JPH05263177A - Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure - Google Patents

Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure

Info

Publication number
JPH05263177A
JPH05263177A JP5773592A JP5773592A JPH05263177A JP H05263177 A JPH05263177 A JP H05263177A JP 5773592 A JP5773592 A JP 5773592A JP 5773592 A JP5773592 A JP 5773592A JP H05263177 A JPH05263177 A JP H05263177A
Authority
JP
Japan
Prior art keywords
powder
alloy
intermetallic compound
mixed
simple substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5773592A
Other languages
Japanese (ja)
Inventor
Isamu Takahashi
勇 高橋
Yasuo Kondo
保夫 近藤
Tetsuo Fujiwara
徹男 藤原
Takeshi Yasuda
健 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5773592A priority Critical patent/JPH05263177A/en
Publication of JPH05263177A publication Critical patent/JPH05263177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an Nb3Al intermetallic compound base alloy having an A15 type crystalline structure by uniformly mixing Nb metallic simple powder and Nb-Al alloy powder in a specified ratio, subjecting it to cold compacting and executing sintering by heat treatment. CONSTITUTION:Al metallic simple powder (having 20 to 50mum average grain diameter) and Nb-Al alloy powder (having 0.5 to 30mum average grain diameter) are uniformly subjected to mechanical mixing in such a manner that the content of Nb is regulated to 83 to 96wt.% and that of Al to 4 to 17wt.%. This mixed powder is compacted in a temp. range in which the Nb metallic simple body powder and Nb-Al alloy powder do not come into reaction with each other in such a manner that its relative density is regulated to about >=90%. This green compact is held to a temp. lower than the solid phase temp. in the alloy phase for 1 to 100hr in vacuum and is cooled. In this way, the objective uniform Nb3Al intermetallic compound base alloy with high density excellent in high temp. strength and mechanical properties and having an arbitrary shape can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通常の溶融凝固法や粉
末焼結法では、組成が均一でかつ密度の高い化合物の合
成が困難であるような、NbとAlを主成分としNb3
Al を主構成相とする、A15型結晶構造を有するN
3Al 金属間化合物基合金の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention is based on Nb 3 and Al as main components so that it is difficult to synthesize a compound having a uniform composition and a high density by a usual melt solidification method or powder sintering method.
N having an A15 type crystal structure with Al 2 as a main constituent phase
It relates to a method for producing a b 3 Al intermetallic compound-based alloy.

【0002】[0002]

【従来の技術】一般に金属系材料では、融点が高いほど
高温強度が優れており、その使用温度も高くすることが
できる。金属系材料の中でも特に、高融点金属間化合物
基合金は2000℃近い高融点に起因する高温強度,高
耐熱性,比較的低い比重などの特徴から、次世代の超高
温耐熱材料として注目されている。
2. Description of the Related Art Generally, the higher the melting point of a metal-based material, the higher the high-temperature strength and the higher its operating temperature. Among metal-based materials, high melting point intermetallic compound-based alloys have attracted attention as next-generation ultra-high temperature heat resistant materials because of their high temperature strength, high heat resistance, and relatively low specific gravity due to their high melting point of nearly 2000 ° C. There is.

【0003】しかし、これらの化合物は800℃以下で
は、極めて脆く、このことが実用化への最大の妨げとな
っている。Nb−Al系金属間化合物基合金の持つA1
5型結晶構造は、その対称性の高さから金属間化合物基
合金の最大の課題である延性の付与の可能性を持ってい
る。
However, these compounds are extremely brittle at 800 ° C. or lower, which is the greatest obstacle to practical use. A1 of Nb-Al-based intermetallic compound-based alloy
The type 5 crystal structure has a possibility of imparting ductility, which is the greatest problem of intermetallic compound-based alloys, due to its high symmetry.

【0004】従来、金属間化合物基合金の製造方法は合
金状態図を参考にして目的の化学量論組成になるように
金属元素を配合し、これを加熱溶解し、その後冷却する
ことによって凝固させる溶融凝固法、あるいは異なる金
属単体粉末を所定の組成になるよう混合し、圧縮成型
し、焼結させる粉末焼結法によって作製してきた。
Conventionally, in the method for producing an intermetallic compound-based alloy, a metal element is blended so as to have a desired stoichiometric composition with reference to an alloy phase diagram, and this is melted by heating and then solidified by cooling. It has been produced by a melt solidification method or a powder sintering method in which different metal simple substance powders are mixed so as to have a predetermined composition, compression-molded and sintered.

【0005】特開昭62−86131 号公報には、2種類以上
の融点差の大きい金属単体元素同士を混合し、圧縮成
型,焼結による粉末焼結合金の製造方法が開示されてい
る。
Japanese Unexamined Patent Publication (Kokai) No. 62-86131 discloses a method for producing a powder sintered alloy by mixing two or more kinds of elemental metal elements having a large difference in melting point, compression molding and sintering.

【0006】[0006]

【発明が解決しようとする課題】以下、Nb3Al 金属
間化合物基合金を例にあげて、従来技術の問題点を詳述
する。
The problems of the prior art will be described in detail below by taking the Nb 3 Al intermetallic compound base alloy as an example.

【0007】Nb3Al 金属間化合物基合金の溶融凝固
法において、Alの融点が660℃,Nbの融点が25
20℃と約1900℃も異なるため、両者を同時に溶融
させた場合、融点の低いAlは沸点に達し、Alが蒸発
してしまい、目的の化学量論組成の金属間化合物基合金
を得ることは難しい。また、たとえ目的の化学量論組成
の溶融合金が得られたとしても、凝固の過程で目的とす
る組成以外の化合物が析出,偏析してしまい、均一なN
3Al 金属間化合物基合金が得られないという問題が
存在していた。
In the melting and solidification method of Nb 3 Al intermetallic compound-based alloy, the melting point of Al is 660 ° C. and the melting point of Nb is 25.
Since 20 ° C. and about 1900 ° C. are different, when both are melted at the same time, Al having a low melting point reaches the boiling point and Al evaporates, so that an intermetallic compound-based alloy having a desired stoichiometric composition cannot be obtained. difficult. Even if a molten alloy having a desired stoichiometric composition is obtained, a compound other than the intended composition is precipitated and segregated during the solidification process, resulting in a uniform N content.
There has been a problem that a b 3 Al intermetallic compound based alloy cannot be obtained.

【0008】一方、従来の単味粉混合による粉末焼結法
では、焼結の過程で低融点のAlが溶融してしまい、高
融点のNb粉末の間から流失して空孔を生じてしまい、
均一で高密度の焼結体を得ることができない。また、流
出しないまでも、カーゲンダル効果により、AlがNb
粒子に拡散してしまい、Alが存在していた部分に空孔
を生じる問題が存在した。
On the other hand, in the conventional powder sintering method by mixing plain powders, Al having a low melting point is melted during the sintering process, and the Nb powder having a high melting point is washed away to form voids. ,
A uniform and high-density sintered body cannot be obtained. In addition, even if it does not flow out, Al is Nb due to the Kagendal effect.
There was a problem that the particles were diffused into the particles and voids were generated in the portions where Al was present.

【0009】また、空孔を小さくするためにAl粉末を
より微粒化すると、Alの持つ表面積が大きくなりAl
が酸化されてしまうという問題が生じる。
Further, if the Al powder is made finer in order to reduce the pores, the surface area of Al becomes larger and
However, there is a problem that it will be oxidized.

【0010】また、特開平2−163329 号公報にあげられ
ているように、2種類以上の粉末元素を目標の組成にな
るように機械的に混合し、その混合粉末をHIPなどの
装置を用いて加熱圧縮成形する方法もある。しかし、加
熱と圧縮を同時に行うHIPなどの装置では、圧縮成形
する成形体の形状に制限が存在し、任意の複雑形状を有
する高密度の金属間化合物基合金を作製することは困難
であった。
Further, as disclosed in JP-A-2-163329, two or more kinds of powder elements are mechanically mixed so as to have a target composition, and the mixed powder is used by an apparatus such as HIP. There is also a method of heat compression molding. However, in an apparatus such as HIP that performs heating and compression at the same time, there is a limitation in the shape of a compact to be compression-molded, and it has been difficult to produce a high-density intermetallic compound-based alloy having an arbitrary complicated shape. ..

【0011】このように、融点差の大きい金属元素同士
を合金化させる場合、目標組成,目標強度及び目的形状
を有する均質で高密度の金属間化合物基合金を得ること
は大変難しいのが現状である。
As described above, when alloying metal elements having a large difference in melting point, it is currently very difficult to obtain a homogeneous and high-density intermetallic compound-based alloy having a target composition, a target strength and a target shape. is there.

【0012】本発明の目的は、高温強度,機械的特性に
すぐれ、任意の形状を有する、均一で高密度のNb3
l 金属間化合物基合金を製造するための方法を提供す
ることにある。
The object of the present invention is to provide uniform and high-density Nb 3 A having excellent strength at high temperature and mechanical properties and having an arbitrary shape.
It is to provide a method for producing an intermetallic compound based alloy.

【0013】[0013]

【課題を解決するための手段】本発明の目的は、Nb金
属単体粉末とNb−Al合金粉末から圧縮成形,粉末焼
結のプロセスによって融点の差が大きい金属元素からな
り、高温強度,機械的特性のすぐれ、任意の形状を有す
る均質で高密度のNb3Al 金属間化合物基合金を得る
ことにある。この目的はNb金属単体粉末とNb−Al
合金粉末を機械的に混合し、前記混合粉末をNb金属単
体粉末が持つ延性を利用して冷間圧縮成形することによ
り成形体を作製し、前記成形体に真空中で熱処理を施
し、金属単体粉末と合金粉末中のNbとAlを拡散反応
させることによって達成される。
SUMMARY OF THE INVENTION An object of the present invention is to consist of a metal element having a large difference in melting point between Nb metal simple substance powder and Nb-Al alloy powder by a compression molding and powder sintering process. The object is to obtain a homogeneous and high-density Nb 3 Al intermetallic compound-based alloy having excellent characteristics and an arbitrary shape. The purpose is to use Nb metal powder alone and Nb-Al.
The alloy powder is mechanically mixed, and the mixed powder is cold compression-molded by utilizing the ductility of the Nb metal simple substance powder to prepare a molded body, and the molded body is subjected to heat treatment in a vacuum. This is achieved by diffusing the Nb and Al in the powder and the alloy powder.

【0014】本発明は以下の手段を用いて、高温強度,
機械的特性にすぐれ、任意の形状を有する均一で高密度
のNb3Al 金属間化合物基合金を製造するものであ
る。
The present invention uses the following means to obtain high temperature strength,
It is intended to produce a uniform and high-density Nb 3 Al intermetallic compound-based alloy having excellent mechanical properties and an arbitrary shape.

【0015】(1)Nb金属単体粉末,Nb−Al合金粉
末を所定の組成となるように機械的に混合する。ここ
で、Nb−Al合金粉末を用いる利点を説明する。Nb
−Al合金粉末で、NbとAlは合金化しており、つま
り、AlはNbと化合物を形成しているために、Alは
極めて化学的に安定した状態にあり、機械的に混合する
際、酸化されることがないために、極めて均一度の高
い、しかも純度の高い混合相を形成することができる。
(1) Nb metal simple substance powder and Nb-Al alloy powder are mechanically mixed so as to have a predetermined composition. Here, the advantage of using the Nb-Al alloy powder will be described. Nb
-Al alloy powder in which Nb and Al are alloyed, that is, Al forms a compound with Nb, so that Al is in a very chemically stable state and is oxidized during mechanical mixing. Therefore, the mixed phase having extremely high homogeneity and high purity can be formed.

【0016】(2)前記混合相の粉末を、Nb金属単体粉
末とNb−Al合金粉末が互いに反応しない温度領域
で、相対密度が90%以上になるように圧縮成形し、成
形体を作製する。ここで、Nb金属単体粉末を用いる利
点、およびNb金属単体粉末の平均粒径がNb−Al合
金粉末の平均粒径より大きい粉末を用いる利点を説明す
る。Nb金属単体粉末は常温でも比較的延性を持ってい
るため、冷間圧縮成形の際、粒径の大きなNb金属単体
粉末は応力によって変形し混合粉末の粒子間を埋めるよ
うに作用し、その結果、密度の高い成形体を形成するこ
とができる。このように、低い温度で加圧成形するため
に、HIPなどの装置で加熱圧縮する場合に比べて、比
較的自由度の高い複雑形状を有する成形体を作製するこ
とができる。
(2) The mixed phase powder is compression-molded to a relative density of 90% or more in a temperature range in which the Nb metal simple substance powder and the Nb-Al alloy powder do not react with each other to produce a molded body. . Here, the advantage of using the Nb metal simple substance powder and the advantage of using the powder in which the average particle size of the Nb metal simple substance powder is larger than the average particle size of the Nb-Al alloy powder will be described. Since the Nb metal simple substance powder has relatively ductility even at room temperature, during cold compression molding, the Nb metal simple substance powder having a large particle size is deformed by stress and acts so as to fill the spaces between the mixed powders. Thus, it is possible to form a compact having a high density. As described above, in order to carry out pressure molding at a low temperature, it is possible to produce a molded product having a complicated shape with a relatively high degree of freedom as compared with the case of heating and compressing with a device such as HIP.

【0017】(3)前記成形体を真空中で合金相中の固相
温度より低い温度に1〜100時間保持することによ
り、混合相中のNbとAl元素を拡散反応させ、その
後、炉冷することにより、高温強度,機械的特性にすぐ
れ、任意の形状を有する均一で高密度のNb3Al 金属
間化合物基合金の焼結体を得る。
(3) By holding the compact in a vacuum at a temperature lower than the solid phase temperature in the alloy phase for 1 to 100 hours, the Nb and Al elements in the mixed phase are caused to undergo a diffusion reaction, and then cooled in a furnace. By doing so, it is possible to obtain a uniform and high-density sintered body of Nb 3 Al intermetallic compound-based alloy, which has excellent high-temperature strength and mechanical properties and has an arbitrary shape.

【0018】[0018]

【作用】つぎに、本発明にかかるNb3Al を主構成相
とする金属間化合物基合金の作用を説明する。Nb3
l 金属間化合物基合金を形成する2種類の粉末材料、
すなわち、Nb単体金属粉末とNb−Al合金粉末に対
して、加熱することなく機械的に撹拌することにより混
合する。ここで、粉末材料としてAlがNbと合金化し
ているNb−Al粉末を用いているために、Alが化学
的に安定した状態にあり、空気中でも極めて酸化しにく
く、極めて均一度の高く、しかも純度の高い混合相を形
成することができる。さらに、Nb金属単体粉末として
平均粒径が20〜50μm,Nb−Al合金粉末の平均
粒径が0.5〜30μm の粉末を用いることにより、得
られる金属間化合物基合金は緻密でしかも微細組織を有
するものとなる。
Next, the function of the intermetallic compound base alloy having Nb 3 Al as the main constituent phase according to the present invention will be described. Nb 3 A
Two types of powder materials that form an intermetallic compound-based alloy,
That is, the Nb simple substance metal powder and the Nb-Al alloy powder are mixed by mechanically stirring without heating. Here, since Nb-Al powder in which Al is alloyed with Nb is used as the powder material, Al is in a chemically stable state, is extremely hard to oxidize even in air, and has extremely high uniformity. A highly pure mixed phase can be formed. Further, by using a powder having an average particle size of 20 to 50 μm and an Nb-Al alloy powder having an average particle size of 0.5 to 30 μm as the Nb metal simple substance powder, the obtained intermetallic compound-based alloy has a dense and fine structure. Will have.

【0019】ついで、この混合相からなる粉末に対し
て、冷間加圧形処理によりNb金属単体粉末とNb−A
l合金粉末が互いに反応しない温度で、相対密度が90
%以上になるように冷間加圧成形処理を施す。ここで加
圧成形処理をする際、混合粉末中のNb金属単体粉末は
応力によって粉末中の粒子間を埋めるように変形し、得
られる成形体はより緻密なものとなる。このように、低
い温度で加圧成形するために、HIPなどの装置で加熱
圧縮する場合に比べて、比較的自由度の高い複雑形状を
有する成形体を容易に作製することができる。
Then, the powder consisting of this mixed phase is subjected to cold pressure type treatment to obtain Nb metal simple substance powder and Nb-A.
l Alloy powders have a relative density of 90 at a temperature at which they do not react with each other.
Perform a cold pressure molding treatment so that the content becomes at least%. When the pressure molding process is performed here, the Nb metal simple substance powder in the mixed powder is deformed by the stress so as to fill the spaces between the particles in the powder, and the resulting molded body becomes more dense. As described above, since the pressure molding is performed at a low temperature, it is possible to easily manufacture a molded body having a relatively high degree of freedom and a complicated shape, as compared with the case of heating and compressing with an apparatus such as HIP.

【0020】ついで、得られた成形体に対して、無酸素
雰囲気中で、合金相中の固相線温度より低い温度で熱処
理を行ない、Nb単体金属粉末とNb−Al合金粉末の
混合粉末中のNbとAlを拡散反応させることにより、
化学量論組成の単相、もしくは非化学量論組成を含む2
相もしくは2相以上の共存組織からなるNb3Al 金属
間化合物基合金を生成する。ここで、無酸素雰囲気とは
酸化を生じにくい真空雰囲気、あるいはArガスなどの
不活性ガス雰囲気を意味する。このようにして得られた
金属間化合物基合金は均質で強固でしかも緻密な焼結体
となっており、超微細組織を有するため機械的性質の優
れたNb3Al 金属間化合物基合金となっている。
Next, the obtained compact is heat-treated in an oxygen-free atmosphere at a temperature lower than the solidus temperature in the alloy phase to obtain a mixed powder of Nb simple metal powder and Nb-Al alloy powder. By diffusing Nb and Al of
Stoichiometric single phase or non-stoichiometric composition 2
An Nb 3 Al intermetallic compound-based alloy having a phase or a coexisting structure of two or more phases is produced. Here, the oxygen-free atmosphere means a vacuum atmosphere in which oxidation is unlikely to occur or an inert gas atmosphere such as Ar gas. The intermetallic compound-based alloy thus obtained is a homogeneous, strong, and dense sintered body, and has an ultrafine structure, so that it is an Nb 3 Al intermetallic compound-based alloy excellent in mechanical properties. ing.

【0021】さらに、各工程を完了した焼結体を焼結温
度より高い温度で、HIPなどの熱間圧縮成形処理を行
なうことによって、合金相中の拡散が十分進行し、組織
の均一化と緻密化が図られ、焼結体の機械的性質がさら
に向上する。
Further, by subjecting the sintered body, which has completed each process, to a hot compression molding treatment such as HIP at a temperature higher than the sintering temperature, diffusion in the alloy phase sufficiently progresses, and a uniform structure is obtained. The densification is achieved, and the mechanical properties of the sintered body are further improved.

【0022】[0022]

【実施例】以下、本発明の実施例を図1の流れ図に従っ
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the flow chart of FIG.

【0023】〈実施例1〉平均粒径20μm,純度9
9.9% 以上のNb金属単体アトマイズ粉末と平均粒径
2μm,純度99.5% 以上のNb3Al 合金の超微粒
末を目的の配合組成に混合し機械的に撹拌する。十分に
撹拌し、Nb金属単体粉末とNb2Al合金の超微粒末
が均一に混合された時点で、混合粉末を金型に封入し、
相対密度93%以上になるように約800MPの圧力下
で圧縮成形して直径10mm,長さ25mmの円柱体を作製
した。ついで、得られた成形体を真空中で約1700℃
に15時間加熱保持し、その後、電気炉内にて室温まで
冷却した。その組成には、キャビティは生成しておら
ず、熱処理後の成形体の相対密度は99.8% 以上であ
った。また組織も微細でかつ均一であり、高温強度及び
機械的特性に優れたNb3Al を主構成相とする金属間
化合物基合金を得ることができた。
Example 1 Average particle size 20 μm, Purity 9
Atomized powder of Nb metal alone of 9.9% or more and an ultrafine powder of Nb 3 Al alloy having an average particle size of 2 μm and a purity of 99.5% or more are mixed to a desired composition and mechanically stirred. When the Nb metal simple substance powder and the ultrafine particle powder of the Nb 2 Al alloy are uniformly mixed by sufficiently stirring, the mixed powder is sealed in a mold,
A cylinder having a diameter of 10 mm and a length of 25 mm was produced by compression molding under a pressure of about 800 MP so that the relative density was 93% or more. Then, the obtained molded body is vacuumed at about 1700 ° C.
It was heated and held for 15 hours and then cooled to room temperature in an electric furnace. Cavities were not formed in the composition, and the relative density of the molded body after the heat treatment was 99.8% or more. Further, it was possible to obtain an intermetallic compound-based alloy containing Nb 3 Al as a main constituent phase, which had a fine and uniform structure and was excellent in high temperature strength and mechanical properties.

【0024】〈比較例〉平均粒径10μmのNbとAl
単体粉末から実施例1と同条件で作製した試料の断面組
織写真では、NbとAl単体粉末から作製した場合には
組織中に大きなキャビティが生じており、相対密度も8
5%と低く、所望する特性が得られなかった。
<Comparative Example> Nb and Al having an average particle size of 10 μm
In the photograph of the cross-sectional structure of the sample prepared from the simple substance powder under the same conditions as in Example 1, a large cavity was generated in the structure when prepared from the simple substance powders of Nb and Al, and the relative density was 8
As low as 5%, the desired characteristics were not obtained.

【0025】〈実施例2〉平均粒径10μm,純度9
9.9% 以上のNb金属単体アトマイズ粉末と平均粒径
1μmのNbAl3 合金の超微粒末を用いて作製した場
合の例を示す。合金粉末としてNb2Al 合金よりAl
組成の多いNbAl3 合金粉末を用いることは、成形体
の酸素濃度を考えた場合、極めて有効な方法である。す
なわち、Nb−Al合金はAl組成の高いほど耐酸化性
にすぐれるので、成形後のNb−Al合金中の酸素濃度
を低くすることが可能である。また、NbAl3 合金を
超微粉末にすることでNb金属単体アトマイズ粉末との
反応が促進される。焼結条件以外は実施例1と同じくし
て成形体を作製した。その結果、相対密度も99.9%
と高密度で均一度の高いNb3Al を主構成相とする金
属間化合物基合金の試料を作製することができた。な
お、焼結は1500℃で10時間保持後、1700℃に
昇温して15時間保持で行った。
Example 2 Average particle size 10 μm, Purity 9
An example of a case where atomization powder of Nb metal alone of 9.9% or more and ultrafine powder of NbAl 3 alloy having an average particle diameter of 1 μm is used is shown. Al alloy powder from Nb 2 Al alloy
The use of NbAl 3 alloy powder having a large composition is an extremely effective method when considering the oxygen concentration of the compact. That is, the higher the Al composition of the Nb-Al alloy is, the more excellent it is in oxidation resistance, so that it is possible to lower the oxygen concentration in the Nb-Al alloy after molding. Further, by using NbAl 3 alloy as an ultrafine powder, the reaction with the Nb metal simple substance atomized powder is promoted. A molded body was produced in the same manner as in Example 1 except for the sintering conditions. As a result, the relative density is also 99.9%
As a result, a sample of an intermetallic compound-based alloy containing Nb 3 Al as a main constituent phase with high density and high uniformity could be prepared. The sintering was performed by holding at 1500 ° C. for 10 hours, then raising the temperature to 1700 ° C. and holding for 15 hours.

【0026】[0026]

【発明の効果】本発明によれば、延性に富むNb金属単
体粉末とNb−Al合金粉末を混合,圧縮成形,焼結の
プロセスによって高温強度,機械的特性にすぐれ、任意
の形状で均質で高密度のNb3Al を主構成相とする金
属間化合物基合金を得ることができる。
According to the present invention, the high-temperature strength and mechanical properties are excellent by the process of mixing Nb metal simple substance powder having high ductility and Nb-Al alloy powder, compression molding, and sintering, and uniform in any shape. It is possible to obtain an intermetallic compound-based alloy having a high-density Nb 3 Al as a main constituent phase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明であるNb3Al 金属間化合物基合金の
製造方法のフローチャート。
FIG. 1 is a flowchart of a method for producing an Nb 3 Al intermetallic compound-based alloy according to the present invention.

【符号の説明】[Explanation of symbols]

HIP…熱間静水圧成形。 HIP ... Hot isostatic pressing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 健 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Yasuda 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hiritsu Manufacturing Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】NbとAlを主成分としA15型結晶構造
を有するNb3Al 金属間化合物基合金を製造する方法
において、Nbが83〜96重量%及びAlが4〜17
重量%の組成範囲になるよう、Nb金属単体粉末とNb
−Al合金粉末を混合することにより各粉末要素が均一
に配合された混合粉末にし、前記混合粉末を冷間圧縮成
形し、その後、熱処理によって焼結を行なうことを特徴
とするA15型結晶構造を有するNb3Al 金属間化合
物基合金の製造方法。
1. A method for producing an Nb 3 Al intermetallic compound-based alloy having Nb and Al as main components and having an A15 type crystal structure, wherein Nb is 83 to 96% by weight and Al is 4 to 17% by weight.
Nb metal simple substance powder and Nb so that the composition range of wt% is obtained.
-Al alloy powder is mixed to form a mixed powder in which each powder element is uniformly blended, the mixed powder is subjected to cold compression molding, and then sintered by heat treatment. A method for producing an Nb 3 Al intermetallic compound-based alloy having the same.
【請求項2】請求項1において、Nb金属単体粉末の平
均粒径が20〜50μm,Nb−Al金属粉末の平均粒
径が0.5〜30μm であるそれぞれの溶解粉砕粉,ア
トマイズ粉またはマイクロアロイング粉において、Nb
金属単体粉末の平均粒径がNb−Al合金粉末の平均粒
径より大きいA15型結晶構造を有するNb3Al金属
間化合物基合金の製造方法。
2. The melt-pulverized powder, atomized powder or micro powder according to claim 1, wherein the Nb metal simple substance powder has an average particle diameter of 20 to 50 μm and the Nb-Al metal powder has an average particle diameter of 0.5 to 30 μm. Nb in alloying powder
Method for producing a Nb 3 Al intermetallic compound-base alloy having an average particle size of the metal simple substance powder has an average particle size greater than A15 crystal structure of Nb-Al alloy powder.
【請求項3】請求項1または2において、Nb−Al合
金粉末の溶解粉砕粉,アトマイズ粉またはマイクロアロ
イング粉において、Nb−Al合金粉末のマトリックス
がNb2Al,NbAl3もしくはこれらの混合相からな
るA15型結晶構造を有する金属間化合物基合金の製造
方法。
3. The molten pulverized powder, atomized powder or microalloying powder of Nb-Al alloy powder according to claim 1 or 2, wherein the matrix of Nb-Al alloy powder is Nb 2 Al, NbAl 3 or a mixed phase thereof. And a method for producing an intermetallic compound-based alloy having an A15 type crystal structure.
【請求項4】請求項1において、前記Nb金属単体粉末
とNb−Al合金粉末の混合粉末を、相対密度90%以
上になるように、Nb金属単体粉末とNb−Al合金粉
末が互いに合金化しない温度で、Nb金属単体粉末中の
Nb粒子が変形しうる応力下で冷間一軸または等方圧縮
成形するA15型結晶構造を有するNb3Al 金属間化
合物基合金の製造方法。
4. The Nb metal simple substance powder and the Nb-Al alloy powder are alloyed with each other so that the mixed powder of the Nb metal simple substance powder and the Nb-Al alloy powder has a relative density of 90% or more. A method for producing an Nb 3 Al intermetallic compound-based alloy having an A15 type crystal structure, which is cold uniaxially or isotropically compression molded under a stress capable of deforming Nb particles in a powder of Nb metal alone at a temperature not performed.
【請求項5】請求項1または4において、前記混合粉末
に、前記混合粉末中に存在する合金相中の固相線温度よ
りも低い温度で熱処理を施すことにより、Nb金属単体
粉末とNb−Al合金粉末を拡散反応させて、最終的に
主構成相をNb3Al とするA15型結晶構造を有する
Nb3Al 金属間化合物基合金の製造方法。
5. The Nb-metal simple substance powder and the Nb-metal single powder according to claim 1, wherein the mixed powder is subjected to a heat treatment at a temperature lower than a solidus temperature of an alloy phase existing in the mixed powder. A method for producing an Nb 3 Al intermetallic compound-based alloy having an A15 type crystal structure in which an Al alloy powder is subjected to a diffusion reaction and finally a main constituent phase is Nb 3 Al.
【請求項6】請求項1,2,3,4または5において、
製造された複雑形状を有する耐熱部品を用いたガスター
ビン,宇宙関連機器及び交通輸送機器。
6. The method according to claim 1, 2, 3, 4 or 5.
Gas turbines, space-related equipment and transportation equipment using manufactured heat-resistant parts with complex shapes.
【請求項7】請求項1から請求項5までのいずれか一つ
の方法で製造された複雑形状を有する超伝導材。
7. A superconducting material having a complicated shape, which is manufactured by the method according to any one of claims 1 to 5.
JP5773592A 1992-03-16 1992-03-16 Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure Pending JPH05263177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5773592A JPH05263177A (en) 1992-03-16 1992-03-16 Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5773592A JPH05263177A (en) 1992-03-16 1992-03-16 Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure

Publications (1)

Publication Number Publication Date
JPH05263177A true JPH05263177A (en) 1993-10-12

Family

ID=13064178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5773592A Pending JPH05263177A (en) 1992-03-16 1992-03-16 Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure

Country Status (1)

Country Link
JP (1) JPH05263177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967591A (en) * 2010-11-09 2011-02-09 上海大学 Method for preparing Nb3Al superconducting material by mechanical alloying method
RU2647424C1 (en) * 2017-02-27 2018-03-15 Общество с ограниченной ответственностью "МЕТСИНТЕЗ" METHOD OF THE HEAT-RESISTANT ALLOYS PRODUCTION BASED ON INTERMETALLIDE Nb3Al (EMBODIMENTS)
CN113249604A (en) * 2021-06-25 2021-08-13 北京科技大学 High purity intermetallic compound Nb3Al block and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967591A (en) * 2010-11-09 2011-02-09 上海大学 Method for preparing Nb3Al superconducting material by mechanical alloying method
RU2647424C1 (en) * 2017-02-27 2018-03-15 Общество с ограниченной ответственностью "МЕТСИНТЕЗ" METHOD OF THE HEAT-RESISTANT ALLOYS PRODUCTION BASED ON INTERMETALLIDE Nb3Al (EMBODIMENTS)
CN113249604A (en) * 2021-06-25 2021-08-13 北京科技大学 High purity intermetallic compound Nb3Al block and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4897154B2 (en) Method for producing high density multi-component materials
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
US3524744A (en) Nickel base alloys and process for their manufacture
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JPH0474401B2 (en)
EP0577381B1 (en) Method of production of a metallic composite material incorporating metal carbide particles dispersed therein
JPH04325648A (en) Production of sintered aluminum alloy
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JP3168630B2 (en) Manufacturing method of electrode material
JP3113639B2 (en) Manufacturing method of alloy powder
JP2749165B2 (en) TiA-based composite material and method for producing the same
JP3417217B2 (en) Method for producing titanium carbide particle-dispersed metal matrix composite material
JP3069115B2 (en) Manufacturing method of ceramic dispersion strengthened copper
JPS62188735A (en) Manufacture of tini alloy wire or plate
JP3168635B2 (en) Manufacturing method of electrode material
US4985200A (en) Method of making sintered aluminium nickel alloys
JPS61159539A (en) Manufacture of shape memory alloy
JPH05202437A (en) Production of inter-high-melting-metallic compound-base alloy
JPH05214477A (en) Composite material and its manufacture
JP2627302B2 (en) Method for producing hydrogen storage alloy molded product
JPH1046208A (en) Production of ti-ni base alloy sintered body
JP2906277B2 (en) Method for producing high-strength Al lower 3 Ti-based alloy
JPH02294440A (en) Production of porous titanium-nickel alloy
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy
JP2639812B2 (en) Magnetic alloy powder for sintering