JP3113639B2 - Manufacturing method of alloy powder - Google Patents

Manufacturing method of alloy powder

Info

Publication number
JP3113639B2
JP3113639B2 JP10309141A JP30914198A JP3113639B2 JP 3113639 B2 JP3113639 B2 JP 3113639B2 JP 10309141 A JP10309141 A JP 10309141A JP 30914198 A JP30914198 A JP 30914198A JP 3113639 B2 JP3113639 B2 JP 3113639B2
Authority
JP
Japan
Prior art keywords
powder
alloy powder
pulverization
particle size
atomized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10309141A
Other languages
Japanese (ja)
Other versions
JP2000129316A (en
Inventor
登士也 山口
義範 柴田
忠彦 古田
卓 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP10309141A priority Critical patent/JP3113639B2/en
Publication of JP2000129316A publication Critical patent/JP2000129316A/en
Application granted granted Critical
Publication of JP3113639B2 publication Critical patent/JP3113639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、粉末冶金法(粉
末を焼結することにより製品を製造する技術)に用いら
れる合金粉末の製造方法に関し、特に軟らかい金属(以
下、軟質金属という)と、硬い金属(軟質金属に比較す
ると硬いが脆い金属(以下、硬質金属という))の少な
くとも2種類以上を含有する原料から合金粉末を製造す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloy powder used in powder metallurgy (a technique for producing a product by sintering a powder), and particularly relates to a soft metal (hereinafter referred to as a soft metal), The present invention relates to a method for producing an alloy powder from a raw material containing at least two or more types of hard metals (hard but brittle metals compared to soft metals (hereinafter, referred to as hard metals)).

【0002】[0002]

【従来の技術】粉末冶金法は、焼結後の加工が容易であ
り、溶け合わない金属からなる合金を製造できる等の利
点から、種々の分野で利用されている。粉末冶金法で
は、粉末の製造・粉末の成形・成形された粉末の焼結が
行われる。粉末の粒度分布等の性状は焼結後の金属製品
の機械的強度等に重大な影響を与えるため、粉末の製造
技術については種々の方法が開発されている。2 種以上
の溶け合わない層からなる粉末を製造する場合は、機械
的粉砕を行いながら再凝集を行うことを繰り返す、メカ
ニカルグラインディング(MG)法を行うことで、各層
が均一に分散された粉末を得る方法が提案されている。
特開平5−51663号公報には、セラミック粒子を含
有するアルミニウムを主成分としたアトマイズ粉末を上
記MG法で機械的粉砕再凝集処理を行うことによりアル
ミニウム中にセラミック粒子が分散した粉末を製造して
いる。
2. Description of the Related Art Powder metallurgy is used in various fields because of its advantages such as easy processing after sintering and production of alloys composed of insoluble metals. In powder metallurgy, powder production, powder molding, and sintering of the formed powder are performed. Since the properties such as the particle size distribution of the powder have a significant effect on the mechanical strength and the like of the metal product after sintering, various methods for producing powder have been developed. In the case of producing a powder composed of two or more insoluble layers, each layer is uniformly dispersed by performing a mechanical grinding (MG) method in which reagglomeration is repeated while performing mechanical pulverization. A method for obtaining a powder has been proposed.
JP-A-5-51663 discloses that an atomized powder containing aluminum as a main component containing ceramic particles is subjected to mechanical pulverization and reagglomeration treatment by the above-mentioned MG method to produce a powder in which ceramic particles are dispersed in aluminum. ing.

【0003】このような方法によれば、溶湯をアトマイ
ズすることによりある程度粒径の小さなアトマイズ粉末
となる。このアトマイズ粉末はさらに機械的に粉砕され
て再凝集が生じる程度まで粉砕され、極微粒なセラミッ
ク粒子を均一に偏析なく分布させたアルミニウム基複合
合金を得ることができると説明している。なお、再凝集
とは、微細化したセラミック粒子等の添加物と母材を再
結合させることで母材中に粒子を微細分散した状態の粉
末を得ることである。すなわち、一旦粉砕により微細化
したものが、再度結合して粒径が大きくなることであ
る。
According to such a method, the molten metal is atomized into an atomized powder having a small particle size to some extent. It is described that this atomized powder is further pulverized mechanically and pulverized to the extent that reagglomeration occurs, thereby obtaining an aluminum-based composite alloy in which ultrafine ceramic particles are uniformly distributed without segregation. Note that reagglomeration is to obtain a powder in which particles are finely dispersed in a base material by recombining the base material with an additive such as fine ceramic particles. In other words, what has been once finely ground by pulverization is combined again to increase the particle size.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、原料
に軟質層と硬質層が含まれる場合、軟質層は軟らかく
て延性に優れるため機械的粉砕によっては粉砕されにく
い。逆に、硬質層は、硬くて脆いため軟質層と比較する
と粉砕されやすい。また、特開平5−51663号公報
に記載された技術では、機械的粉砕再凝集処理はボール
ミルにより10時間以上の粉砕処理を必要とし、通常の粉
砕よりも粉砕時間が長く、再凝集をする程度まで粉砕す
ると、硬質層は超微粉となる。
However, the raw material powder
When a soft layer and a hard layer are included at the end , the soft layer is soft and excellent in ductility, so that it is difficult to be pulverized by mechanical pulverization. Conversely, the hard layer is hard and brittle, so that it is easily crushed as compared to the soft layer. In the technique described in JP-A-5-51663, mechanical pulverization reagglomeration requires a pulverization treatment of 10 hours or more by a ball mill, and the pulverization time is longer than ordinary pulverization, and the degree of reagglomeration is large. When crushed, the hard layer becomes an ultrafine powder.

【0005】したがって、このような粉末を焼結する
と、硬質金属が主成分の粉末は超微粉となって比表面積
が大きくなっているため、焼結時に吸収される酸素量が
多くなる。酸素量が多くなると焼結性を悪化させる原因
となるだけでなく、破断伸び等の機械的特性を低下させ
る。
Therefore, when such a powder is sintered, the powder mainly composed of a hard metal becomes an ultrafine powder and has a large specific surface area, so that the amount of oxygen absorbed during sintering increases. An increase in the oxygen content not only causes deterioration of sinterability, but also lowers mechanical properties such as elongation at break.

【0006】したがって、本発明は、上述した問題点を
解決するためになされたものであり、その目的は、酸素
吸収量が少なく、優れた機械的特性を有する焼結体を製
造することができる、軟質金属層と硬質金属層とを含む
合金粉末を製造する方法を提供することを目的とする。
Accordingly, the present invention has been made to solve the above-mentioned problems, and an object thereof is to produce a sintered body having a small amount of oxygen absorption and excellent mechanical properties. It is another object of the present invention to provide a method for producing an alloy powder including a soft metal layer and a hard metal layer .

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に以下の方法を提供する。すなわち、本発明は、Sn、
Zn及びPbのうちいずれかを有する軟質金属層と、
l−Ti化合物及びAl−Zr化合物のいずれかを有す
硬質金属層とを備える、合金粉末を製造する方法であ
って、前記軟質金属層の原料と、前記硬質金属層の原料
とを溶解した溶湯をアトマイズすることにより、軟質金
属層と硬質金属層とを有するアトマイズ合金粉末を作製
する工程と、該アトマイズ合金粉末を再凝集しない程度
に機械的に粉砕する機械的粉砕工程とを備えた合金粉末
の製造方法を提供する。また、本発明は、この方法にお
いて、前記軟質金属層はSnからなり、前記原料はSi
Cを主成分とする坩堝内で溶解される、合金粉末の製造
方法。さらに、これらの方法において、前記機械的粉砕
工程により製造される合金粉末の最大粒径が45μm以
下である合金粉末の製造方法も提供する。
To achieve the above object, the following method is provided. That is, the present invention provides :
A soft metal layer having one of Zn and Pb ;
It has either l-Ti compound or Al-Zr compound
And a hard metal layer that provides a process for producing the alloy powder, the raw material of the soft metal layer, by atomizing a molten metal by dissolving the raw material of the hard metal layer, a soft metal layer and hard metal layer And a mechanical pulverizing step of mechanically pulverizing the atomized alloy powder so that the atomized alloy powder does not re-aggregate. Further, according to the present invention, in the method, the soft metal layer is made of Sn, and the raw material is made of Si.
Production of alloy powder that is melted in a crucible containing C as a main component
Method. Further, in these methods, there is also provided a method for producing an alloy powder in which the maximum particle size of the alloy powder produced by the mechanical pulverization step is 45 μm or less.

【0008】一般に、粉末冶金に使用される合金粉末を
製造する方法としては、鋳造によりインゴットを製造
しこれを機械的に粉砕する方法、原料を溶解した溶湯
をアトマイズすることにより作成する方法がある。軟質
金属層と硬質金属層を含む合金粉末をの鋳造によりイ
ンゴットを製造しこれを機械的に粉砕する方法で製造し
た場合は、溶湯からインゴットになる際に、冷却速度が
緩やかなため溶湯中の軟質金属の結晶が粗大化してしま
い、粉砕後の粉末にも粗大な軟質金属の結晶が残るとい
う問題がある。軟質金属は融点の低いものが多く、焼結
時に溶融流失し、粗大な流失孔を形成しやすい。この粗
大流失孔は焼結体の破断伸び等の機械的特性を低下させ
る原因となる。のアトマイズ法による場合は、インゴ
ットになる際の軟質金属の結晶の粗大化という問題は解
消されるが、アトマイズ法では充分に微粉化することが
困難であるため製造される合金粉末の粒径が大きく篩い
分けを必要とし、歩留まりが悪いという問題がある。
In general, as a method for producing an alloy powder used for powder metallurgy, there is a method of producing an ingot by casting and mechanically pulverizing the ingot, and a method of producing a melt by dissolving a raw material and atomizing a molten metal. . Soft
When an ingot is manufactured by casting an alloy powder containing a metal layer and a hard metal layer and then manufactured by a method of mechanically pulverizing the same, when the ingot is converted from the molten metal, the cooling rate is slow, so that the soft There is a problem that the crystal of the metal is coarsened and coarse soft metal crystal remains in the powder after pulverization. Many soft metals have a low melting point, and are easily melted away during sintering to form coarse flowing holes. This coarse flow loss causes deterioration of mechanical properties such as elongation at break of the sintered body. In the case of the atomizing method, the problem of coarsening of the soft metal crystal when forming an ingot is solved, but it is difficult to atomize sufficiently by the atomizing method. There is a problem that large sieving is required and the yield is poor.

【0009】そのため、本発明では、まずアトマイズ法
によりアトマイズ粉末を作成し、その後機械的に再凝集
しない程度に粉砕を行う。本発明の方法によれば、溶湯
をインゴットにしないためインゴットになる際の軟質金
属の結晶の粗大化は生じない。また、アトマイズ法によ
って作製したアトマイズ粉末を、機械的に粉砕するため
粒径が小さくなり歩留まりが向上する。さらに、再凝集
しない程度で機械的粉砕が行われるため、硬質金属の過
度な微粉化が抑制できる。ここで、軟質金属としては、
例えば、Sn,Zn,Pb等の元素が該当し、硬質金属
としてはAl−Ti化合物、Al−Zr化合物が代表的
にあげられ、これら両者の金属を含む合金粉末の例とし
ては、Al−Sn−Zr、Al−Sn−Zr−Mo等の
合金粉末が該当する。
Therefore, in the present invention, first, atomized powder is prepared by an atomizing method, and then pulverized to such an extent that mechanical reagglomeration does not occur. According to the method of the present invention, since the molten metal is not formed into an ingot, the soft metal crystal does not become coarse when the ingot is formed. Further, since the atomized powder produced by the atomizing method is mechanically pulverized, the particle size becomes small and the yield is improved. Furthermore, since mechanical pulverization is performed to such an extent that reagglomeration does not occur, excessive pulverization of the hard metal can be suppressed. Here, as the soft metal,
For example, elements such as Sn, Zn, and Pb correspond thereto, and examples of hard metals include Al-Ti compounds and Al-Zr compounds. Examples of alloy powders containing both metals include Al-Sn. Alloy powders such as -Zr and Al-Sn-Zr-Mo correspond thereto.

【0010】アトマイズ法としては、ガスアトマイズ法
や、回転ディスク法、水アトマイズ法等の既存の種々の
方法が適用できるが、アトマイズ粉末の酸化防止、生産
コスト等の理由からガスアトマイズ法を使用することが
好ましい。また、ガスアトマイズ法によれば、作成され
るアトマイズ粉末の粒径を小さくすることができる点に
おいても有利である。アトマイズ粉末の粒径が小さけれ
ば、後の機械的粉砕工程に要する時間を短くすることが
できるし、再凝集する前に充分に粉砕することができ
る。なお、噴霧媒としてはアルゴン、ヘリウム、窒素等
の不活性ガスを用いるガスアトマイズ法を使用すること
が好ましい。
As the atomizing method, various existing methods such as a gas atomizing method, a rotating disk method and a water atomizing method can be applied. However, the gas atomizing method can be used for reasons such as prevention of oxidation of atomized powder and production cost. preferable. The gas atomizing method is also advantageous in that the particle size of the produced atomized powder can be reduced. If the atomized powder has a small particle size, the time required for the subsequent mechanical pulverization step can be shortened, and pulverization can be sufficiently performed before reagglomeration. Note that it is preferable to use a gas atomization method using an inert gas such as argon, helium, or nitrogen as the spray medium.

【0011】アトマイズ法で作成されたアトマイズ粉末
は、機械的な方法で再凝集が生じない程度に粉砕され
る。機械的な粉砕方法としては、アトライタ、ボールミ
ル、振動ボールミル、ロッドミル等の種々の装置を使用
することができる。ここで、重要なのは機械的な粉砕が
再凝集を生じない程度に行うことである。以下、この理
由を詳述する。
The atomized powder produced by the atomizing method is pulverized by a mechanical method to such an extent that reagglomeration does not occur. As a mechanical pulverizing method, various devices such as an attritor, a ball mill, a vibrating ball mill, and a rod mill can be used. What is important here is that mechanical pulverization is performed to such an extent that reagglomeration does not occur. Hereinafter, the reason will be described in detail.

【0012】一般に、2 種以上の層からなる粉末を製造
する場合は、機械的粉砕を行いながら再凝集を行うこと
を繰り返す、メカニカルグラインディング(MG)法を
行うことで、各層が均一に分散された粉末を得る方法が
提案されている。特開平5−51663号公報には、セ
ラミック粒子を含有するアルミニウムを主成分としたア
トマイズ粉末を上記MG法で機械的粉砕再凝集処理を行
うことで、極微細なセラミック粒子を均一に偏析なく分
布させたアルミニウム基複合合金を得ることができると
している。しかしながら、既述したように軟質金属と硬
質金属を含んだ粉末原料から軟質金属層と硬質金属層と
を有する合金粉末を製造する場合は、硬質金属層の粉砕
軟質金属層の粉砕に比較して促進される。このため、
再凝集が生じる程度まで機械的な粉砕を行うと、硬質金
属を主成分とする粉末は超微粉となる。したがって、こ
のような粉末を焼結すると、硬質金属を主成分とする粉
末は酸素吸収量が多く焼結性を悪化させ、また、焼結体
の機械的特性も低下させる等の問題が生じる。このよう
に軟質金属と硬質金属を含んだ合金粉末を製造する
場合、従来の手法で機械的特性を上げようと粉砕を充分
に行うと、逆に焼結体の機械的特性が低下し、さらに、
酸素吸収量も多くなるという問題があることがわかっ
た。本発明者は、このような問題を解決するため鋭意検
討を重ねた結果、再凝集を生じない程度に粉砕した場合
は、機械的特性と酸素含有量の両者を満足できるレベル
で両立できるという知見に基づいて本発明をなしたので
ある。
In general, when a powder composed of two or more layers is produced, each layer is uniformly dispersed by performing a mechanical grinding (MG) method in which reagglomeration is repeated while performing mechanical pulverization. A method has been proposed for obtaining a prepared powder. JP-A-5-51663 discloses that an atomized powder containing aluminum as a main component containing ceramic particles is mechanically pulverized and re-agglomerated by the above-mentioned MG method so that ultrafine ceramic particles can be uniformly distributed without segregation. It is said that the obtained aluminum-based composite alloy can be obtained. However, as described above, a soft metal layer and a hard metal layer are formed from a powder material containing a soft metal and a hard metal.
In the case of producing an alloy powder having the following formula , pulverization of the hard metal layer is promoted as compared with pulverization of the soft metal layer . For this reason,
When mechanical pulverization is performed to such an extent that reagglomeration occurs, the powder mainly composed of a hard metal becomes an ultrafine powder. Therefore, when such a powder is sintered, a powder containing a hard metal as a main component has a large amount of oxygen absorption, thus deteriorating the sinterability, and also has a problem that the mechanical properties of the sintered body are reduced. In the case of producing an alloy powder containing a soft metal layer and a hard metal layer as described above, if sufficient pulverization is performed to increase the mechanical properties by the conventional method, the mechanical properties of the sintered body will decrease. ,further,
It was found that there was a problem that the amount of oxygen absorption also increased. The present inventors have conducted intensive studies to solve such a problem, and found that when pulverized to the extent that reagglomeration does not occur, both mechanical properties and oxygen content can be satisfied at a satisfactory level. The present invention has been made based on the above.

【0013】本発明では、アトマイズにより平均粒径が
微細化されると同時に、軟質金属層が微細化された合金
粉末が得られる。このため、また、機械的粉砕により、
さらに粉末粒子が微細化される。機械的粉砕工程におい
ては、硬質金属層の微細化が促進されるが、機械的粉砕
は、再凝集を生じない程度に行われるため、硬質金属層
が超微粉になるのが防止される。このため、得られた合
金粉末を用いて燒結する際、酸素吸収量が低く押さえら
れる。また、超微粉(1μm以下)の発生を防止するこ
とができるので、1μm以下の超微粉が1%以上になら
ない条件で粉砕を行うことができる。したがって、1μ
m以下の超微粉が1%以上になる場合を再凝集している
と見ることもできる。
In the present invention, the average particle size is reduced by atomization.
Alloy with soft metal layer miniaturized at the same time as miniaturization
A powder is obtained. For this reason, and by mechanical grinding,
Further, the powder particles are refined. In the mechanical grinding process
In this case, finer hard metal layers are promoted, but mechanical pulverization
Is performed to the extent that reagglomeration does not occur.
Is prevented from becoming ultrafine powder. For this reason, the obtained total
When sintering with gold powder, the oxygen absorption is low
It is. In addition, since the generation of ultrafine powder (1 μm or less) can be prevented, pulverization can be performed under the condition that the amount of ultrafine powder of 1 μm or less does not exceed 1%. Therefore, 1μ
The case where the ultrafine powder of m or less becomes 1% or more can be regarded as reagglomeration.

【0014】なお、機械的粉砕は湿式粉砕で行うことが
好ましい。これは、湿式粉砕の方が再凝集を抑制しやす
いからである。また、乾式粉砕の場合でも、エタノール
等の凝集防止剤を添加することにより再凝集を抑制する
ことができる。
The mechanical pulverization is preferably performed by wet pulverization. This is because wet pulverization is easier to suppress reagglomeration. In addition, even in the case of dry pulverization, re-aggregation can be suppressed by adding an aggregation inhibitor such as ethanol.

【0015】また、機械的粉砕によって作成される粉末
粒子の最大粒径は45μm以下であることが好ましい。
これは、合金粉末の粒径が45μmを超えると焼結時の
結合力が弱くなるからである。したがって、最大粒径が
45μm以下で、再凝集が生じない程度に機械的に粉砕
すれば、全ての粉末を焼結に使うことができ、なおか
つ、機械的強度及び酸素吸収量の両者の問題をクリアす
ることができる。
The maximum particle size of the powder particles produced by mechanical pulverization is preferably 45 μm or less.
This is because if the particle size of the alloy powder exceeds 45 μm, the bonding force during sintering becomes weak. Therefore, if the maximum particle size is 45 μm or less and mechanically pulverized to the extent that reagglomeration does not occur, all the powders can be used for sintering, and the problems of both mechanical strength and oxygen absorption amount are reduced. Can be cleared.

【0016】本発明に係る方法は、特に軟質金属層とし
てSnからなる層が含まれる合金粉末の製造に好適であ
る。これは、Snは軟質金属として粉砕しにくい材料の
一つであり、上述した問題が顕著であるからである。な
お、Snは、Ti合金の耐熱性を高める代表的な元素で
あり、焼結Ti合金の添加原料粉末に配合される。
The method according to the present invention is particularly suitable for producing an alloy powder containing a layer made of Sn as a soft metal layer . This is because Sn is one of the materials hard to be crushed as a soft metal, and the above-mentioned problem is remarkable. In addition, Sn is a typical element which raises the heat resistance of Ti alloy, and is mix | blended with the additive raw material powder of sintered Ti alloy.

【0017】粉末原料にSnを含む場合は、粉末原料は
SiCを主成分とする坩堝で溶解することが好ましい。
一般に、MgOを主成分とする坩堝や、CaOを主成分
とする坩堝は、溶湯へのコンタミ(汚染)量が少ないと
言われている。しかしながら、溶湯中にSnを含む場合
にMgO,CaOを主成分とする坩堝で溶解すると、溶
湯へのコンタミ量が多くなり、これに対して、SiCを
主成分とする坩堝を使用すると、溶湯へのコンタミ量を
少なくすることができる。
When Sn is contained in the powder raw material, the powder raw material is preferably dissolved in a crucible containing SiC as a main component.
Generally, it is said that a crucible containing MgO as a main component or a crucible containing CaO as a main component has a small amount of contamination (contamination) with a molten metal. However, when the molten metal contains Sn and is melted in a crucible containing MgO and CaO as a main component, the amount of contamination to the molten metal increases. On the other hand, when a crucible containing SiC as a main component is used, the molten metal becomes molten. Contamination amount can be reduced.

【0018】できあがった合金粉末を焼結した後は、押
出し、鍛造等の加工により最終的な機械部品とすること
が好ましい。これは、原料粉末の粒径が、再凝集する程
度まで粉砕する場合と比較して大きいため焼結体内の隙
間が多く形成されている。したがって、鍛造等を施すこ
とによりその隙間を埋めることができ、機械的強度を上
げることができる。
After sintering the finished alloy powder, it is preferable to make it into a final mechanical part by processing such as extrusion or forging. This is because the particle size of the raw material powder is large as compared with the case where the raw material powder is pulverized to a degree of reagglomeration, so that many gaps in the sintered body are formed. Therefore, the gap can be filled by forging or the like, and the mechanical strength can be increased.

【0019】[0019]

【発明の実施の形態】以下、本発明を具現化した具体例
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific examples embodying the present invention will be described.

【0020】(発明例)組成(Al―25%、Sn−2
5%、Zr−6%、Nb−6%、Mo−1%、Si)か
らなる原料を、Ar雰囲気中で溶解し出湯温度1650
℃の溶湯にArガスを噴霧することによりアトマイズを
行った。坩堝には、SiC90%、残部Al2 3 、S
iO2 からなる坩堝を使用した。
(Invention Example) Composition (Al-25%, Sn-2)
A raw material composed of 5%, Zr-6%, Nb-6%, Mo-1%, and Si) is dissolved in an Ar atmosphere, and a tapping temperature is 1650.
Atomization was performed by spraying Ar gas on the molten metal at a temperature of ℃. In the crucible, 90% SiC, balance Al 2 O 3 , S
A crucible made of iO 2 was used.

【0021】アトマイズ粉末粒子の金属組織の写真を図
1に示す。アトマイズされた溶湯は急速に冷却されるた
め微粒化されSnの結晶粒径も2〜3μm以下であっ
た。また、このアトマイズ粉末の粒度分布を図3に示
す。この図から明らかなように、アトマイズ粉末は、粒
径が45μm以下のものが少なく、45μmを超えるも
のが約60%であった。これは、溶湯の粘度との関係で
坩堝から出湯する溶湯の径をあまり小さくすると滑らか
な出湯が行えないため、出湯される溶湯の径を大きくし
なければならず、その結果アトマイズ粉末の粒径も大き
くなってしまうのである。
FIG. 1 shows a photograph of the metal structure of the atomized powder particles. The atomized molten metal was rapidly cooled and atomized, and the crystal grain size of Sn was 2-3 μm or less. FIG. 3 shows the particle size distribution of the atomized powder. As is apparent from this figure, the atomized powder had a small number of particles having a particle size of 45 μm or less, and approximately 60% of particles having a particle size exceeding 45 μm. This is because if the diameter of the molten metal discharged from the crucible is too small due to the relationship with the viscosity of the molten metal, smooth tapping cannot be performed, so the diameter of the molten metal must be increased, and as a result, the particle size of the atomized powder Will also be larger.

【0022】次に、このアトマイズ粉末をアトライタに
より再凝集が生じない程度まで粉砕した。粉砕後の粉末
の粒径は、全ての粉末が45μm以下となった。粉砕時
間は、約1時間であった。粉砕後の粒度分布を、図4に
示す。この図から明らかなように、平均粒径は、約7μ
m程度で、また、1μm以下となる粉末は殆ど発生しな
いレベルで粉砕を止めた。
Next, the atomized powder was ground by an attritor to such an extent that reagglomeration did not occur. The particle size of the powder after pulverization was 45 μm or less for all powders. The grinding time was about 1 hour. FIG. 4 shows the particle size distribution after pulverization. As apparent from this figure, the average particle size is about 7 μm.
The pulverization was stopped at such a level that almost no powder with a particle size of about m or less than 1 μm was generated.

【0023】次に、この合金粉末の焼結性、機械的強度
及び加工性を調べるために、水素化Ti粉末と混合し、
円柱形のテストピースを製造した。この時の、製造工程
を図5に基づいて説明する。
Next, in order to examine the sinterability, mechanical strength and workability of this alloy powder, the alloy powder was mixed with hydrogenated Ti powder,
A cylindrical test piece was manufactured. The manufacturing process at this time will be described with reference to FIG.

【0024】まず、上述した合金粉末(15wt%)
と、水素化Ti粉末(83wt%)と、TiB2 (2w
t%)を混合し(S1)、成形面圧3〜6tonf/cm2
で金型で成形した(S2)。その後、成形体を焼結炉内
に入れ、焼結炉内を真空度10 -5Torrとした。そし
て、焼結炉内の温度を焼結温度1300℃まで上昇さ
せ、その温度で約4時間維持し焼結した(S3)。
First, the above-mentioned alloy powder (15 wt%)
And hydrogenated Ti powder (83 wt%), TiBTwo(2w
t%) (S1), and a molding surface pressure of 3 to 6 tonf / cm.Two
(S2). Then, the compact is placed in a sintering furnace.
And the inside of the sintering furnace -FiveTorr. Soshi
And raise the temperature in the sintering furnace to the sintering temperature of 1300 ° C.
And maintained at that temperature for about 4 hours for sintering (S3).

【0025】焼結後の焼結体の相対密度を、図6に示
す。これによると、焼結体の相対密度は成形面圧を3to
nf/cm2 以上で約93%以上となった。また、焼結体
の酸素吸収量も表1 に示すように低く抑えられた。さら
に、焼結体の機械的特性も表1に示すように満足なもの
であった。
FIG. 6 shows the relative density of the sintered body after sintering. According to this, the relative density of the sintered body was 3 to
It became about 93% or more at nf / cm 2 or more. Also, the amount of oxygen absorbed by the sintered body was suppressed low as shown in Table 1. Further, the mechanical properties of the sintered body were satisfactory as shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】次に、この焼結体を押し出しにより長尺の
棒形状を成形した(S4)。焼結体の相対密度が約93
%以上と高いため、押し出し成形時に割れが生じること
はなかった。焼結体の材料密度が低いと材料の伸びが悪
く割れが生じる場合があるが、(発明例)の合金粉末で
は、粒径が45μm以下となるまで粉砕し密度が高いの
で、このような問題が生じなかった。次に、長尺の棒形
状に成形された焼結体を鍛造により、円柱状のテストピ
ースを成形した(S5)。この時、粗材の材料密度はS
4の押出し工程で上昇するため成形時に割れが生じるこ
とはなかった。
Next, the sintered body was extruded to form a long rod (S4). The relative density of the sintered body is about 93
% Or more, cracking did not occur during extrusion molding. If the material density of the sintered body is low, the elongation of the material is poor and cracks may occur. However, the alloy powder of (Invention Example) is pulverized until the particle size becomes 45 μm or less and the density is high. Did not occur. Next, a cylindrical test piece was formed by forging the sintered body formed into a long rod shape (S5). At this time, the material density of the coarse material is S
No cracking occurred during molding because of the rise in the extrusion process of No. 4.

【0028】(比較例1)比較例1として、同一組成
(Al―25%、Sn−25%、Zr−6%、Nb−6
%、Mo−1%、Si)の原料を、Ar雰囲気中で溶解
し注湯温度1650℃でインゴット(φ300×30)
を製造した。この場合の、金属組織を観察すると、イン
ゴット組織の結晶粒径は数10μmであった。また、粗
大なSnの結晶(粒径10μm以上)が存在した。
Comparative Example 1 As Comparative Example 1, the same composition (Al-25%, Sn-25%, Zr-6%, Nb-6) was used.
%, Mo-1%, Si) are melted in an Ar atmosphere and ingots (φ300 × 30) at a pouring temperature of 1650 ° C.
Was manufactured. Observation of the metal structure in this case revealed that the crystal grain size of the ingot structure was several tens of μm. In addition, coarse Sn crystals (having a particle size of 10 μm or more) were present.

【0029】上述したインゴットを、プレス粉砕により
粗粉砕を行い、その後アトライタにより平均粒径が10
μm以下となるように微粉砕を行った。粉砕時間は1 時
間であった。粉砕後の粒子の金属組織の写真を図2に示
す。図2中、内部の白く見えるものがSn層であり外側
の黒くみえるものが硬い化合物層である。この写真から
もわかるように、Snの結晶は粉砕後も粒径が大きく粉
砕によって粒径があまり変化しないことがわかった。ま
た、この時の粒度分布を図7に示す。これによると、約
0.2μm程度の所と、約6μm程度の所にピークが発
生した。これは、Sn層が粉砕されにくいのに対して他
の化合物層は脆くて粉砕が進むため、このような層が超
微粉となるからである。
The above-mentioned ingot is roughly pulverized by press pulverization, and then the average particle size is reduced to 10 by an attritor.
It was pulverized to a size of not more than μm. The grinding time was 1 hour. FIG. 2 shows a photograph of the metal structure of the pulverized particles. In FIG. 2, what looks white inside is the Sn layer, and what looks black outside is the hard compound layer. As can be seen from this photograph, it was found that the particle size of the Sn crystal was large even after the pulverization, and the particle size did not change much by the pulverization. FIG. 7 shows the particle size distribution at this time. According to this, peaks occurred at about 0.2 μm and at about 6 μm. This is because the Sn layer is hardly pulverized, while the other compound layers are brittle and pulverization proceeds, so that such a layer becomes ultrafine powder.

【0030】次に、このようにして製造した合金粉末
を、(発明例)と同様に水素化Ti粉末と混合し、金型
にて成形し、1300℃で焼結を行った。この時の、焼
結体の特性値を表1 に発明例とあわせて示す。焼結体の
酸素含有量は、(発明例)のもの(0.28〜0.29
%)に比較して、0.45%と高かった。これは、合金
粉末の粉末が超微粉となっているものが存在し、比表面
積が大きくなったためである。また、破断伸びは、(発
明例)のものに比較して0.6%と低かった。このよう
に、(発明例)と(比較例)では、高温引張強度に大き
な差はないが、(比較例)では酸素量が多いため破断伸
びが低いことが分かる。
Next, the alloy powder thus produced was mixed with a hydrogenated Ti powder in the same manner as in (Invention Example), molded in a mold, and sintered at 1300 ° C. The characteristic values of the sintered body at this time are shown in Table 1 together with the invention examples. The oxygen content of the sintered body was (invention example) (0.28 to 0.29
%) As compared to 0.45%. This is due to the fact that some of the alloy powders are ultrafine and the specific surface area is increased. Further, the elongation at break was as low as 0.6% as compared with that of (Inventive Example). Thus, although there is no significant difference in the high-temperature tensile strength between (Inventive Example) and (Comparative Example), it can be seen that the (Comparative Example) has a high oxygen content and thus a low elongation at break.

【0031】この焼結体を、その後(発明例)と同様の
手順にて押出し、鍛造により円柱状テストピースへと成
形加工した。その結果できたテストピースには、割れが
発生したものがあった。これは、合金粉末には粗大なS
n層がそのまま残っており、これが原因で粗大流失孔が
形成されたためである。
This sintered body was extruded in the same procedure as in (Example of the invention), and formed into a cylindrical test piece by forging. Some of the resulting test pieces had cracks. This is because coarse S
This is because the n-layer remains as it is, and a coarse flow loss hole was formed due to this.

【0032】(比較例2)比較例2として、(発明例)
と同一組成(Al―25%、Sn−25%、Zr−6
%、Nb−6%、Mo−1%、Si)の原料を、Ar雰
囲気中で溶解し、出湯温度1650℃の溶湯にArガス
を噴霧することによりアトマイズを行い、その後、粉砕
することなく篩い分けにより粒径を45μm以下とし
た。
Comparative Example 2 As Comparative Example 2, (Inventive Example)
Same composition as (Al-25%, Sn-25%, Zr-6
%, Nb-6%, Mo-1%, and Si) are dissolved in an Ar atmosphere, atomized by spraying Ar gas on a molten metal having a tapping temperature of 1650 ° C., and then sieved without pulverization. The particle size was reduced to 45 μm or less by division.

【0033】この合金粉末を、(発明例)と同様の条件
で水素化Ti粉末と混合し焼結した。その結果、焼結体
の相対密度は、図6に示すように(発明例)よりも3%
程度低下した。これは、アトマイズしただけの粉末で
は、粒子径が大きいため焼結性が低くなるからである。
また、45μm以下の粒子の割合も図3に示すように約
40%と低く歩留まりが悪かった。
This alloy powder was mixed with hydrogenated Ti powder under the same conditions as in (Example of the invention) and sintered. As a result, the relative density of the sintered body was 3% higher than that of (invention example) as shown in FIG.
To some extent. This is because sinterability is low in the powder that has just been atomized because the particle diameter is large.
In addition, the ratio of particles having a size of 45 μm or less was as low as about 40% as shown in FIG. 3, and the yield was poor.

【0034】このような焼結体を、(発明例)と同様に
押し出し、鍛造により円柱状テストピースに成形した。
このようなテストピースには、軸成形時に割れが発生し
た。これは、焼結体の材料密度が低く材料の伸びが悪い
ためである。
Such a sintered body was extruded in the same manner as in (Example of the present invention) and formed into a cylindrical test piece by forging.
In such a test piece, cracks occurred during shaft forming. This is because the material density of the sintered body is low and the elongation of the material is poor.

【0035】(比較例3)同一組成(Al―25%、S
n−25%、Zr−6%、Nb−6%、Mo−1%、S
i)の原料を、坩堝の材料をMgOを主成分とする坩
堝、とCaOを主成分とする坩堝の2種類に変えて溶解
し、(発明例)と同様の条件で合金粉末を製造した。
(発明例)のSiCを主成分とする坩堝を使用した場合
は、殆どヒュームの発生がなかったのに対して、Mg
O、CaOを主成分とする坩堝を使用した場合は、溶解
中にヒューム(坩堝の金属成分の蒸発)が発生し湯面の
状況把握が困難であった。また、この時の合金粉末への
コンタミ量と、坩堝の寿命を表2に示す。
(Comparative Example 3) Same composition (Al-25%, S
n-25%, Zr-6%, Nb-6%, Mo-1%, S
The raw material of i) was melted by changing the material of the crucible into two types, a crucible containing MgO as a main component and a crucible containing CaO as a main component, to produce an alloy powder under the same conditions as in (Example of the invention).
When the crucible containing SiC as the main component (invention example) was used, almost no fume was generated, whereas Mg was used.
When a crucible containing O and CaO as a main component was used, fumes (evaporation of metal components of the crucible) occurred during melting, and it was difficult to grasp the state of the molten metal surface. Table 2 shows the amount of contamination of the alloy powder and the life of the crucible at this time.

【0036】[0036]

【表2】 [Table 2]

【0037】表2から明らかなようにMgO、CaOを
主成分とする坩堝は、合金粉末へのコンタミ量が多く、
坩堝の寿命も短い。これに対し、SiCを主成分とする
坩堝は、合金粉末へのコンタミ量も少なく坩堝の寿命も
長かった。
As is clear from Table 2, the crucible containing MgO and CaO as the main components has a large amount of contamination with the alloy powder.
Crucible life is short. On the other hand, the crucible containing SiC as a main component had a small amount of contamination with alloy powder and a long crucible life.

【0038】以上、上記発明例、比較例は、Al−Sn
−Zrの合金粉末を製造する場合について説明したが、
本発明はこれに限られず、例えば、Al−V、Al−T
i、Fe−V、Fe−Mo等を原料とする合金粉末の製
造にも使用することができる。
As described above, the above-mentioned invention examples and comparative examples are made of Al—Sn
Although the case where the alloy powder of -Zr is manufactured has been described,
The present invention is not limited to this. For example, Al-V, Al-T
It can also be used for the production of alloy powder using i, Fe-V, Fe-Mo or the like as a raw material.

【0039】[0039]

【発明の効果】本発明の合金粉末の製造方法によれば、
焼結時の酸素吸収量が少なく、かつ、焼結後の焼結体の
機械的特性に優れた合金粉末を製造することができる。
According to the method for producing an alloy powder of the present invention,
An alloy powder having a small amount of oxygen absorption during sintering and having excellent mechanical properties of the sintered body after sintering can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明例におけるアトマイズ粉末の金属組織を1
0,000倍で示す顕微鏡写真である。
FIG. 1 shows the metallographic structure of the atomized powder in the invention example 1
It is a micrograph shown at 0,000 times.

【図2】鋳造により製造したインゴットを粉砕した後
の、粉末の金属組織を1,000 倍で示す顕微鏡写真であ
る。
FIG. 2 is a photomicrograph showing the metallographic structure of the powder after pulverizing an ingot manufactured by casting at a magnification of 1,000.

【図3】発明例においてアトマイズ後のアトマイズ粉末
の粒度分布を示す図である。
FIG. 3 is a diagram showing the particle size distribution of atomized powder after atomization in the invention example.

【図4】発明例においてアトマイズ粉末を、機械的粉砕
した後の粒度分布を示す図面である。
FIG. 4 is a drawing showing the particle size distribution of the atomized powder after mechanical pulverization in the inventive examples.

【図5】粉末冶金法による円柱状テストピースの製造工
程を説明するための図面である。
FIG. 5 is a drawing for explaining a process of manufacturing a cylindrical test piece by powder metallurgy.

【図6】発明例と比較例2の焼結体の相対密度を示す図
面である。
FIG. 6 is a drawing showing the relative densities of the sintered bodies of the invention example and comparative example 2.

【図7】比較例1の合金粉末の粒度分布を示す図面であ
る。
FIG. 7 is a drawing showing the particle size distribution of the alloy powder of Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古田 忠彦 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (72)発明者 斎藤 卓 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (56)参考文献 特開 平1−180901(JP,A) 特開 昭64−56802(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 9/04 B22F 9/08 B22F 1/00 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Tadahiko Furuta 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central R & D Laboratories Co., Ltd. 41, Yokomichi 1 Inside Toyota Central Research Laboratory, Inc. (56) References JP-A-1-180901 (JP, A) JP-A-64-56802 (JP, A) (58) Fields investigated (Int. Cl. 7) , DB name) B22F 9/04 B22F 9/08 B22F 1/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Sn、Zn及びPbのうちいずれかを有す
軟質金属層と、Al−Ti化合物及びAl−Zr化合
物のいずれかを有する硬質金属層とを備える、合金粉末
を製造する方法であって、 前記軟質金属層の原料と、前記硬質金属層の原料とを溶
解した溶湯をアトマイズすることにより、軟質金属層と
硬質金属層とを有するアトマイズ合金粉末を作製する工
程と、 該アトマイズ合金粉末を再凝集しない程度に機械的に粉
砕する機械的粉砕工程とを備えた合金粉末の製造方法。
1. It has any one of Sn, Zn and Pb
And the soft metal layer that, Al-Ti compounds and Al-Zr compound
A hard metal layer having any one of the above-described materials, wherein the soft metal material and the hard metal material are melted by melting a molten metal. A method for producing an alloy powder, comprising: a step of producing an atomized alloy powder having a layer and a hard metal layer; and a mechanical pulverization step of mechanically pulverizing the atomized alloy powder so as not to re-agglomerate.
【請求項2】前記軟質金属層はSnからなり、前記原料
SiCを主成分とする坩堝内で溶解される、請求項1
記載の合金粉末の製造方法。
2. The method according to claim 1, wherein the soft metal layer is made of Sn.
Is dissolved in a crucible composed mainly of SiC, claim 1
A method for producing the described alloy powder.
【請求項3】請求項1又は2のいずれかに記載の合金粉
末の製造方法であって、前記機械的粉砕工程により製造
される合金粉末の最大粒径が45μm以下である合金粉
末の製造方法。
3. The method for producing an alloy powder according to claim 1 , wherein the maximum particle diameter of the alloy powder produced by the mechanical pulverization step is 45 μm or less. .
JP10309141A 1998-10-29 1998-10-29 Manufacturing method of alloy powder Expired - Lifetime JP3113639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10309141A JP3113639B2 (en) 1998-10-29 1998-10-29 Manufacturing method of alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10309141A JP3113639B2 (en) 1998-10-29 1998-10-29 Manufacturing method of alloy powder

Publications (2)

Publication Number Publication Date
JP2000129316A JP2000129316A (en) 2000-05-09
JP3113639B2 true JP3113639B2 (en) 2000-12-04

Family

ID=17989409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10309141A Expired - Lifetime JP3113639B2 (en) 1998-10-29 1998-10-29 Manufacturing method of alloy powder

Country Status (1)

Country Link
JP (1) JP3113639B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162109A (en) * 2002-11-12 2004-06-10 Nikko Materials Co Ltd Sputtering target and powder for producing the same
CN101068947A (en) 2004-11-30 2007-11-07 日矿金属株式会社 Sb-Te base alloy sintered spattering target
EP1829985B1 (en) 2004-12-24 2013-10-16 JX Nippon Mining & Metals Corporation Sb-Te ALLOY SINTERING PRODUCT TARGET
US7947106B2 (en) 2005-01-18 2011-05-24 Jx Nippon Mining & Metals Corporation Sb-Te alloy powder for sintering, sintered compact sputtering target obtained by sintering said powder, and manufacturing method of Sb-Te alloy powder for sintering
JP4965579B2 (en) 2006-10-13 2012-07-04 Jx日鉱日石金属株式会社 Sb-Te based alloy sintered compact sputtering target
WO2011136120A1 (en) 2010-04-26 2011-11-03 Jx日鉱日石金属株式会社 Sb-te based alloy sintered compact sputtering target

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456802A (en) * 1987-08-28 1989-03-03 Daido Steel Co Ltd Fe-cu combined powder and its production
JPH01180901A (en) * 1988-01-08 1989-07-18 Kobe Steel Ltd Silver nickel composite powder for electric contact material and manufacture thereof
JPH01242701A (en) * 1988-03-23 1989-09-27 Daido Steel Co Ltd Powder for high density ti-al alloy
JPH01294802A (en) * 1988-05-20 1989-11-28 Hitachi Metals Ltd Production of flat fine fe-ni-al alloy powder
JP3363459B2 (en) * 1991-08-22 2003-01-08 住友電気工業株式会社 Method for producing aluminum-based particle composite alloy
JPH10183201A (en) * 1996-12-24 1998-07-14 Daido Steel Co Ltd Water atomized alloy powder and its production

Also Published As

Publication number Publication date
JP2000129316A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
KR100635889B1 (en) Powder additive for powder metallurgy, iron-based powder mixture for powder metallurgy, and method for manufacturing the same
CA1215865A (en) Copper base spinodal alloy strip and process for its preparation
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
JPH0583624B2 (en)
JP2005330585A (en) Method for preparing metallic article having other additive constituent without any melting
JP2761085B2 (en) Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts
JP2009293108A (en) METHOD FOR PRODUCING Al-BASED ALLOY SPUTTERING TARGET MATERIAL
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JP3113639B2 (en) Manufacturing method of alloy powder
JPH0120215B2 (en)
TW201103999A (en) Method for manufacturing nickel alloy target
JPH04502784A (en) Phase redistribution process
JP3245893B2 (en) Fine grain tungsten alloy and method for producing the same
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
Khalil et al. Application of Al-Si semi-solid reaction for fabricating harmonic structured Al based alloy
JPH029099B2 (en)
JP2005048285A (en) RAW MATERIAL POWDER FOR Al-Si BASED ALLOY SINTERED COMPONENT, METHOD OF PRODUCING Al-Si BASED ALLOY SINTERED COMPONENT, AND Al-Si BASED ALLOY SINTERED COMPONENT
JP6516652B2 (en) W-Cu-Ag alloy and method of manufacturing the same
JP2798709B2 (en) Manufacturing method of aluminum alloy powder sintered parts
JP2749165B2 (en) TiA-based composite material and method for producing the same
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
CN115927932B (en) High-strength die-casting aluminum alloy and preparation method thereof
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 13

EXPY Cancellation because of completion of term