少なくとも一方は、
コバルトを主成分とするスケルトンの空隙に、銅を主成
分とし、銀10〜50重量%とコバルト5重量%以下と
鉛、テルル、ビスマス及びセレンの1つ以上0.1〜3
重量%を含む銅合金が溶浸された部材によつて構成され
ていることを特徴とする真空しや断器。 3、前記アーク駆動電極はコバルト10〜30重量%、
銀10重量%以下、残部実質的に銅からなる溶製合金か
らなることを特徴とする特許請求の範囲第2項記載の真
空しや断器。 4、前記コイル電極は銅からなることを特徴とする特許
請求の範囲第2項記載の真空しや断器。 5、前記アーク駆動用電極は左右対称で、ほぼ等間隔に
複数本の溝が設けられており、それによつて渦電流を低
減させることを特徴とする特許請求の範囲第2項記載の
真空しや断器。 6、前記コイル電極はリング状のリング部と、該リング
部の円の軸中心部を通る一本のアーム部と、前記リング
部に設けられた前記アーク駆動用電極と前記コイル電極
とを接続する凸部を有する接続部とからなることを特徴
とする特許請求の範囲第2項記載の真空しや断器。 7、真空容器と、その容器内に配置された一対の電極を
有するものにおいて、前記両方の電極は、接点電極と、
該接点電極を保持するアーク駆動電極と、該アーク駆動
電極を保持するコイル電極と、該コイル電極を保持する
ホルダーとを有し、前記アーク駆動用電極は複数本の溝
が等間隔で設けられ、左右対称の形状を有し、コバルト
10〜30重量%、銀10重量%以下、残部実質的に銅
からなる溶製合金によつて構成され、前記接点電極は、
実質的にコバルトからなるスケルトンの空隙に、銀10
〜50重量%、ビスマス、鉛、テルル及びセレンの1種
又は2種以上を0.1〜3重量%、コバルト5重量%以
下、残部実質的に銅からなる銅合金が前記接点電極全体
の10〜50重量%溶浸された部材によつて構成され、
前記コイル電極はリング状のリング部と、該リング部の
円の軸中心部を通る1本のアーム部と、前記リング部に
設けられ、前記アーク駆動用電極とコイル電極とを接続
する凸部を有する接続部とを有し、銅によつて構成され
、前記接点電極間に形成される空隙に平行磁界が発生す
るように前記アーク駆動用電極の前記溝の方向及びコイ
ル電極の前記アーム部の方向が互いに90度交叉して配
置していることを特徴とする真空しや断器。
[Scope of Claims] 1. A device having a vacuum container and a pair of contact electrodes disposed within the container, in which at least one of the pair of electrodes has silver 10 in the void of a skeleton substantially made of cobalt. ~50% by weight, 0.1 to 3% by weight of one or more of bismuth, lead, tellurium and selenium, cobalt 5
A vacuum shear breaker characterized in that it is constituted by a member in which 10 to 50% by weight of a copper alloy is infiltrated based on the total weight of the electrode, with the remainder being substantially copper. 2. A device having a vacuum container and a pair of electrodes arranged in the container, wherein the electrodes include a contact electrode, an arc drive electrode that holds the contact electrode, and a coil electrode that holds the arc drive electrode. the arc driving electrode and the coil electrode are arranged so that a parallel magnetic field is generated in the gap between the contact electrodes, and at least one of the contact electrodes is
In the voids of a skeleton mainly composed of cobalt, copper is the main component, 10 to 50% by weight of silver, 5% by weight or less of cobalt, and 0.1 to 3% of one or more of lead, tellurium, bismuth, and selenium.
1. A vacuum shear disconnector characterized in that it is constituted by a member infiltrated with a copper alloy containing % by weight. 3. The arc driving electrode contains 10 to 30% by weight of cobalt;
The vacuum shear disconnector according to claim 2, characterized in that it is made of a molten alloy consisting of 10% by weight or less of silver and the remainder substantially of copper. 4. The vacuum shear breaker according to claim 2, wherein the coil electrode is made of copper. 5. The vacuum chamber according to claim 2, wherein the arc driving electrode is symmetrical and provided with a plurality of grooves at approximately equal intervals, thereby reducing eddy current. Or disconnection. 6. The coil electrode connects a ring-shaped ring part, one arm part passing through the axial center of the circle of the ring part, and the arc driving electrode provided on the ring part and the coil electrode. 3. The vacuum shear breaker according to claim 2, further comprising a connecting portion having a convex portion. 7. In a device having a vacuum container and a pair of electrodes arranged in the container, both of the electrodes are contact electrodes,
The arc driving electrode has an arc driving electrode that holds the contact electrode, a coil electrode that holds the arc driving electrode, and a holder that holds the coil electrode, and the arc driving electrode has a plurality of grooves provided at equal intervals. , has a bilaterally symmetrical shape, and is made of a melted alloy consisting of 10 to 30% by weight of cobalt, 10% by weight or less of silver, and the remainder substantially copper;
In the voids of the skeleton consisting essentially of cobalt, silver 10
~50% by weight, 0.1 to 3% by weight of one or more of bismuth, lead, tellurium, and selenium, 5% by weight of cobalt or less, and the remainder substantially copper, making up 10% of the entire contact electrode. Consisting of ~50% by weight infiltrated members,
The coil electrode includes a ring-shaped ring part, one arm part passing through the axial center of the circle of the ring part, and a convex part provided on the ring part and connecting the arc driving electrode and the coil electrode. and a connecting portion having a connecting portion made of copper, the direction of the groove of the arc driving electrode and the arm portion of the coil electrode so as to generate a parallel magnetic field in the gap formed between the contact electrodes. A vacuum shield and disconnector characterized in that the directions thereof are arranged to intersect with each other at 90 degrees.
JP24232784A 1984-11-19 1984-11-19 Vacuum breaker Pending JPS61121218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24232784A JPS61121218A (en) 1984-11-19 1984-11-19 Vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24232784A JPS61121218A (en) 1984-11-19 1984-11-19 Vacuum breaker

Publications (1)

Publication Number Publication Date
JPS61121218A true JPS61121218A (en) 1986-06-09

Family

ID=17087549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24232784A Pending JPS61121218A (en) 1984-11-19 1984-11-19 Vacuum breaker

Country Status (1)

Country Link
JP (1) JPS61121218A (en)

Similar Documents

Publication Publication Date Title
KR100194504B1 (en) Manufacturing Method of Silver-Metal Oxide Composite
EP0144959A2 (en) Powdered metal composite
JP2530484B2 (en) Contact for vacuum circuit breaker and manufacturing method thereof
EP0083200B1 (en) Electrode composition for vacuum switch
JPS6362122A (en) Manufacture of electrode for vacuum breaker
JP3428416B2 (en) Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method
JPS59163726A (en) Vacuum breaker
JP3067318B2 (en) Manufacturing method of electrode material
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
JPS61121218A (en) Vacuum breaker
EP0675514B1 (en) Electrical contact compositions and novel manufacturing method
JPH0510782B2 (en)
JP3106598B2 (en) Manufacturing method of electrode material
JP3168635B2 (en) Manufacturing method of electrode material
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JP3106609B2 (en) Manufacturing method of electrode material
JP2853308B2 (en) Manufacturing method of electrode material
KR0171607B1 (en) Vacuum circuit breaker and contact
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JPS61147415A (en) Manufacture of contact material for vacuum breaker
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JPH0193018A (en) Contact material for vacuum bulb
JPH05101749A (en) Manufacture of electrode material
JPH07111857B2 (en) Contact material for vacuum valve and manufacturing method thereof